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Abstract: Dynamic Textures (DTs) are image sequences of moving scenes that present
stationary properties in time. In this paper, we apply Dynamic Mode Decomposition (DMD)
and Dynamic Mode Decomposition with Control (DMDc) to identify a parametric model of
dynamic textures. The identification results are compared with a benchmark method from the
dynamic texture literature, both from a mathematical and from a computational complexity
point of view. Extensive simulations are carried out to assess the performance of the proposed
algorithms with regards to synthesis and denoising purposes, with different types of dynamic
textures. Results show that DMD and DMDc present lower error, lower residual noise and lower
variance compared to the benchmark approach.
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1. INTRODUCTION

Dynamic Textures (DTs) are sequences of images that
exhibit some form of temporal stationarity as well as a
statistical regularity in the spatial domain, see Doretto
et al. (2003). Examples of DT are depicted in Fig. 1,
where several frames of the sequence (from left to right)
are reported. The study of the DTs is well motivated by a
wide number of applications, see Zhao et al. (2019); Saisan
et al. (2001); Doretto and Soatto (2003):

• Synthesis: generation of new sequences similar to
the original one.
• Denoising: reduce the amount of noise present in the

original video.
• Classification/recognition: assess if a dynamic

texture belongs to a particular category.
• Compression: reduce the storage requirement needed

to represent a dynamic texture.
• Editing: modify the temporal behavior of the dy-

namic texture.

There are different approaches that can be used to solve
these problems. Two macro-categories of algorithms exist:
(i) physics-based, which derive the model of the scene
from first principles (Barzel and Barr (2013)); (ii) image-
based, where texture movies are obtained using images
without building a physical model of the process that
generated the scene (Wei and Levoy (2000)). Image-based
methods can be further subdivided in: (a) procedural
techniques, which don’t use a model and perform synthesis
by concatenation or repetition of the image data, and (b)
model-based techniques that indeed use a model, although
not a physical one.

Compared to physical and procedural approaches, model-
based techniques are the most cost-effective solutions, in

(a) The Fire dynamic texture

(b) The Smoke dynamic texture

(c) The Waves dynamic texture

(d) The Waves and ship dynamic texture

Fig. 1. Frames extracted from different dynamic textures.

terms of complexity and flexibility for the aforementioned
purposes, see Doretto et al. (2003). Several methods have
been devised relying on the model-based rationale, see Bar-
Joseph et al. (2001). Pivotal to this modeling approach
is the concept of DT representation. In this work, we
follow the interpretation of Doretto et al. (2003), where
individual images are seen as realizations of the output of
a (linear) dynamical system driven by an independent and
identically distributed (i.i.d.) process. The problem is now
to estimate a parametric model of the dynamical system
that describes the DT. Throughout this paper, we will
refer to the system identification algorithm proposed in
Doretto et al. (2003) as the “Classic approach”.
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An immediate obstacle in developing a model of images for
the DT is given by the high-dimensionality of the system.
In fact, in its most intuitive formulation, each pixel of the
images in the DT can be considered as a state of the system
that evolves in time. In order to cope with this, the authors
in Doretto et al. (2003) represented the system in a state-
space formulation where the full image pixels are projected
onto a lower number of states.

Dynamic Mode Decomposition (DMD), Schmid (2010),
and DMD with control (DMDc), Proctor et al. (2016)
recently emerged as powerful data-driven techniques to
represent and model high-dimensional dynamical systems.
The aim of DMD-like methods is to estimate the most
important modes and eigenvalues of a dynamical system
using matrix decomposition methods such as Singular
Value Decomposition (SVD), starting from its measure-
ments. This linear approximation has been found useful
also for representing nonlinear systems, see Rowley et al.
(2009). DMD has been already applied for video processing
applications, for instance for the separation of the back-
ground from the foreground (in Grosek and Kutz (2014))
and in shot detection (in Bi et al. (2018)). To the best of
our knowledge, these algorithms have never been employed
for the identification of dynamic textures.

