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Abstract: This paper addresses the problem of imposing pre-defined performance characteris-
tics (by means of maximum steady-state error and minimum convergence rate) on the output
tracking errors for a class of uncertain multi-input multi-output (MIMO) nonlinear system in the
presence of state quantization implemented by uniform-hysteretic quantizers. A low-complexity
control design that requires reduced system knowledge and utilizes only quantized measurements
of the state is proposed. The desired performance is achieved by assuming knowledge of the step-
size of the quantizers involved. Simulation results verify the theoretical findings.
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1. INTRODUCTION

Quantized control has attracted growing interest recently
owing to its theoretical and practical importance in control
systems where a finite-capacity communication channel
intervenes between the sensors and the controller, i.e.,
networked control systems (NCSs). In such cases, the com-
munication channel introduces constraints on the feedback
information as state measurements have to be quantized
before transmitted to the controller. Additionally, even
outside the NCS framework, many engineering systems
communicate their state information only in quantized
form (e.g., robots). State quantization, however, intro-
duces discontinuities in the closed-loop which lead to dif-
ficulties in the control design and the stability analysis as
the differentiation of the measured signals is infeasible.
Furthermore, the quantization errors introduced in the
closed-loop deteriorate the overall performance and may
even result in stability loss. Therefore, control systems
with state quantization deserve special attention.

Linear controlled systems were studied in Corradini et.
al. (2008), Lehmann et. al. (2010), Wakaiki et. al. (2018)
establishing ultimate boundedness, while in Sharon et.
al. (2012) input-to-state stability (ISS) was achieved with
respect to external disturbances. The stabilization of non-
linear systems in the sense of ISS was thoroughly examined
in Liberzon (2008), Kamaneva et. al. (2008), Liu et. al.
(2019) and Ren et. al. (2019) using dynamic quantization
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schemes. Further, in Yu et. al. (2011), asymptotic stability
is guaranteed by also utilizing dynamic quantization. How-
ever, dynamic quantization schemes increase the dynamic
order of the system, complicating control design and imple-
mentation. Moreover, their extension to tracking problems
is currently an open issue.

All aforementioned works assume completely known plant
dynamics. In practice, however, uncertainties are almost
always encountered. In this direction, parametric uncer-
tainties have been incorporated in De Persis (2009), Vu
et. al. (2008), Furtat et. al. (2015), Liu et. al. (2015) and
Zheng et. al. (2018), dealing, however, with linear systems.
Regarding nonlinear systems with uncertain dynamics,
few results have appeared in the literature. In Liu et.
al. (2012), unknown nonlinearities have been considered
guaranteeing the ISS property of the closed-loop, and
recently, in Zhou et. al. (2019), an adaptive backstepping-
based control algorithm was developed to achieve global
ultimate boundedness of the system using static, bounded
quantizers.

Efforts towards addressing transient and steady-state per-
formance for uncertain nonlinear and quantized systems
appeared very recently in Bikas et. al. (2019a), where only
control input quantization was considered and in Bikas
et. al (2019b), where state quantization was addressed
for uncertain single-input single output SISO systems in
Brunovsky canonical form. In this work, we extend the
aforementioned results to the class of MIMO feedback
linearizable, state-quantized systems. The proposed con-
trol design is endowed with a low-complexity feature and
requires reduced system knowledge.
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2. PROBLEM FORMULATION

Consider the MIMO nonlinear system comprised of m
subsystems of nth order 1 , of the following form; for i =
1, . . . ,m and j = 1, . . . , n− 1,

ẋi,j = xi,j+1, (1a)

ẋi,n = fi(x̄, t) +

m∑
j=1

gi,j(x̄, t)uj + di(t), (1b)

where x̄ =
[
x̄T1 , . . . , x̄

T
m

]T ∈ Rmn is the state vector with

x̄i = [xi,1, . . . , xi,n]
T ∈ Rn, i = 1, . . . ,m, and initial con-

dition x̄(0) = x̄0 =
[
x0i,1, . . . , x

0
i,n, . . . , x

0
m,1, . . . , x

0
m,n

]T
.

