
KBERG: A MatLab toolbox for nonlinear
kernel-based regularization and

system identification

M. Mazzoleni ∗, M. Scandella ∗, F. Previdi ∗

∗Department of Management, Information and Production engineering
University of Bergamo, via Galvani 2, 24044 Dalmine (BG), Italy

(e-mail: mirko.mazzoleni@unibg.it).

Abstract: We present KBERG, a MatLab package for nonlinear Kernel-BasEd ReGularization
and system identification. The toolbox provides a complete environment for running experiments
on simulated and experimental data from both static and dynamical systems. The whole
identification procedure is supported: (i) data generation, (ii) excitation signals design; (iii)
kernel-based estimation and (iv) evaluation of the results. One of the main differences of the
proposed package with respect to existing frameworks lies in the possibility to separately define
experiments, algorithms and test, then combining them as desired by the user. Once these three
quantities are defined, the user can simply run all the computations with only a command,
waiting for results to be analyzed. As additional noticeable feature, the toolbox fully supports the
manifold regularization rationale, in addition to the standard Tikhonov one, and the possibility
to compute different (but equivalent) types of solutions other than the standard one.

Keywords: Kernel methods; System Identification

1. INTRODUCTION

In the last years, kernel methods became one of the pre-
dominant approaches for time-domain system identifica-
tion. Due to their flexibility and regularization properties,
they quickly showed improved performance with respect
to traditional Prediction Error Methods (PEM), see Pil-
lonetto et al. (2014), both in linear and nonlinear settings.
Their employment for the identification of dynamical mod-
els is not limited to time-domain, but extends also to
frequency-domain data, Darwish et al. (2017).

Kernel methods are nonparametric approaches which aim
to find the (possibly nonlinear) function that best matches
input/output data. This function estimate is searched
withing a functional space called Reproducing Kernel
Hilbert Space (RKHS), see Aronszajn (1950). The kernel
function (or simply kernel) determines the properties of
the functions inside its corresponding RKHS. In the linear
systems case, the unknown function to be estimated is the
impulse response of the system, as reviewed in Pillonetto
et al. (2014). In the nonlinear case, the aim is to learn the
mapping from the regressors vector (with predefined ex-
ogenous and autoregressive orders) to the system output,
as done in Pillonetto et al. (2011); Mazzoleni et al. (2020).

When dealing with kernel methods, the practitioner is
involved with the following choices, adapted from Ljung
et al. (2019):

(1) the choice of the regularization type
(2) the choice of the kernel function
(3) the choice of method for estimating the hyperparam-

eters of the model.

One of the main reasons for such popularity and effective-
ness of kernel methods is due to their regularized nature. In
their standard formulation, this equals to a Tikhonov-like
regularization term. By trading data fit and solution com-
plexity in a continuous way, better results can be achieved
than employing complexity criteria such as Akaike Infor-
mation Criterion (AIC) or Bayesian Information Criterion
(BIC) for model order selection, see Pillonetto et al. (2011,
2014). Recently, manifold regularization has been added
to the standard kernel formulation for nonlinear system
identification in Formentin et al. (2019); Mazzoleni et al.
(2018a,b). Manifold regularization relies on the concept
of regressors graph and on the assumption that “nearby
regressors should have a similar corresponding output”
(smoothness assumption).

In addition to basic kernels inherited from machine learn-
ing (e.g. the Gaussian or polynomial ones), specific kernels
for nonlinear system identification, that take into account
the nature of dynamical systems, were proposed in Pil-
lonetto et al. (2011); Pillonetto (2018).

The model defined by the chosen kernel function, the graph
topology and properties (for the manifold regularization
case only) and the regularization weights determines a
set of hyperparameters to be determined from data prior
to the computation of the estimated model. Common
approaches are based on Generalized Cross Validation
(GCV), the Stein’s Unbiased Risk Estimator (SURE)
and the Empirical Bayes (EB) methods, see Mu et al.
(2018a,b). The EB estimate is available by relying to
a Bayesian interpretation of the kernel-based learning
problem.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1253