The contributions of this work are: (i) use DMD and
DMDc algorithms for the parametric identification of dy-
namic textures; (ii) reformulate the DMD-like estimation
problems in a way that is akin to the Classic approach; (iii)
compare the DMD, DMDc and the Classic approach algo-
rithms, both from a mathematical and a computational
efficiency standpoint; (iv) propose and perform a set of
experiments to verify the goodness of the synthesis, as well
as the denoising performance, of dynamic textures.

2. PROBLEM STATEMENT

Let {I(t)}t=1,...,τ , I(t) ∈ Rm, be a sequence of τ images,
which represents the analyzed video. Suppose that it is
possible to measure a noisy version of the image at each
time instant t,

y(t) = I(t) + w(t) w(t)
i.i.d.∼ pw(·), (1)

with y(t) ∈ Rm and w(t) ∈ Rm is a realization drawn from
a known distribution pw(·) 1 . We say that the sequence
{I(t)} is a (linear) dynamic texture (Doretto et al. (2003))
if there exists a stationary distribution q(·) and three
matrices A ∈ Rn×n, B ∈ Rn×ne , C ∈ Rm×n such that
each image I(t) can be thought as a linear combination of
states x(t) of the following dynamical system:{

x(t+ 1) = Ax(t) +Be(t), e(t)
i.i.d.∼ q(·),

y(t) = Cx(t) + w(t), w(t)
i.i.d.∼ pw(·),

(2)

with x(t) ∈ Rn, x(0) = x0 , e(t) ∈ Rne and q(·) unknown.
Therefore, in order to identify a dynamic texture, we need
to estimate the matrices A, B, C and the distribution
of the input q(·) in the model. To simplify the problem
and avoid estimating an unknown distribution, we assume
that the input sequence can be modeled as a second-order

1 As stated by the authors in Doretto et al. (2003), pw(·) can be
inferred from the physics of the imaging device. For example, for
CCD sensors, a good approximation is a Poisson distribution with
intensity related to the average photon count.

stationary process with arbitrary covariance (Doretto et al.
(2003)). Under this hypothesis, we can model {y(t)} as the
output of a linear dynamical system driven by white zero-
mean Gaussian noise (Ljung (1986)):{
x(t+ 1) = Ax(t) + e(t), e(t) ∼ N (0, Q), x(0) = x0,

y(t) = Cx(t) + w(t), w(t) ∼ N (0, R),
(3)

with Q ∈ Rn×n and R ∈ Rm×m symmetric positive-
definite matrices. In this form, the system identifica-
tion problem amounts to: estimate the model parameters
A,C,Q,R from the measurements y(1), ..., y(τ).

Remark. Under the given hypothesis, Be(t) in the model
(2), with e(t) ∼ N (0, Ine) where Ine is the ne×ne identity
matrix, is equivalent to the term e(t) in the model (3) if
Q is such that Q = BBT .

Remark. Since we are interested in data dimensionality
reduction, we make the following assumptions about the
model (3):

m� n, rank(C) = n. (4)

3. IDENTIFICATION OF DYNAMIC TEXTURES

3.1 Identification with the Classic approach

In the Classic approach of Doretto et al. (2003), the
authors obtained a (although suboptimal) closed form
solution to the identification problem posed in Section 2.

Let Y τ1 = [y(1) y(2) ... y(τ)] ∈ Rm×τ be the input matrix
that represents the analyzed video. Each column y(t)
contains every pixel of the frame at the time t. The
same matrix notation can be used for the state of the
dynamical system x(t) as well as w(t) and e(t). Let n be
the system order (it can be estimated by analyzing the
singular values of Y τ1 ). Then, let Y τ1 = UY ΣY V

>
Y , where

UY ∈ Rm×n, ΣY ∈ Rn×n and VY ∈ Rτ ×n, be the low-
rank approximation obtained from the SVD of Y τ1 .