Further, u = [u1, . . . , um]T ∈ Rm is the control input,
y = [x1,1, . . . , xm,1]T ∈ Rm is the system output, di :
R≥0 → R, i = 1, . . . ,m, are non-measurable disturbance
signals and fi, gi,j : Rmn → R, i, j = 1, . . . ,m, are non-
linear functions. Moreover, consider some desired tracking
trajectories xdi(t) : R≥0 → R, i = 1, . . . ,m. To proceed,
the following assumptions are made:

Assumption 1. The fi, gi,j-functions, i, j = 1, . . . ,m, are
locally Lipschitz in x̄ and piecewise-continuous in t with
unknown analytical expressions.

Assumption 2. The matrix Gs(x̄) , (G(x̄) + GT (x̄))/2
with G(x̄) = [gi,j(x̄, t)] ∈ Rm×m, denotes the symmetric
part of G and is sign definite and its sign denoted by
sgn(Gs) in known.

Assumption 3. There exist unknown constants d̄i ≥ 0,
i = 1, . . . ,m, satisfying

|di(t)| ≤ d̄i, i = 1, . . . ,m, ∀t ≥ 0. (2)

Assumption 4. The desired tracking trajectories and
their derivatives up to n − 1 are known and satisfy

xdi(t), x
(1)
di (t), . . . , x

(n−1)
di (t) ∈ L∞, i = 1, . . . ,m.

Remark 1. Assumption 1 implies that the control so-
lution requires reduced system knowledge as the fi, gi,j-
functions i, j = 1, . . . ,m, as well as any correspond-
ing bounds or functions bounding them, are considered
unknown. Assumption 2 is common in the literature of
strict-feedback systems Krstic et. al. (1995) and imposes a
global controllability condition on (1) and Assumptions
3, 4 imply the boundedness of the disturbance signals
di(t), the desired trajectories xdi(t), and their derivatives

x
(1)
di (t), . . . , x

(n−1)
di (t), i = 1, . . . ,m.

In this work, the state vector x̄ immediately after be-
ing measured and prior transmitted to the controller. is
quantized by uniform-hysteretic quantizers Ceragioli et. al.
(2011). Specifically, each coordinate xi,j , i = 1, . . . ,m, i =
j, . . . , n, of x̄ is associated with a quantizer denoted with
qi,j : R → Qi,j , where Qi,j =

{
0,±δ̄i,j ,±2δ̄i,j , 3δ̄i,j , ...

}
.

The parameter δ̄i,j > 0 represents the step-size of the re-
spective quantizer. It is known Ceragioli et. al. (2011) that
each qi,j with step-size δ̄i,j > 0, can be decomposed into
a linear and a nonlinear part as follows; for i = 1, . . . ,m,
j = 1, . . . , n,

q(xi,j) = xi,j + δi,j(xi,j), |δi,j(xi,j)| ≤ δ̄i,j . (3)

1 For clarity of presentation, we assumed that all subsystems have
identical orders.

In this spirit, we define the measurable error signals for
i = 1, . . . ,m, j = 0, . . . , n− 1,

e
(n−1−j)
q,i (t) = qi,j(x

(n−1−j)
i,1 (t))− x(n−1−j)di (t). (4)

The problem addressed in this work reads as follows:

Control Problem: Design a low-complexity, quantized
state-feedback controller to meet the following control
objectives:

(i) all closed-loop signals remain bounded for all t ≥ 0,
(ii) the output tracking errors

ei(t) = xi,1(t)− xdi(t), i = 1, . . . ,m, (5)

converge to some residual sets denoted by Ei = {ei ∈
R : |ei| < ρ∞i } with minimum convergence rate as
obtained by the exponential e−λit, where λi ≥ 0,
ρ∞i > 0 are pre-defined constants.

Remark 2. In this work, the low-complexity require-
ment introduces qualitative constraints/characteristics in
the controller design. Specifically, no a priori knowledge
regarding the controlled system nonlinearities should be
employed and no approximation structures (e.g., neural
networks, fuzzy systems) should be used to acquire such
knowledge. Additionally, no hard calculations (analytic or
numerical) should be required to produce the controller
output. Finally, the controller should be static to avoid
increasing the dynamic order of the closed-loop.

3. MAIN RESULTS

In this section the design steps which hold for all i =
1, . . . ,m and t ≥ 0, to solve the Control Problem stated in
Section 2 are summarized in the following theorem whose
proof is provided in Section 4.

Theorem 1. Consider the MIMO nonlinear system (1)
satisfying Assumptions 1-3. Consider also the desired
tracking trajectories xdi(t) obeying Assumption 4. Define
T : (−1, 1)→ R, a strictly increasing function with locally
Lipschitz first order derivative of the following form:

T (?) = ln

(
1 + ?