This paper presents a software environment for performing
and evaluating kernel-based methods for nonlinear system
identification. Given the vast amount of possible choices
for the setup of the problem and the number of simulations
required for testing a new kernel-based approach, a tool
that permits to simplify the iterations of development
and testing of a new method is highly sought. With this
in mind, we developed KBERG, an open-source MatLab
toolbox for nonlinear Kernel-BasEd ReGularization and
system identification, that supports the user throughout all
the identification steps. Peculiar features of KBERG are:
(i) the definition of a all-in-one environment for testing
kernel-based nonlinear system identification approaches;
(ii) the possibility to easily combine experiments (i.e. in-
put/output data), algorithms and test evaluations; (iii) a
full support for the manifold regularization rationale; (iv)
freely configurable settings of the constraints on hyperpa-
rameters estimation; (v) full user-extendable functionali-
ties. While the toolbox can be used also for the kernel-
based estimation of static system, in this paper we will
focus on the dynamical systems case.

The KBERG toolbox is available at the following link 1 .
For computing alternative solutions, it requires YALMIP,
see Löfberg (2004), equipped with a solver such as CPLEX.

The remainder of the paper is organized as follows. Section
2 reviews the formulation of kernel-based nonlinear system
identification problems. Section 3 describes the main en-
tities that compose the toolbox. Section 4 walks through
a full example of nonlinear dynamical system estimate.
Section 5 is then devoted to some concluding remarks.

2. KERNEL-BASED NONLINEAR SYSTEM
IDENTIFICATION

Consider a mapping f : X → R, X ⊂ Rd×1, such that
yt = f(xt) + et, (1)

where xt ∈ X and yt ∈ R are, respectively, the sys-
tem input regressor and output at time t ∈ Z≥0, and
et ∼WN

(
0, β2

)
is an additive white noise. The regres-

sor xt could contain past samples of both input ut and
output yt of the SISO dynamical system that generates
the data. In this context, f (xt) is the one-step ahead
predictor ŷt|t−1 and et is the one-step ahead prediction
error. Suppose that we have n observations of regressor-
output data D = {xt, yt}nt=1. The aim is to obtain an
estimate f̂ of the unknown mapping f using D.
Kernel methods look for this estimate by solving the
variational problem

f̂ = arg min
f∈H

n∑
t=1

(
yt−f (xt)

)2
+τ · ‖f‖2H+µ · f>Mf , (2)

where τ ∈ R>0 and µ ∈ R>0 are constant values (called
hyperparameters) and H is a Reproducing Kernel Hilbert
Space (RKHS) characterized by the kernel function k : X×
X → R. The second element in (2) is the Tikhonov regu-
larization term, while the third one is the manifold regular-
ization component. Here, f = [f(x1), . . . , f(xn)]

> ∈ Rn×1

1 https://cal.unibg.it/publications/kberg-a-matlab-
toolbox-for-nonlinear-kernel-based-regularization-and-
system-identification/

is the vector of noiseless function evaluations at measured
regressors points xt, t = 1, . . . n, and M ∈ Rn×n is the
graph-shift operator of the graph that connects the re-
gressors (see Mateos et al. (2019)), such that the t-th
component of the vector f represents the function value
at xt (t-th node of the regressors graph). A common
choice for M is the graph Laplacian. We usually consider
a weighted graph, such that a weight ωrs is associated to
two connected regressors xr and xs, which value depends
on some hyperparameters γ ∈ Rqm×1.

The solution of (2) reads as f̂ (x) =
∑n

t=1 ĉtkxt
(x), with

ĉ = [ĉ1, . . . , ĉn]
> ∈ Rn×1 given by

ĉ = (K+ τIn + µMK)
−1

y, (3)
where y ∈ Rn×1 contains the available output measure-
ments yt, t = 1, . . . , n, K ∈ Rn×n is a positive semidefinite
matrix such that Krs = k(xr,xs). In the following we
indicate the hyperparameters vector of the method with

θ =
[
ψ> τ µ γ>

]>
∈ Rq×1, where ψ ∈ Rqk×1 are the

hyperparameters of the kernel k.
Remark 1. In the following, we will refer to (3) as the
trivial solution, in order to distinguish it from other
solutions that minimize some norm of the vector ĉ.

3. DESCRIPTION OF THE TOOLBOX

This section describes the main elements of the toolbox
to: (i) define a dynamic model and simulate data from it
using excitation signals; (ii) define the kernel function k
and its hyperparameters; (iii) define the regressors graph;
(iv) define the hyperparameters optimization properties;
(iv) compute the solution to problem (2); (v) evaluate the
test results of the estimated system model.

