
     

Two Camera 3D Time Series Reconstruction of a Mesh Subjected to Differential 

Excitation  
 

Michael Joon Seng Goh, Yeong Shiong Chiew, Ji Jinn Foo  

Monash University Malaysia, Selangor, Malaysia 

(e-mail: Michael.Goh@monash.edu, Chiew.Yeong.Shiong@monash.edu, Foo.Ji.Jinn@monash.edu). 

Abstract: The present study proposes a novel bio-inspired scheme for the 3D time series reconstruction of 

a Mesh. The key motivation of this study is to develop a cost effective and accessible system without 

compromising capabilities for the fundamental understanding in complicated external stimuli-induced 

vibration of a Mesh. A bio-inspired algorithm traces along the strands of the mesh to match a known 

control point to the next keypoint until the entire surface is matched for the critical reconstruction at the 

first frame/timestep. The match is then disseminated to the subsequent frames steps via digital image 

correlation and photogrammetric methods applied to effectively recover the time series response of the 

dynamic surface. This study offers significant and quantitative insight into the vibration and fluctuation 

of the entire excited surface. A 160mm×160mm mesh fluctuation is successfully re-constructing with a 

sampling density of approximately 1600 points at 24 frames per second. The proof-of-concept 

experiment was able to detect the undulation of mesh under an in-phase and an out-of-phase excitation, 

which result in the reconstruction of the point cloud with a 0.38mm error, as well as the frequency and 

phase angle accuracy attainments of about 99.1% and 86.0%, respectively. In short, the current 

reconstruction scheme may provide insights into the control and response of a piezoelectric mesh. 
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1. INTRODUCTION 

Vibrations have a ubiquitous existence, permeating into 

every aspect of life with significance in acoustics, structures, 

electronics, transportation, energy harvesting and cell biology 

(Ahmed et al., 2011, Kulkarni et al., 1996, Bandhu et al., 

2004, Ruggles, 1969, Goh et al., 2020). One such application 

that sparked our interest is the recent development of 

piezoelectric generators in strand form (Sim et al., 2015, 

Wang and Song, 2006) which could potentially be integrated 

into fabrics, or woven into Meshes. Possible practical 

application of such a composite include the integration of 

piezoelectric material into clothing to power wearable 

electronics, canvas canopies and tents for energy harvesting, 

wire fences for energy harvesting and sensing, or the use of 

piezoelectric Meshes as direct wind energy harvesters, which 

could potentially be a scalable, passive small footprint 

generator for harsh environments or confined spaces. As both 

the excitation frequency and resonant frequency are key to 

determining the eventual efficiency (Kim et al., 2011, Cho et 

al., 2006), it is essential to be able to study the basis 

fluctuations and vibration of the generator for tuning and 

optimization. Furthermore, the piezoelectric mesh could 

potentially be used to modify fluid flow in a channel by 

acting as an excitation device. To this end, a system capable 

of time series reconstruction of a Mesh is to be developed as 

a prerequisite to further study the potential application of a 

piezoelectric Mesh as a sensor or use as an excitation device. 

This is essential as the electrical signal to/from the mesh 

needs to be correlated to the physical response of the mesh. 

In this paper, we propose a unique approach inspired by how 

humans intuitively determine salient features of Meshes, 

match these features between stereo pairs as well as images at 

subsequent time steps as shown in Fig. 1 where the left and 

right view are matched in t0 after which the matching can be 

shared to t1 until tn. 

Photogrammetric methods present a unique attraction as it 

permits non-contact full field measurements (Yue et al., 2010, 

Ryall and Fraser, 2002, Lilienblum and Al-Hamadi, 2015). 

Modern photogrammetric methods such as (Kuhn et al., 

2017, Vu et al., 2012, Zhu and Gao, 2010) and (Furukawa 

and Ponce, 2010) can provide the high accuracy, high 

resolution reconstruction necessary to study the subtle 

vibrations and fluctuations. As these methods require 

multiple views, it is more suited for applications to static 

subjects where typically a single camera is moved to record 

the subject from multiple views or mirrors are used. Adapting 

these methods to dynamic study would require a significant 

number of synchronized cameras to be employed. Several 

high accuracy approaches that use structured light, dot 

projection or attached markers have also been used for 

dynamic study (Lee and Rhee, 2013, Pappa et al., 2003, Ryall 

and Fraser, 2002). However, due to the tradeoff between 

spatial reconstruction resolution and equipment cost as 

multiple cameras are needed, these approaches may be 

inaccessible to certain research groups. Furthermore, 

structured light and dot projection setup may require long 

exposure time for high spatial resolution, limiting it’s used 

for high speed dynamic investigations. The use of 

retroreflective markers allows for better sampling rates to be 

achieved but may sacrifice the spatial resolution due to the 

physical size of the markers. The markers may also be 
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unsuitable for some applications where attachment of the 

marker to the object will alter the object’s response. 