We can write the output equation of the system (3) as

Y τ1 = CXτ
1 +W τ

1 , (5)

with Xτ
1 ∈ Rn×τ and W τ

1 ∈ Rm×τ . In order to identify
a unique model, the authors of Doretto et al. (2003)
chose the canonical model that makes the columns of C
orthonormal:

C>C = In. (6)

Under this assumption, the matrices C and Xτ
1 can be

estimated by minimizing the following cost function:

J(C,Xτ
1 ) = ||W τ

1 ||F =

√
tr
(

(Y τ1 − CXτ
1 ) (Y τ1 − CXτ

1 )
>
)

obtaining:

Ĉ(τ) = UY , (7a)

X̂τ
1 (τ) = ΣY V

>
Y . (7b)

Similarly, an estimate of the matrix A can be achieved by
solving the following linear problem:

Â(τ) = argmin
A
||Xτ

2 −AXτ−1
1 ||F = X̂τ

2 (τ)
[
X̂τ−1

1 (τ)
]†
,

(8)
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where the symbol † denotes the pseudoinverse of the ma-
trix, Xτ

2 = [x(2) x(3) ... x(τ)] ∈ Rn× (τ−1) and Xτ−1
1 =

[x(1) x(2) ... x(τ − 1)] ∈ Rn× (τ−1) are partitions of the
state matrix Xτ

1 . Given the state matrix Xτ
1 and A, we

can estimate the input matrix Êτ−1
1 (τ) ∈ Rn× (τ−1) as

Êτ−1
1 (τ) = X̂τ

2 (τ)− Â(τ)X̂τ−1
1 (τ), (9)

and estimate its covariance matrix Q using the unbiased
estimator:

Q̂(τ) =
1

τ − 2
Êτ−1

1 (τ) ·
[
Êτ−1

1 (τ)
]>

. (10)

The matrix B can be estimated by recognizing that
Q = BB>. In order to do so, it is possible to get the
input dimension as

ne = rank
(
Q̂(τ)

)
, (11)

and then perform the low-rank approximation of the
matrix Q̂(τ) = UQΣQV

>
Q by SVD, with UQ ∈ Rn×ne ,

ΣQ ∈ Rne×ne and VQ ∈ Rn×ne . Since Q is a positive semi-
definite symmetric matrix and ΣQ is a diagonal matrix, it
holds that:

Q̂(τ) = UQΣQU
>
Q = UQΣ

1
2

QΣ
1
2

QU
>
Q = UQΣ

1
2

Q

(
Σ

1
2

Q

)>
U>Q ,

and therefore B can be estimated as:

B̂(τ) = UQΣ
1
2

Q. (12)

The estimated dynamical system can be represented as:{
x(t+ 1) = Â(τ)x(t) + B̂(τ)e(t), e(t) ∼ N (0, Ine),

y(t) = Ĉ(τ)x(t).

(13)

3.2 Identification with DMD and DMDc

Dynamic Mode Decomposition The DMD approach as-
sumes that the data can be described by the linear map-
ping:

y(t+ 1) ≈ Ay(t), (14)

where A ∈ Rm×m. Equation (14) can be seen in matrix
form considering two partitions of the input matrix Y τ−1

1 ,

i.e. Y τ−1
1 = [y(1) y(2) ... y(τ − 1)] ∈ Rm× (τ−1) and

Y τ2 = [y(2) y(3) ... y(τ)] ∈ Rm× (τ−1), such that:

Y τ2 ≈ AY τ−1
1 . (15)

In order to find the best-fit solution of the operator A, we
minimize the following cost function:

J(A) = ||Y τ2 −AY τ−1
1 ||F , (16)

which results in

A = Y τ2
(
Y τ−1

1

)†
. (17)

In practice, this solution can not be used since the pseu-
doinverse of Y τ−1

1 is not computable, because it involves
the inverse of a high dimensional m×m matrix. Therefore,
it is necessary to find a computationally efficient way to
compute the pseudoinverse of Y τ−1

1 . In order to do so,
the system order n � m is obtained similarly to Section
3.1, but the considered matrix is now Y τ−1

1 instead of
Y τ1 . Then, the low-rank approximation of Y τ−1

1 is com-
puted with the SVD, obtaining Y τ−1

1 = UY ΣY V
>
Y , where

UY ∈ Rm×n, ΣY ∈ Rn×n and VY ∈ R(τ−1)×n. By
substituting this expression in(

Y τ−1
1

)†
=
(
Y τ−1

1

)> [
Y τ−1

1

(
Y τ−1

1

)>]−1

,

we obtain a computationally efficient way to compute the
pseudoinverse of a matrix:(