3.1 Main entities and relationships

The main element of the toolbox is the Set. A set is
composed by the following three main entities:

(1) Experiments: they define the system used to sim-
ulate the identification data, the input signal, the
process and output noises and the number of Monte
Carlo simulations (each simulation corresponds to a
different stochastic noise realization).

(2) Algorithms: they define the regressor exogenous
and autoregressive orders, the kernel employed, the
regressors graph settings, the regularization types and
options for hyperparameters optimization.

(3) Tests: they define the test input signals used to
generate test data, the metric for evaluating the
estimated model performance, the noise on test data
and if a simulation or a prediction is required.

A set can contain multiple experiments, algorithms and
tests. An algorithm can run on zero or different exper-
iments, and an experiment can be run by zero or dif-
ferent algorithms. Likewise, a test can evaluate zero or
different experiments, and an experiment can be evaluated
by zero or multiple tests. Therefore, two n : n relations
are present between the entities experiment-algorithm and
experiment-test, as shown in Figure 1. These relations
translate to the fact that each test is run on each model
(estimated by each learning algorithm).

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1254



Experiment Algorithmruns

exp name

(0, n) (0, n)

alg name

evaluates

Test

(0, n)

(0, n)

test name

Fig. 1. Entities/Relations diagram of the main entities of
the toolbox. The unique identifier of each entity is
highlighted.

The philosophy of the toolbox is to first define all the
experiments, algorithms and tests, and, subsequently, run
all the set with a single command. The researcher can
therefore focus its attention on other work while waiting
for the computations to complete. When available, parallel
computation can be leveraged.

The following results are then saved to disk in separate
files: (i) the set configurations, i.e. system and algorithms
names, input signal and noises settings, date of simulation,
simulation noise seed and number of simulations; (ii)
the simulation data; (iii) the estimated models for each
algorithm, i.e. the vector ĉ in (3), the computation and
optimization timings and the estimated hyperparameters
θ; (iv) the performance results of each test applied to each
model estimated by the algorithms.

The main entities cover all the following four system
identification steps, as summarized in Table 1: (i) Data
generation; (ii) Excitation signals design; (iii) Kernel-
based estimation; (iv) Evaluation of the results.

Table 1. Mapping between the main toolbox
entities and system identification steps.

Main entity Identification steps covered

Experiment (i) Data generation
(ii) Excitation signals design

Algorithm (iii) Kernel-based estimation
Test (iv) Evaluation of the results

3.2 Data structures

The entities of the toolbox are implemented as the struct
data-type in MatLab. In the following, we list the most
important content of the structs used in the toolbox, along
with the type of each element of the struct.

Let’s first introduce the data structures of the three
main entities: as it is possible to observe, they are
composed of other structs that define, e.g., the in-
put signal (signal_struct), the noises (noise_struct),
the hyperparameters and tuning knobs of the method
(np_hp_struct), and optimization settings (np_op_struct).

Experiment see help mcs_exp_conf_struct

− experiment_name: string
− system_type: {'static', 'dynamic'}
− sig_train: signal_struct
− ar_noise: noise_struct
− oe_noise: noise_struct
− seed: N
− n_sim: N

Algorithm see help mcs_alg_struct
− algorithm_name: string
− experiment_name: string
− hp: np_hp_struct
− op: np_op_struct

Test see help mcs_test_struct
− test_name: string
− experiment_name: string
− sig_test: signal_struct
− noise_type: {'null', 'train', 'ar_train',

'oe_train', 'generic'}

The noise_type attribute of the mcs_test_struct per-
mits to define a test dataset that is either: (i) noiseless
('null'); (ii) with the same noise type as the identifica-
tion dataset ('train'); (iii) with only the autoregressive
or output-error part of the noise on identification data
('ar_train', 'oe_train'); (iv) with user-defined noise
('generic', see help noise_struct to specify it).

Noise see help noise_struct
− noise: R
− type: {'snr', 'power'}
− unit: {'db', 'linear'}

Signal see help signal_struct
− signal_type: {'BLWN', 'sinewave', 'PRBS',

'multisine', 'ramp', 'step'}
− [filter]: see MatLab tf command
− signal_hp: depends on signal type

The signal_struct defines the excitation input signal.
It is possible to choose from pre-defined signal types and
(optionally) filter them before their application to the
system. Based on the signal type chosen, different signal
hyperparameters have to be specified.