1− ?

)
. (6)

For i = 1, . . . ,m, let

ζqi (x̄i(t), t) =

n−1∑
j=0

(n− 1)!

(n− 1− j)!j!
κjie

(n−1−j)
q,i (t), (7a)

∆i =

n−1∑
j=0

(n− 1)!

(n− 1− j)!j!
κji δ̄i,n−j . (7b)

Select the functions

ρi(t) = ρ0i e
−λit + κn−1i ρ∞i , (8)

with parameters satisfying

κi > λi ≥ 0, (9a)

ρ∞i >
∆i

κn−1i

, (9b)

ρ0i > |ζ
q
i (x̄0i )|+ ∆i − κn−1i ρ∞i . (9c)

Let

sqi (ζ
q
i , t) = T

(
ζqi

ρi(t)−∆i

)
∈ R, (10)
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and define

s̄q = [sq1, . . . , s
q
m]T ∈ Rm, (11a)

rqi (s
q
i , t) = (ρi(t)−∆i) (T−1)

(1)
(sqi ) ∈ R, (11b)

Rq = diag(rq1, . . . , r
q
m) ∈ Rm×m. (11c)

Select some arbitrarily small constants εi > 0, design a
positive definite matrix Γ = diag (γ1, . . . , γm) ∈ Rm×m
such that

m∑
i=1

(
T

(
|ζqi (0)|+ ∆i + εi

ρi(0)−∆i

))2

γi < 1, (12)

and define

wq =

m∑
i=1

(sqi )
2
γi. (13)

Select an arbitrary control gain k > 0, and design the
control input to the system as:

u = − sgn(Gs)k

1− wq
R−1q Γs̄q. (14)

The controller (4)-(14) guarantees:

(i) all signals in the closed-loop are bounded,
(ii) ei(t) converges to Ei = {ei ∈ R : |ei(t)| < ρ∞i } with

minimum convergence rate e−λit.

Remark 3. In (8), the positive constants ρ∞i , λi, i =
1, . . . ,m, are selected in view of (9a), (9b) and pre-define
the desired regions Ei and the corresponding convergence
rate. Apparently, if u guarantees that −ρ?i (t) < ei(t) <
ρ?i (t) for some ρ?i (t) = ρ?0i e

−λit+ρ∞i with ρ?0i > |ei(0)|, for
all i = 1, . . . ,m and for all t ≥ 0, the proposed controller
(4)-(14) provides a solution to the Control Problem stated
in Section 2.

Remark 4. The restriction imposed on the selection of ρ∞i
by (9b) can be relaxed if the quantizers are considered as
design elements. In this case, (7b) reveals that is possible
to attain smaller values of ∆i by implementing quantizers
with reduced step-size δ̄i,j , i = 1, . . . ,m, j = 1, . . . , n.

Remark 5. Notice that the derived control signal u in
(14) is well-defined for wq 6= 1. In this direction, it will be
proven in Section 4 that wq evolves within [0, wq∗] for some
wq∗ < 1, for all t ≥ 0, thus evading potential controller
singularities.

Remark 6. The controller (4)-(14) is of low-complexity
as it satisfies all design requirements of Remark 2.

4. PROOF OF THEOREM 1

Define the following compact form of (1):

˙̄x = H(x̄, u, t), x̄(0) = x̄0, (15)

where H(x̄, u, t) =
[
hT1 (x̄, u, t), . . . , hTm(x̄, u, t)

]T ∈ Rmn
and hi(x̄, u, t) = [xi,2, . . . , fi(x̄, t) +

∑m
j=1 gi,j(x̄, t)uj +

di(t)]
T ∈ Rn, i = 1, . . . ,m. Further, for stability analy-

sis purposes, let us define the continuously differentiable
signals for i = 1, . . . ,m,

smin
i (t) = T

(
ζi −∆i

ρi(t)−∆i

)
, (16a)

smax
i (t) = T

(
ζi + ∆i

ρi(t)−∆i

)
, (16b)

w(t) =

m∑
i=1

(sνii (t))
2
γi, (16c)

where

ζi(x̄i(t), t) =

n−1∑
j=0

(n− 1)!