Y τ−1
1

)†
= VY Σ−1

Y U>Y . (18)

By substituting (18) in (17), we have that:

Ã = Y τ2 VY Σ−1
Y U>Y , (19)

where Ã ∈ Rm×m is the matrix approximate of A but,
even though it is actually computable, it is still a high
dimensional matrix. To obtain a tractable matrix, notice
that it is possible to project y(t) onto a linear subspace of
dimension n. In order to do so, we can use the transpose of
the previously computed left singular vectors matrix UY
in the following fashion:

x(t) = U>Y y(t), (20a)

Â(τ) = U>Y Ã
(
U>Y
)†

= U>Y Y
τ
2 VY Σ−1

Y . (20b)

Therefore, we have obtained an estimate Â(τ) ∈ Rn×n of
the matrix A in a lower-dimensional subspace, and x(t)
can be seen as the state of the following dynamical system:{

x(t+ 1) = Â(τ)x(t),

y(t) = UY x(t),
(21)

where the output y(t) of (21) is simply the projection of
the state onto the original m-dimensional space.

Dynamic Mode Decomposition with Control The DMDc
method is an extension to the DMD, which takes into con-
sideration an external input z(t) ∈ Rnz . DMDc assumes
that the data can be described by the following linear
mapping:

y(t+ 1) ≈ Ay(t) +Bz(t), (22)

where A ∈ Rm×m and B ∈ Rm×nz . Equation (22) can be
written in matrix form as:

Y τ2 ≈ AY τ−1
1 +BZτ−1

1 . (23)

It is possible to group together the parameters and the
data matrices as:

Y τ2 ≈ [A B]

[
Y τ−1

1

Zτ−1
1

]
= GΩτ−1

1 , (24)

whereG ∈ Rm× (m+nz) and Ωτ−1
1 ∈ R(m+nz)× (τ−1). Thus,

equation (24) is equivalent to equation (15) and we can
proceed in the same way as with DMD. However, this
time we need to compute the low-rank approximation of
the matrix Ωτ−1

1 instead of Y τ−1
1 , Ωτ−1

1 = UΩΣΩV
>
Ω with

UΩ ∈ R(m+nz)× r, ΣΩ ∈ Rr× r and VΩ ∈ R(τ−1)× r. The
truncation value r should be larger than n used for DMD
because the matrix Ωτ−1

1 also includes information about
the input dynamics. Similarly to DMD, we obtain:

G̃ = Y τ2 VΩΣ−1
Ω U>Ω (25)

where G̃ ∈ Rm× (m+nz). We can find the matrices
Ã ∈ Rm×m and B̃ ∈ Rm×nz by properly partitioning the
matrix U>Ω :
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U>Ω =
[
U>Ω1

U>Ω2

]
, U>Ω1

∈ Rr×m, U>Ω2
∈ Rr×nz ,

Ã = Y τ2 VΩΣ−1
Ω U>Ω1

, (26a)

B̃ = Y τ2 VΩΣ−1
Ω U>Ω2

. (26b)

As done in the previous section, we need to project y(t)
onto a subspace with dimension n� m. Note that we can
not simply use U>Ω because it includes information about
the input z(t) of the system. Therefore, we need to find a
n × m projection matrix which only carries information
about y(t). As proposed in Proctor et al. (2016), it is
possible use the transpose of the left singular vectors
matrix, obtained from the n-rank-approximation given by
the SVD of Y τ2 , i.e. Y τ2 = UY ΣY V

>
Y . Thus, we can estimate

the state of the system, as well as A and B, as:

x(t) = U>Y y(t) (27a)

Â(τ) = U>Y Ã
(
U>Y
)†

= U>Y Y
τ
2 VΩΣ−1

Ω U>Ω1
UY (27b)

B̂(τ) = U>Y B̃ = U>Y Y
τ
2 VΩΣ−1

Ω U>Ω2
(27c)

Therefore, we obtain the following linear dynamical sys-
tem: {

x(t+ 1) = Â(τ)x(t) + B̂(τ)z(t)

y(t) = UY x(t).
(28)

Similarly to DMD, the output of the dynamical system is
the projection of the state onto an m-dimensional space.