Stereoscopic methods such as those reviewed in (Scharstein 

and Szeliski, 2002) needing as little as two cameras generally 

estimate a disparity map which focuses more on 

distinguishing planes at different depth; these methods are 

not commonly optimized for a high level of surface detail 

required for the current vibrational study (Pachidis and 

Lygouras, 2007).  

 

 
Fig. 1 Example of left and right view at multiple timesteps. 

 

Most stereoscopic methods utilise some form of 

stereomatching algorithm to obtain the disparity map or 

perform the 3D reconstruction of the object. Stereomatching 

is in essence matching parts of an image to its corresponding 

parts in the image taken from the complementary camera. In 

its simplest form, this is accomplished via comparing the 

intensity values; finding the smallest sum of absolute 

difference (SAD) or sum of squared difference (SSD) 

between pixels of a reference window on one image to that of 

its complementary image (Scharstein and Szeliski, 2002, 

Shimizu and Okutomi, 2005, Xue et al., 2014). Features such 

as SIFT (Lowe, 1999), SURF (Bay et al., 2008), and FREAK 

(Alahi et al., 2012) encode a large amount of information 

about a point and its neighbourhood allowing for more 

confidence in the matchings performed. Yet, when faced with 

objects or scenes with repetitive patterns, there is a tendency 

for false correspondence to occur owing to confusion 

(Barrois et al., 2010). Methods such as (Royer et al., 2017, 

Zhao et al., 2011) handle confusing scenes by identifying and 

eliminating confusing points; however this may lead to 

crucial data being lost especially if the object is composed 

mainly of repetitive patterns.  

To study the dynamic behaviour of the object, digital 

image correlation (DIC) can be applied; such as in the work 

by (Lavatelli and Zappa, 2016) to study cantilever beam 

vibration. (Lavatelli and Zappa, 2017) also presented advance 

DIC methods able to cope with motion blur; essential for 

study of high speed motions using cameras. 

 

2. WORKING PRINCIPLE 

We have identified three main steps required for the time 

series reconstruction of Meshes. These are i) keypoint 

extraction, ii) stereo matching and iii) static-to-transient 

matching as shown in Fig.2. The overall process is detailed in 

Sections 2.1, 2.2 and 2.3. 

2.1. Keypoint Extraction 

The first step is identifying keypoints on the Mesh to be used 

for stereo matching. This is important as it reduces the 

computational load of the reconstruction by significantly 

reducing the number of inputs into the stereomatching. 

However, the keypoints must still be able to provide an 

accurate reconstruction of the Mesh with sufficient detail. 

Drawing inspiration from how humans view the intersection 

of Meshes as salient features, we propose the use of these 

Mesh intersections as the keypoints. Fig. 3 shows a sample of 

a Mesh with the intersections highlighted in yellow and the 

desired keypoints to be extracted as red “X”s. 

In order to ensure that the majority of the intersections are 

captured with minimal false positives and false negatives 

during keypoint extraction, the appropriate scale needs to be 

determined. This scale will be used to determine the 

minimum spacing between keypoints as well as the position 

of the keypoint within the intersection. As Meshes are by 

definition and design repetitive structures, a single scale can 

be applied to each study. 

 

 

Fig. 2 Overview of the proposed 3D time series reconstruction of nets or meshes. 
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Fig. 3 Example of a net (white) with intersections highlighted 

in yellow and centres of intersections marked with a red “X” 

As for the localization of the keypoints, ideally each 

intersection should have a single keypoint. This is achieved 

by looking for the pixel in each intersection that has the most 

Mesh pixels around it. This can be expressed as in Eq.1 

below where the centre is the pixel with the largest ratio, 

PixelRatio in each intersection.  