(n− 1− j)!j!
κjie

(n−1−j)
i (t), (17a)

νi =

{
‘min’, if si < 0,

‘max’, if si ≥ 0.
(17b)

Utilizing (3), (4), (10), (16), and the strictly increasing
property of the T -function, it is not difficult to verify that
for all i = 1, . . . ,m and t ≥ 0,

smin
i (t) ≤ sqi (t) ≤ s

max
i (t), (18a)

wq(t) ≤ w(t). (18b)

By employing (1), (5), (17) and the inverse function
derivative formula, differentiation of (16a), (16b) with
respect to time yields for i = 1, . . . ,m, and for all α ∈
{‘min’,‘max’},

ṡαi =
1

ri(sαi )

[
fi(x̄) +

m∑
j=1

gi,j(x̄)uj

+ vi(x̄i)− ρ̇iT−1(sαi )
]
, sαi (0) = sα,0i , (19a)

where

vi(x̄i) =

n−2∑
j=0

(n− 1)!κn−1−ji

(n− 1− j)!j!
e
(j+1)
i − x(n)di + di, (20a)

ri(s
α
i ) = (ρi −∆i) (T−1)

(1)
(sαi ). (20b)

The sαi -coordinate system (19)-(20), can be written in
compact form as

˙̄s = S(s̄, u, t), s̄0 = [sα,01 , . . . , sα,0m ]T , (21)

where

S = R−1(s̄)[F (x̄) +G(x̄)u+ V (x̄)− Ṗ T−1(s̄)],

s̄ = [sα1 , . . . , s
α
m]T ∈ Rm,

R(s̄) = diag (r1(sα1 ), . . . , rm(sαm)) ∈ Rm×m,
F (x̄) = [f1(x̄), . . . , fm(x̄)]T ∈ Rm,
V (x̄) = [v1(x̄1), . . . , vm(x̄m)]T ∈ Rm,

Ṗ = diag(ρ̇1, . . . , ρ̇m) ∈ Rm×m,
T−1(s̄) = [T−1(sα1 ), . . . , T−1(sαm)]T ∈ Rm.

Further, differentiating (16c) with respect to time in view
of (16a) and (16b), we obtain the w-coordinate system as

ẇ = W (s̄ν , u, t), w(0) = w0, (22)

where

s̄ν = [sν11 , . . . , s
νm
m ]T , (23a)

W = 2

m∑
i=1

[
γis

νi
i

ri(s
νi
i )

(
fi(x̄) +

m∑
j=1

gi,j(x̄)uj

+ vi(x̄)− ρ̇iT−1(sνii )

)]
. (23b)
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The initial value problem comprised of (15), (21), (22) will
be denoted by (Σφ) and it is written in compact form as

φ̇ = σ(φ, t), φ0 =
[
(x̄0)

T
(s̄0)

T
w0
]T
, (24)

where φ =
[
x̄T s̄T w

]T
, σ : Ωφ × [0,+∞) → Rnm+m+1

with Ωφ = Rnm×Rm× [0, ωφ), for some constant ωφ > 1,
and σ(φ, t) = [H S W ]T .

Recalling that the T -function is defined only in (−1, 1), s̄0

is well defined if and only if −ρi(0)+∆i < ζqi (x̄0i ) < ρi(0)−
∆i, i = 1, . . . ,m, which can be easily verified owing to (3),
(9b), (9c), (10), (16a) and (16b). Moreover, notice that
(12), (13) and (18b) guarantee that w0 < 1; thus by (12) it
is further concluded that w0 ∈ [0, 1) ⊂ [0, ωφ). The afore-
mentioned analysis establishes that φ0 ∈ Ωφ. Moreover,
(24) admits discontinuous right-hand sides owing to the
piecewise-continuous control signal u. However, following
identical arguments as in (Bikas et. al., 2019a, Lemma
A.1) and recalling standards theorems Sontag (1995), it
is guaranteed that (Σφ) has a unique solution

φ(t) ∈ Ωφ, ∀t ∈ [0, τf ),

in the maximal time interval [0, τf ), with τf ∈ (0,+∞].