4. COMPARISON OF THE APPROACHES

4.1 Comparison of the mathematical formulations

Even if their derivation differs, the Classic approach and
the DMD-like approaches share many similarities in their
formulations, see Table 1. In Section 3 we showed how the
methods estimate a dynamical system in state-space form,
see (13), (21) and (28). Other similarities are:

(1) The output is the projection of the system state x(t)
onto the originalm-dimensional space. All approaches
use the left singular vectors matrix (respectively of
Y τ1 , Y τ−1

1 and Y τ2 ), UY , as the projection matrix.
(2) The resulting dynamical systems are linear.

Instead, the main differences are:

(1) The system order is extracted from different matrices.

(2) The estimates of Â(τ) and B̂(τ) differ.
(3) The Classic approach estimates the state matrix

X̂τ
1 (τ) and the input matrix Êτ−1

1 (τ), unlike DMD
and DMDc.

(4) DMD identifies an autonomous dynamical system.
(5) DMDc does not estimate any input information,

instead it assumes that nz and Zτ−1
1 are known.

4.2 Comparison of the computational cost

In order to obtain an estimate of the computational cost
of the considered algorithms, we have analyzed every step
shown in Table 1 and calculated the number of operations
needed for each one. From Section 3, we can deduce the
following relationships between the problem dimensions:

(1) The number of pixels m is always the highest di-
mension, since we consider short videos such that the

number of pixels of each frame is always greater than
the number of frames τ ; in other words, m� τ .

(2) The number of singular values is τ for Y τ1 and τ−1 for
Y τ−1

1 and Y τ2 . Therefore, the order of the dynamical
system is surely n ≤ τ − 1 (we do not consider the
case n = τ , even if it is an admissible order for the
Classic approach, because it is not a valid option for
DMD and DMDc since it would exceed the matrix
dimensions of the SVD). A similar remark can be said
for r = max(n+ nz, τ − 1), so n ≤ r < τ .

Thus, we have n ≤ r < τ � m. Under this assumption, the
most computationally expensive step is the SVD. In our
case, we performed the Thin Singular Value Decomposi-
tion: given a matrix A ∈ Rm×τ with τ ≤ m, we computed
the matrices U ∈ Rm×τ , Σ ∈ Rτ×τ and V ∈ Rτ×τ such
that A = UΣV >. This can be done using the Bidiago-
nalization and QR algorithm whose computational cost is
O
(
mτ2

)
(Golub and Van Loan, 2013, Chapter 5). After

that, we chose a truncation value n and we extracted only
a portion of U , Σ and V , obtaining three matrices with
dimensions m×n, n×n and τ×n, respectively. In order to
do that, we perform mn+n2 +τn operations which is neg-
ligible compared to O(mτ2). Given these considerations,
the approximate computational costs of each algorithm are
reported in Table 2. The analysis shows that the Classic
approach and the DMD one have the same asymptotic
complexity, while the DMDc method is the most complex.

5. EXPERIMENTAL RESULTS

5.1 Definition of the experiments

We consider the videos reported in Fig. 1. The video
waves and ship is from Peteri et al. (2008), while the
others were found on the Web. All the original videos and
presented results are available 2 . To evaluate the identi-
fication performance of the methods, we compare them
using two indicators (as function of the system order n): (i)
the synthesis error (i.e. how much the generated sequence
differs from the original); (ii) the denoising error (i.e. how
much noise is still present in the synthesized sequence).
Notice that, to compute the performance indicators, it
is necessary to first perform the identification of a linear
system of chosen order n.

Remark. The DMDc method assumes that the input
z(t) is known. To compare the DMDc with the Classic
approach, we set z(t) = e(t), such that nz = ne. Fur-
thermore, we chose the order r = n + nz (in case n +
nz > τ−1, we set r = τ−1 to prevent exceeding the matrix
dimensions) to avoid using a heuristic, which means that
we consider all inputs relevant to the decomposition.