Hyperparameters see help np_hp_struct
− kernel_param: kernel_struct
− graph_param: graph_struct
− tau: R>0

− mu: R>0

− solution_type: {'trivial', 'ln2', 'lnp'}
− order_ar: N
− order_ex: N

The np_hp_struct permits to define the type and initial
values of all the hyperparameters θ and the tuning knobs
of the algorithms. It is possible to set the kernel and
graph properties, the regularization strengths, the type of
the solution to be computed and the system orders for
constructing the regressor vector.

Options see help np_opt_struct
− opt_index: string
− fmin_options: see MatLab optimoptions struct
− parallel_options: opt_parallel_struct

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1255



The np_opt_struct sets the user-defined objective func-
tion to be minimized, along with settings regarding the
minimization algorithm (optimoptions) and parallel com-
putations (opt_parallel_struct).

Kernel_params see help kernel_struct
− kernel_name: string
− kernel_hp: depends on the kernel_name

The kernel_struct defines the employed kernel and its
hyperparameters ψ. There are pre-defined “basic” kernels
such as the constant, linear, polynomial and Gaussian
ones. “Special” kernels are implemented, as the one in
Pillonetto et al. (2011). It is possible to create new kernels
by defining them or by combine existing kernels with
standard operators such as {+, ·,∧}.
The settings of the regressors graph, used for the manifold
regularization, are defined in the attribute graph_params,
of type graph_struct. This is a composition of the
structs graph_edge_struct, graph_weights_struct and
graph_manifold_struct, that respectively define the set-
tings for the graph edges, weights and the algorithm used
to compute the regularization matrix M.

Graph_edge see help graph_edge_struct
− edge_type: {'all', 'quantity', 'range',

'range_tim', 'temporal'}
− [edge_hp]: depends on the edge_type used.

Graph_weights see help graph_weights_struct
− weights_type: {'Kernel', 'LLE'}
− [weights_hp]: depends on the weights_type used.

Graph_manifold see help graph_manifold_struct
− manifold_type: {'LEM', 'LEM_norm', 'LLE'}

The graph_edge_struct defines how the regressors are
connected. They can be: (i) all connected; (ii) connected
with K other regressors; (iii) connected with regressors
that are in a certain range defined by a radius; (iv)
connected by following the method in Berry and Sauer
(2016); (iv) connected by their temporal relation, see For-
mentin et al. (2019). The graph weights, defined by the
graph_weights_struct, can be set by a custom function
or using the Locally Linear Embedding (LLE) rationale
in Roweis and Saul (2000). The regularization matrix is
defined by the way the manifold is computed, as specified
by graph_manifold_struct. Available algorithms are the
Laplacian Eigenmaps (LEM), see Belkin and Niyogi (2003)
and the LLE. For a comparison of different graph construc-
tion methods, see Mazzoleni et al. (2019).

The toolbox can be extended by adding the following
custom objects: (i) signal types; (ii) kernels; (iii) graph
edges and weights; (iv) static and dynamic systems; (v)
solution types; (vi) hyperparameter estimation methods;
(vii) performance indices for validation purposes.

4. A COMPLETE SYSTEM IDENTIFICATION
EXAMPLE

This section shows a practical application of the KBERG
toolbox for solving a system identification problem with
kernel-based methods.

4.1 Data generation

We generate data from the following nonlinear dynamic
system (named placeholder_NP and defined in the file
sys_dyn_placeholder_NP.m)

yt+1 = utyt−1 + ut−2yt − 0.8ut−3 + ηt (4)
where autoregressive noise ηt ∼WGN (0, 0.005) is present.
The input signal ut is a band-pass filtered white noise
signal with zero mean and standard deviation of 0.1. The
number of observed data is n = 100. The number of Monte
Carlo simulations is n_sim = 100.
The following commands define the used system and the
number of simulations:
%% system information

ex.experiment_name = 'example_exp';

ex.system_name = 'placeholder_NP';

ex.system_type = 'dynamic';