The above result, together with (3), (4), (7), (17), (18a)
and the properties of the T -function, further results in
−ρi(t) < ζi(t) < ρi(t), i = 1, . . . ,m, for all t ∈ [0, τf ).
The latter and the boundedness by construction of ρi(t),
i = 1, . . . ,m, implies that ζi(t), i = 1, . . . ,m, remains
also bounded for all t ∈ [0, τf ). Further, note that (17)
is stable with ζi acting as the input. Therefore, ei(t) and
its derivatives up to n − 1 remain also bounded for all
t ∈ [0, τf ), i.e., there exist constants e?i,j ≥ 0 satisfying for
i = 1, . . . ,m, j = 0, . . . , n− 1

|e(n−1−j)i (t)| ≤ e?i,j , ∀t ∈ [0, τf ). (25)

By (25), (5) and Assumption 4, the existence of a constant
x? > 0 such that

||x̄(t)|| ≤ x?, ∀t ∈ [0, τf ), (26)

is guaranteed. Thus, x̄(t) remains within a compact subset
of Rnm for all t ∈ [0, τf ). Further, in view of (16) and
(17), it is obtained that there exist constants s?i > 0 for
i = 1, . . . ,m, such that

|si(t)| < s?i , ∀t ∈ [0, τf ), (27)

which owing to (16a), (16b) and (27), guarantees the
existence of constant c?w > 0 satisfying

0 ≤ w(t) < c?w, ∀t ∈ [0, τf ). (28)

Thus, s̄(t) remains within a compact subset of Rm and
w(t) evolves strictly within a compact subset of R, for all
t ∈ [0, τf ).

To guarantee the implementability of (14), we should
establish the existence of a constant wq∗ such that 0 ≤
wq(t) ≤ wq∗ < 1 for all t ∈ [0, τf ). In this direction, define
the positive definite and radially unbounded function VL :
[0, τf )→ R as follows:

VL(t) =
1

4
w2(t).

Further, let us define η ∈ {A,B} and

s̄η = [sη,1, . . . , sη,m]T ∈ Rm,
Rη = diag(r1(sη,1), . . . , rm(sη,m)) ∈ Rm×m,
T−1η = [T−1η (sη,1), . . . , T−1η (sη,m)]T ∈ Rm,
s̄N = s̄A + s̄B , RN = RA +RB , T

−1
N = T−1A + T−1B ,

where

sA,i = sνii , sB,i = 0, if sgn(smin
i ) = sgn(smax

i ),

sA,i = 0, sB,i = sνii , if sgn(smin
i ) 6= sgn(smax

i ).

Utilizing the aforementioned definitions and differentiating
VL with respect to time yields for all t ∈ [0, τf ),

V̇L
(22)

≤ w
(
||V ||+ ||F ||+ ||Ṗ T−1N ||

)
||R−1N Γs̄N ||

+ wuTGTR−1A Γs̄A + wuTGTR−1B Γs̄B .

To proceed, note that by the continuity of T−1(·), (27), and
the Extreme Value Theorem, the existence of constants

¯
τ∗i , τ̄∗i > 0 such that 0 <

¯
τ∗i ≤ (T−1)(1)(·) ≤ τ̄∗i for

all t ∈ [0, τf ), and i = 1, . . . ,m, is concluded. Utilizing
the latter, (20b), and the boundedness by construction of
ρi, i = 1, . . . ,m, it is further concluded that there exist
constants

¯
r∗i , r̄∗i > 0 such that

0 <
¯
r∗i ≤ ri(·) ≤ r̄∗i , i = 1, . . . ,m, ∀t ∈ [0, τf ). (29)

Recalling further Assumptions 1, 3, 4, (20a) and (25), it is
concluded that there exist constants θ?1 , θ

?
2 ≥ 0 such that

for all t ∈ [0, τf ),

||V ||+ ||F ||+ ||Ṗ T−1N || ≤ θ
?
1 ,

||R−1N Γs̄N || ≤ θ?2 .

Hence, V̇L becomes for all t ∈ [0, τf ),

V̇L ≤ w
(
θ?1θ

?
2 + uTGTR−1A Γs̄A + uTGTR−1B Γs̄B

)
(14)
= w

(
θ?1θ

?
2 −

sgn(Gs)k

1− wq
(R−1q Γs̄q)

T
GTR−1A Γs̄A

− sgn(Gs)k

1− wq
(R−1q Γs̄q)

T
GTR−1B Γs̄B

)
.

To proceed, the following result, whose proof can be found
in the Appendix, is required:

Proposition 1. For all i = 1, . . . ,m and t ∈ [0, τf ),

(a) If sgn(smin
i ) = sgn(smax

i ), there exist constants
µ?si, µ

?
ri > 0 such that sqi = µ?sis

νi
i and rqi = µ?riri(s

νi
i ).