Synthesis error as a function of the system order Given
the input matrix Y τ1 , we performed system identification
using the three algorithms, for 1 ≤ n ≤ nmax. The value of
nmax is chosen by observing the singular values of Y τ1 , i.e.
{s1, s2, ..., sτ}. For some videos (i.e the fire DT), most of
the singular values are zero and therefore nmax is equal to
the index of the last non-zero singular value; for others,
the choice is arbitrary and depends on τ as well as on the

2 https://cal.unibg.it/publications/identification-of-
dynamic-textures-using-dynamic-mode-decomposition/
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Table 1. Mathematical and algorithmic comparison of the three analyzed approaches.

Classic approach Dynamic Mode Decomposition Dynamic Mode Decomposition with Control

1) Extract n from the singular values of Y τ1 1) Extract n from the singular values of Y τ−1
1

1) Extract n from the singular values of Y τ2

2) n-rank SVD: Y τ1 = UY ΣY V
>
Y 2) n-rank SVD: Y τ−1

1
= UY ΣY V

>
Y 2) n-rank SVD: Y τ2 = UY ΣY V

>
Y

3) X̂τ1 (τ) = ΣY V
τ
Y

3) Extract r from the singular values of Ωτ−1
1

4) r-rank SVD: Ωτ−1
1

= UΩΣΩV
>
Ω

4) Â(τ) = X̂τ2 (τ)
(
X̂τ−1

1
(τ)
)†

3) Â(τ) = U>Y Y
τ
2 VY Σ−1

Y
5) Â(τ) = U>Y Y

τ
2 VΩΣ−1

Ω
U>Ω1

UY

5) Êτ−1
1

(τ) = X̂τ2 (τ) − Â(τ)X̂τ−1
1

(τ)

6) Q̂(τ) = 1
τ−2

Êτ−1
1

(τ) ·
[
Êτ−1

1
(τ)
]>

7) ne = rank
(
Q̂(τ)
)

8) ne-rank SVD: Q̂(τ) = UQΣQV
>
Q

9) B̂(τ) = UQΣ
1
2
Q

6) B̂(τ) = U>Y Y
τ
2 VΩΣ−1

Ω
U>Ω2

10) Ĉ(τ) = UY 4) Ĉ(τ) = UY 7) Ĉ(τ) = UY

Table 2. Approximate computational costs of
the compared algorithms.

Algorithm Computational cost

Classic approach O
(
mτ2

)
DMD O

(
mτ2

)
DMDc O

(
(m+ nz) τ

2
)

computational time allowed. Then, for each identified DT,
we synthesized a video 3 of length τ using the estimated
parameters and equations (13), (21) and (28). We can
compute the normalized synthesis error eS(n):

eS(n) =
||Y τ1 − Ŷn||F
||Y τ1 − Ȳ ||F

, (29)

where Ȳ = [E[Y τ1 ] E[Y τ1 ] ... E[Y τ1 ]] ∈ Rm×τ is the average

video, E [Y τ1 ] = 1
τ

∑τ
j=1 y(j), E [Y τ1 ] ∈ Rm, and Ŷn ∈

Rm×τ is the synthesized video matrix for the order n.

Denoising error as a function of the system order As
mentioned in Doretto et al. (2003), a possible use of the
DT model is to perform denoising. To carry out this
experiment, we created a noisy sequence by adding a
Gaussian noise matrix R ∈ Rm×τ to the video matrix Y τ1 ,
obtaining a noisy video Ynoisy = Y τ1 +R. Each element Rij
of R is such that Rij ∼ N

(
0, 502

)
. Then, we performed

identification and synthesis for 1 ≤ n ≤ nmax from both
the original video, Y τ1 , and the noisy one, Ynoisy, obtaining

respectively Ŷn and Ŷnoisyn . The reason behind this is that
we want to obtain an estimate of the residual noise in the
synthesized video Ŷnoisyn . In order to do so, we need to
omit the synthesis error; a possibility is to estimate the
remaining noise matrix as Ŷn − Ŷnoisyn and then compute
the residual noise percentage eR(n) as:

eR(n) =
||Ŷn − Ŷnoisyn ||F

||R||F
· 100. (30)