ex.seed = 12; % for reproducibility

ex.n_sim = 100; % Monte Carlo simulations

4.2 Excitation signals design

After having selected the system, the next step is to design
the input and noise signals. They are defined respectively
by the data-types signal_struct and noise_struct:
%% Identification input signal

ex.sig_train.signal_type = 'BLWN'; % Filtered WN

ex.sig_train.lower_band = 0.1; % for filtering

ex.sig_train.upper_band = 0.8; % for filtering

ex.sig_train.mean = 0; % mean value

ex.sig_train.std = 0.1; % standard deviation

ex.sig_train.n = 100; % number of data

%% Noise signals

ex.ar_noise.unit = 'linear';

ex.ar_noise.type = 'power';

ex.ar_noise.value = 5e−3; % ar noise variance

ex.oe_noise.unit = 'linear';

ex.oe_noise.type = 'power';

ex.oe_noise.value = 0; % no output−error noise

An example of generated signals is shown in Figure 2.

Fig. 2. Generated input and output identification data.

4.3 Kernel-based estimation

The model estimation is performed by defining the algo-
rithms that have to be run on the previously specified

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1256



experiment. In this example, we defined two algorithms:
(i) a standard Tikhonov-regularized kernel problem; (ii)
a kernel problem with additional manifold regularization.
Both algorithms employ the kernel in Pillonetto et al.
(2011). For the first algorithm, hyperparameters are op-
timized with marginal likelihood optimization. For the
second method, we employ the GCV estimator.

The first algorithm can be defined as follows (for sake of
brevity, only the most important code is reported):
%% Associate the algorithm to the experiment

alg1.experiment_name = 'example_exp';

alg1.algorithm_name = 'example_tik';

%% System orders

alg1.hp.order_ex = 10; alg1.hp.order_ex = 10;

%% kernel parameters

alg1.hp.kernel_param.kernel_type = 'pillonetto';

alg1.hp.kernel_param.nl_beta.optimize = 'bounded'

alg1.hp.kernel_param.nl_beta.ini = 1;

alg1.hp.kernel_param.nl_beta.lb = 0;

alg1.hp.kernel_param.nl_beta.ub = inf;

alg1.hp.kernel_param.p.optimize = 'list';

alg1.hp.kernel_param.p.values = 1:9;

%% Regularization strenght parameters

alg1.hp.tau.optimize = 'bounded';

alg1.hp.tau.ini = 1; alg1.hp.tau.lb = 0;

alg1.hp.tau.ub = inf;

alg1.hp.mu = 0; % only Tikhonov regularization

The above code snippet shows an important feature of
the toolbox, i.e. the ability to deal with constraint on
hyperparameters optimization. By specifying the property
optimize = 'bounded' it is possible to constraint the
hyperparameter value to a lower bound (lb) and an upper
bound (ub). The keyword optimize = 'list' tests all
values in the list values in a grid search fashion and
retains the best one using identification data. The orders
order_ex and order_ar are not optimized: if they have to
be optimize, the keryword optimize has to be specified.

It is then possible to specify the type of solution that has to
be computed, the method for estimating the hyperparam-
eters and optimization options such as the optimization
algorithm to use and its tolerances.
%% Type of solution

alg1.hp.solution_type = 'trivial';

%% Use marginal likelihood optimization

alg1.op.opt_index = 'marg';

%% Optimization options

alg1.op.fmin_options = optimoptions('fmincon');

alg1.op.fmin_options.ConstraintTolerance = 1e−8;
alg1.op.fmin_options.OptimalityTolerance = 1e−8;
alg1.op.fmin_options.MaxIterations = 1e4;

Regarding the second algorithm, most of the settings
remain the same, so it is useful to copy the algorithm just
defined:
alg2 = alg1;

alg2.algorithm_name = 'example_man';

We have now to define the graph properties. This can be
performed with the following commands (suppose to use
a Gaussian function for the edges weights):
%% Graph weights

alg2.hp.graph_param.weights_type = 'kernel';

alg2.hp.graph_param.gs_sigma.optimize = 'bounded'

alg2.hp.graph_param.gs_sigma.ini = 30;

alg2.hp.graph_param.gs_sigma.lb = eps;

alg2.hp.graph_param.gs_sigma.ub = inf;

alg2.hp.graph_param.gs_lambda = 1;