(b) If sgn(smin
i ) 6= sgn(smax

i ), there exist positive con-
stants ξ?sqi, ξ

?
si > 0 and ξ?w ∈ (0, 1), such that |sqi | ≤

ξ?sqi, |s
νi
i | ≤ ξ?si and wq < ξ?w.

(c) There exist constant µ?w ∈ (0, 1) such that wq = µ?ww.

Further, by the continuity of gi,j , i, j = 1, . . . ,m, it is
concluded via the Extreme Value Theorem the existence of
constants ḡi,j > 0 such that |gi,j(·)| ≤ ḡi,j for all t ∈ [0, τf ).
By applying the aforementioned result, Proposition 1 and
(29), V̇L becomes for all t ∈ [0, τf ),

V̇L ≤ w
[
θ? − sgn(Gs)k

1− µ?ww
(R−1A Γs̄A)

T
MGTR−1A Γs̄A

]
,

where
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θ? = θ?1θ
?
2 +

k

1− ξ?w

∑
i∈B

(
γ2i ξ

?
sqiξ

?
si

(
¯
r?i )

2

m∑
j=1

ḡi,j

)
> 0,

B = {i ∈ {1, . . . ,m} : sB,i 6= 0} ,
M = diag (M1, . . . ,Mm) ∈ Rm×m,

Mi =


µ?si
µ?ri

, if sgn(smin
i ) = sgn(smax

i ),

0, if sgn(smin
i ) 6= sgn(smax

i ).

Moreover, by utilizing the positive definiteness of M , and
adopting the line of proof in Theodorakopoulos et. al.
(2016), the existence of constants g?φ, h

?
φ > 0 satisfying

for all t ∈ [0, τf ),

−sgn(Gs)(R
−1
A Γs̄A)

T
MGTR−1A Γs̄A ≤ −g?φ||R−1A Γs̄A||

2
,

||R−1A Γs̄A||
2 ≥ h?φw,

Utilizing the latter, V̇L becomes for all t ∈ [0, τf ),

V̇L ≤
w

1− µ?ww
(
θ? − (θ?µ?w + g?φh

?
φk)w

)
,

which yields V̇L(t) < 0, for all t ∈ Tφ, where Tφ =
{t ∈ [0, τf ) : w > w?}, with w? = θ?/(θ?µ?w + g?φh

?
φk).

Consequently,

0 ≤ w ≤ w̄, ∀t ∈ [0, τf ), (31)

where w̄ = max
{
w?, w0

}
, with w0 < 1. Utilizing (12),

(31), and Proposition 1(c), we conclud the existence of a
constant wq∗ ∈ (0, 1) such that

0 ≤ wq ≤ wq∗ < 1,

which further implies that the control solution (14) is well-
defined for all t ∈ [0, τf ). Finally, by (26), (27) and (31), it
is concluded that the solution φ(t) of (Σφ) evolves within
a compact subset of Ωφ for all t ∈ [0, τf ). Therefore,
following standard arguments (Khalil, 2001, Theorem 3.3),
the solution is extended to τf = +∞.

The above result, and (16a), (16b) further guarantees that
for all i = 1, . . . ,m,

−ρi(t) < ζi(t) < ρi(t), ∀t ≥ 0.

Hence, by (Theodorakopoulos et. al., 2016, Lemma 2), it is
concluded that there exist constants ρ?0i,j > 0, i = 1, . . . ,m,
j = 0, . . . , n− 2, such that

|ei(t)| < ρ?0i,je
−λit + ρ∞i , ∀t ≥ 0,

which further implies that the output tracking errors ei(t)
converge to Ei = {ei ∈ R : |ei| < ρ∞i } with minimum
convergence rate as obtained by e−λit, thus concluding
the Proof of Theorem 1.

5. SIMULATION RESULTS

To clarify and verify the theoretical findings, simulation
studies were performed on a two-link robotic manipulator
Bechlioulis et. al. (2008), whose parameters were selected
as m1 = 1.5[kgr], m2 = 1[kgr], l1 = 0.25[m], l2 = 0.2[m],
I1 = 0.96[kgr m2], I2 = 0.81[kgr m2] and g = 9.81[m/s2].
The system output is y = [θ1 θ2]T , where θ1, θ2 denote
the positions of the two links, respectively. The system
initially rests at θ1(0) = π/14, θ2(0) = π/16. The control
objective is to drive the output from its initial condition
to (π/10, π/10) in 6s, following the desired polynomial
trajectories θd1(t) = θd2(t) = (π/10)(10t3/63 − 15t4/64 +
t2/6). Both position errors ei = θi − θdi, i = 1, 2, are

Fig. 1. The states of the system θ1, θ2, θ̇1, θ̇2 (solid
lines) together with the desired tracking trajectories

θd1, θd2, θ̇d1, θ̇d2 (dashed lines).