5.2 Results and discussion

After analyzing the singular values of each video matrix,
we decided which nmax to use for the experiments. For the
3 The initial state of the dynamical system, x0, can be extracted

from the matrix X̂τ
1 for the Classic approach while it can be

estimated as x̂0(τ) = UTY · y(1) for DMD and DMDc.

videos waves and fire we have, respectively, nmax = 10
and nmax = 20, with snmax+1 = snmax+2 = ... = sτ = 0.
For the video smoke we choose nmax = τ − 1 = 39 since it
is relatively small and the experiments are not particularly
time consuming (this one has the lowest m of all the
videos) while for waves and ship (which has τ = 250 and
a high m) we pick nmax = 50 as a compromise between
accuracy and computational time. The dimensions of all
the videos can be seen in Table 3.

Table 3. Dimensions of the analyzed videos.

Video Number of frames τ Number of pixels m

Fire 110 428220

Smoke 40 172800

Waves 210 402000

Waves and ship 250 304128

The results of the synthesis error experiment are shown
in Fig. 2. We can see that when n = τ − 1 we have
an exact reconstruction of the original video (as for the
video smoke), but no compression. For the videos fire and
waves we have eS(nmax) = 0 without reaching the videos
length, because we only need a portion of the singular
values to describe Y τ1 (the low-rank approximation of Y τ1
is an exact decomposition for n = nmax). In this case, we
have both compression and perfect reconstruction.

The performances of all the algorithms on the waves and
ship DT suffer from two problems: (i) it is not possible to
perfectly reconstruct the video with n ≤ τ − 1 = 249; (ii)
the video itself does not fully represent a DT, but it can be
divided in two portions. The first one is the motion of the
ship on the river (which does not exhibit the properties
needed in order to be a DT), and the second one is the
dynamics of the waves which is actually a DT.

In general, DMD and DMDc present lower errors and
lower sensitivity to n compared to the Classic approach.
In particular, this algorithm exhibits some outliers with
high error, which represent synthesized videos that greatly
differ from the original. The reason behind this is that the
stationarity hypothesis does not apply for certain orders
and therefore the covariance of the process x(t) diverges,
causing the generation of incorrect frames. Keeping this in
mind, we can point out that, at least for DMD and DMDc,
by increasing n we increase the quality of the synthesized
video. However, visually, some of the videos synthesized
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by DMD and DMDc present little motion compared to
the Classic approach.

Fig. 2. Synthesis error for different videos.

The denoising performances are reported in Fig. 3. Most
of the times, the synthesized video presents a lower noise
level compared to Ynoisy. The quality of the reconstructed
video depends both on the residual noise and the synthesis
error. Therefore, choosing a lower n, which usually results
in a lower noise, means synthesizing only a portion of the
original video dynamics. Thus, there is a trade-off between
the quality of the reconstructed dynamics of Y τ1 and the
residual noise. With regards to the videos fire and waves,
for n = nmax we obtain a Ŷnoisyn which is similar to
Y τ1 and so we have succeeded both in denoising and in
reconstructing the original video. Similarly to what we
have seen in the first experiment, the Classic approach
exhibits some outliers (for example, for the video smoke
in Fig. 3) with residual noise higher than the added noise
R. In fact, visually, the corresponding synthesized videos
show more noise than Ynoisy.

Fig. 3. Denoising error for different videos.

The goodness of the reconstruction from a visual point of
view is not easily quantifiable and it is subjective. What
we can deduce from these experiments is that DMD and
DMDc aim to minimize the synthesis error at the cost of
the videos dynamics. Instead, the Classic approach, for
most orders, synthesizes videos that exhibit motion, but
they may differ greatly from the original.

6. CONCLUSIONS

In this work, we presented the application of the DMD
and DMDc algorithms to the DT identification problem.

We formally compared these techniques to the Classic ap-
proach, highlighting the main similarities and differences.
From the analysis of the computational complexities, we
showed that the Classic approach and DMD have the
same cost. From the experiments that compare the Classic
approach to the DMD-like algorithms, we can see that the
latter usually presents lower error and residual noise as
well as lower sensitivity to the chosen system order. In
particular, DMD and DMDc tend to minimize the noise
and the synthesis error at the cost of the video dynamics,
while the Classic approach generates videos that present
motion that could be different from the original one.
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