%% Graph edges

alg2.hp.graph_param.edge_type = 'temporal';

alg2.hp.graph_param.futu_dist.optimize='constrained'

alg2.hp.graph_param.futu_dist.to =

{'kernel_param', 'p'};

alg2.hp.graph_param.past_dist.optimize='constrained'

alg2.hp.graph_param.past_dist.to =

{'kernel_param', 'p'};

%% Manifold regularization

alg2.hp.mu = []; % reset previous settings of mu

alg2.hp.mu.optimize = 'bounded';

alg2.hp.mu.ini = 1; alg2.hp.mu.lb = 0;

alg2.hp.mu.ub = inf;

%% Manifold type

alg2.hp.graph_param.manifold_type = 'LEM';

%% Type of solution

alg2.hp.solution_type = 'trivial';

alg2.op.opt_index = 'gcv'; % use GCV for hyperparams

The first thing to notice is how, by defining graph_param.
weights_type = 'kernel', further hyperparameters need
to be specified. In particular, graph_param.gs_sigma and
graph_param.gs_lambda automatically define a Gaussian
function for the edges weights. A similar approach can used
with all the “basic kernels”.

The previous code shows another possibility to constrain
the hyperparameters: with the keyword 'constrained',
and the value of an hyperparameter is constrained to
be equal to the value of another hyperparameter. As
an example, we have that both graph_param.futu_dist
and graph_param.past_dist (defined by the 'temporal'
edge_type) are set equal to the value of kernel_param.p.
Since we are referring to the nested hypeparameter p, it
is necessary to use the syntax {kernel_param, p} for
telling the software to which value the hyperparameters
graph_param.past_dist and graph_param.futu_dist
have to be constrained.

With this edge settings, a regressor at time t is connected
to the t+graph_param.futu_dist regressors in the future
and the t−graph_param.past_dist regressors in the past,
see Formentin et al. (2019). The kernel_param.p tells
the interaction order of the regressors at different time
instants, see Pillonetto et al. (2011).

4.4 Evaluation of the results

The last step is to define the test signal to evaluate
the estimated model performance. Suppose we want to
evaluate the prediction performance on a white noise signal
with n = 500 data, using various indicators such as the
Root Mean Square Error (RMSE), its normalized version
(NRMSE), or the Mean Absolute Error (MAE):
%% Associate the test to the experiment

test.experiment_name = 'example_exp';

test.test_name = 'example_test_wn';

%% Define test input and noise signals

test.sig_test.signal_type = 'BLWN';

test.sig_test.lower_band = 0.1;

test.sig_test.upper_band = 0.8;

test.sig_test.mean = 0;

test.sig_test.std = 0.1;

test.sig_test.n = 500; test.sig_test.seed = 23;

test.noise_type = 'null'; % no noise on data

%% Performance indicators to be computed

test.val_index = {'rmse', 'nrmse', 'mae'};

test.test_type = 'prediction';

The defined elements now need to be added to a set:

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1257



%% Add everything to the set

set_name = 'example_set';

mcs_exp_add(set_name, ex); % add experiment

mcs_alg_add(set_name, alg1); % add algorithm 1

mcs_alg_add(set_name, alg2); % add algorithm 2

mcs_test_add(set_name, test); % add test

%% Parallel properties

par_opt.parallel = true; % enable parallel

par_opt.verbose = 'detailed'; % show information

The set can now be run with a single command. Thus, the
simulation effort is focused all in a single moment (in the
beginning) and the researcher focus his/her time for other
duties, optimizing the work.
%% Run the set

mcs_run_set(set_name, par_opt);

The estimation results are reported in Figure 3. It is
possible to create boxplots that report the performance,
on a specific test, of each of the algorithms defined.

Fig. 3. Simulation results for the experiment example_exp,
for each one of the defined algorithms alg1 and alg2,
on the test 'example_test_wn'.

5. CONCLUSIONS

In this paper, we presented the MatLab toolbox KBERG,
that permits to perform nonlinear nonparametric system
identification using kernel methods. KBERG is a full-
featured environment for performing simulations with dy-
namical systems, kernels and hyperparameters estimation
methods. As peculiar characteristic, the toolbox fully sup-
ports the manifold regularization rationale and the pos-
sibility to compute alternative (but equivalent) solutions
with respect to the trivial one. The software is very easy
to extend with custom systems and kernels.