Fig. 2. The output tracking errors e1, e2 and the velocity
errors ė1 = θ̇1 − θ̇d1, ė2 = θ̇2 − θ̇d2 (solid lines) along-
side the corresponding performance bounds (dashed
lines).

required to converge to Ei = {ei ∈ R : |ei| < 0.01},
i = 1, 2, with minimum convergence rate as obtained
by the exponential e−1.9t. The link positions and their
velocities enter the controller in quantized form. Uniform-
hysteretic quantizers having step-size 0.002 are utilized
for the former measurements and 0.001 for the latter.
Further, the disturbance signals are assumed to be: d1(t) =
0.25 sin(t) and d2(t) = 0.75 cos(t).

To achieve the aforementioned control objective we se-
lected ρ1(t) = ρ2(t) = 2.8e−1.9t − 0.02 with parameters
satisfying (9a)-(9c); λ1 = λ2 = 1.9, κ1 = κ2 = 2,
ρ∞i = 0.01 > ∆i/κi = 0.0025, i = 1, 2, ρ01 = 2.8 > |ζq1 (0)|+
∆1 − κ1ρ

∞
1 = 0.471 and ρ02 = 2.8 > |ζq2 (0)| + ∆2 −

κ2ρ
∞
2 = 0.415. Further, γ1 = γ2 = 0.05, ε1 = ε2 = 0.1

and k = 220. Therefore, the control signals are given as
follows; for i = 1, 2,

ui =
kγi(ρi(t)−∆i)s

q
i

T (1)(sqi )(γ1(sq1)
2

+ γ2(sq2)
2 − 1)

, sqi =
ėq,i + κieq,i
ρi(t)−∆i

,

where eq,i = qs,1(θi)− θdi and ėq,i = qs,2(θ̇i)− θ̇di.
The results are depicted in Figs. 1-3, clearly verifying the
theoretical findings. Specifically, Fig. 1 shows the states of
the system together with the desired tracking trajectories.
The output tracking errors alongside the corresponding
performance bounds are shown in Fig. 2. Finally, Fig. 3
illustrates the the control inputs applied to the system.
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Fig. 3. The requested control inputs.

Appendix A. PROOF OF PROPOSITION 1

a) By employing (16a), (16b) and (18a), we straightfor-
wardly deduce that sgn(sqi ) = sgn(smin

i ) = sgn(smax
i ) for

all ζi ∈ R − {[−∆i,∆i]}, which implies the existence
of constants µ?si, µ

?
ri > 0 such that sqi = µ?sis

νi
i and

rqi = µ?riri(s
νi
i ).

b) Following the proof of (a), we obtain that sgn(smin
i ) 6=

sgn(smax
i ) if and only if ζi ∈ [−∆i,∆i]. Hence, recalling

(16a), (16b) and the boundedness by construction of
ρi, we conclude the existence of constants ξ?sqi, ξ

?
si > 0

such that |sqi (t)| ≤ ξ?sqi and |sνii (t)| ≤ ξ?si for all ζi ∈
[−∆i,∆i]. Moreover, owing to (3) and (12), the signals

ŵ =
∑m
i=1 (ŝi)

2
γi with ŝi = (ζi + ∆i + ξi)/(ρi − ∆i),

i = 1, . . . ,m, satisfy ŵ(0) < 1, and therefore, 0 ≤ ŵ(t) < 1
for all t ∈ [0, τf ). Employing the latter, the definitions of
wq and w in (13) and (16) respectively, and (18b), it is
not difficult to verify that if ζi ∈ [−∆i,∆i], there exist
constants ξ?w such that wq < ξ?w.

c) By utilizing the definitions of wq and w in (13) and (16c)
respectively, we straightforwardly conclude that wq, w ≥ 0.
Employing further (18b), we guarantee the existence of a
constant µ?w ∈ (0, 1).
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