Future extension will regard the implementation of other
methods for estimating the hyperparameters with respect
to marginal likelihood or GCV, and the introduction of
new kernels specifically developed for nonlinear system
identification.

REFERENCES

Aronszajn, N. (1950). Theory of reproducing kernels.
Transactions of the American mathematical society,
68(3), 337–404.

Belkin, M. and Niyogi, P. (2003). Laplacian eigenmaps
for dimensionality reduction and data representation.
Neural computation, 15(6), 1373–1396.

Berry, T. and Sauer, T. (2016). Consistent manifold
representation for topological data analysis. arXiv
preprint arXiv:1606.02353.

Darwish, M., Lataire, J., and Tóth, R. (2017). Bayesian
frequency domain identification of lti systems with obfs
kernels. 20th IFAC World Congress, Toulouse, 50(1),
6238–6243. doi:10.1016/j.ifacol.2017.08.845.

Formentin, S., Mazzoleni, M., Scandella, M., and Previdi,
F. (2019). Nonlinear system identification via data
augmentation. Systems & Control Letters, 128, 56 –
63. doi:10.1016/j.sysconle.2019.04.004.

Ljung, L., Chen, T., and Mu, B. (2019). A shift in
paradigm for system identification. International Jour-
nal of Control, 0(0), 1–8. doi:10.1080/00207179.2019.
1578407.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and
optimization in matlab. In In Proceedings of the CACSD
Conference. Taipei, Taiwan.

Mateos, G., Segarra, S., Marques, A.G., and Ribeiro,
A. (2019). Connecting the dots: Identifying network
structure via graph signal processing. IEEE Signal
Processing Magazine, 36(3), 16–43. doi:10.1109/MSP.
2018.2890143.

Mazzoleni, M., Scandella, M., and Previdi, F.
(2019). A comparison of manifold regularization
approaches for kernel-based system identification.
IFAC-PapersOnLine, 52(29), 180 – 185. doi:
https://doi.org/10.1016/j.ifacol.2019.12.641. 13th
IFAC Workshop on Adaptive and Learning Control
Systems ALCOS 2019.

Mazzoleni, M., Formentin, S., Scandella, M., and Previdi,
F. (2018a). Semi-supervised learning of dynamical
systems: a preliminary study. In 2018 European Control
Conference (ECC), 2824–2829.

Mazzoleni, M., Scandella, M., Formentin, S., and Previdi,
F. (2018b). Identification of nonlinear dynamical system
with synthetic data: a preliminary investigation. IFAC-
PapersOnLine, 51(15), 622 – 627. doi:10.1016/j.ifacol.
2018.09.227. 18th IFAC Symposium on System Identi-
fication SYSID 2018.

Mazzoleni, M., Scandella, M., Formentin, S., and Previdi,
F. (2020). Enhanced kernels for nonparametric identifi-
cation of a class of nonlinear systems. In 18th European
Control Conference (ECC20). IEEE.

Mu, B., Chen, T., and Ljung, L. (2018a). Asymptotic
properties of generalized cross validation estimators for
regularized system identification. IFAC-PapersOnLine,
51(15), 203 – 208. 18th IFAC Symposium on System
Identification SYSID 2018.

Mu, B., Chen, T., and Ljung, L. (2018b). On asymp-
totic properties of hyperparameter estimators for kernel-
based regularization methods. Automatica, 94, 381 –
395.

Pillonetto, G. (2018). System identification using kernel-
based regularization: New insights on stability and con-
sistency issues. Automatica, 93, 321 – 332.

Pillonetto, G., Dinuzzo, F., Chen, T., Nicolao, G.D., and
Ljung, L. (2014). Kernel methods in system identi-
fication, machine learning and function estimation: A
survey. Automatica, 50(3), 657 – 682. doi:10.1016/j.
automatica.2014.01.001.

Pillonetto, G., Quang, M.H., and Chiuso, A. (2011). A
new kernel-based approach for nonlinearsystem iden-
tification. IEEE Transactions on Automatic Control,
56(12), 2825–2840. doi:10.1109/TAC.2011.2131830.

Roweis, S.T. and Saul, L.K. (2000). Nonlinear dimension-
ality reduction by locally linear embedding. science,
290(5500), 2323–2326.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

1258