 

𝑃𝑖𝑥𝑒𝑙𝑅𝑎𝑡𝑖𝑜 =
∑ ∑ IsMesh(x,y)ℎ

𝑦=−ℎ
𝑤
𝑥=−𝑤

4𝑤ℎ
 (1) 

 

Where IsMesh(x,y) is a function which returns 1 if the pixel 

at position (x,y) is on the Mesh, w is width of the intersection 

and h is the height of the intersection  

2.2. Stereo Match 

Once the keypoints have been extracted, the correspondence 

between the keypoints in the left view and the right view 

needs to be determined in order for each intersection to be 

triangulated and the Mesh reconstructed. 

Drawing inspiration from how humans intuitively approach 

the problem when presented with the task of manually 

performing the stereo matching; we have developed the 

following scheme. Starting from a known match, tracing the 

Mesh along its strand to the next keypoint for both left and 

right view returns another correct match. We can then 

continue trancing along the strand to obtain the next match 

and keep repeating this for all subsequent keypoints. An 

example of this tracing procedure can be seen in Fig. 4 where 

the green arrows show a trace along the bottom of the Mesh 

while the yellow and blue arrows show two possible paths the 

trace can continue. 

The tracing is achieved by ensuring that θ as defined in Eq. 2 

below is the same or very close for both the left and right 

view. 

𝜃 = 𝑎𝑡𝑎𝑛2 (
𝑌𝑛−𝑌𝑛−1

𝑋𝑛−𝑋𝑛−1
) − 𝑎𝑡𝑎𝑛2(

𝑌𝑛−𝑌𝑛+1

𝑋𝑛−𝑋𝑛+1
)  (2) 

Where n is the number of points matched, Xn is the x-axis 

coordinate of the nth matched point and Yn is the y-axis 

coordinate of the nth matched point. Also note that the n+1 

point refers to the new keypoint considered for tracing and 

matching. 

 

Fig. 4 Example of left view (left) and right view (right) of a 

net with visualization of tracing algorithm as green, yellow 

and blue arrows. 

2.3. Static-to-transient Matching 

Although the process described in Sections 2.1 and 2.2 can be 

applied to every time step, we drew inspiration from humans 

once again and found that it is more efficient to match the 

keypoints from each view to keypoints from subsequent 

timesteps of the same view. This is more efficient as opposed 

to performing stereo matching for each time step as the 

changes between each timestep is a lot less significant than 

the visual difference between the left and right views due to 

perspective distortions. For small inter-timestep deformation 

of the Mesh where the camera framerate is high relative to 

the rate of the Mesh’s deformation, each keypoints can be 

simply matched by finding the nearest keypoint in the 

previous timestep. However, if the inter-timestep deformation 

is large, local digital image correlation (DIC) will need to be 

applied at the right scale to ensure each keypoint is correctly 

matched to its corresponding keypoint from the previous 

timestep. The local DIC is implemented by using a window 

around the keypoint in the previous timestep as the reference 

to perform the 2D discrete cross correlation which will yield 

the corresponding keypoint location in the current timestep.  

 

 

Fig. 5 Schematic of experiment setup: Cameras (a and b), the 

image planes (c and d), the mesh (e) and actuators (f) 

 

3. EXPERIMENTAL SETUP USING HEXAGONAL 

CELL MESH 

As a proof of concept, we have applied the reconstruction 

scheme presented in Section 2 to the time series 

reconstruction of a mesh under two excitation conditions. The 

experimental setup is as in Fig. 5 with 2 USB cameras used 

to capture the stereo image time series.  A 160mm×160mm 
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hexagonal cell mesh is attached at 9 points to linear actuators 

as shown in Fig. 5. Each linear actuator is controlled 

independently to impart 2 different forms of excitation, either 

In-phase excitation or an Out-of-phase excitation. In both 

scenarios, the actuators impart a sinusoidal excitation with a 

period of 0.55s or 1.818Hz.   

 

 

Fig. 6 The hexagonal cell mesh with notation A1 to A9 

indicating the position the actuators are attached to the mesh.  

Applying the presented keypoint extraction and 

stereomatching methodto the first frame/ timestep, 1620 

keypoints were successfully matched and the mesh 

reconstructed in 3D. DIC is then applied to subsequent 

frames to obtain the 3D time series topology of the mesh. 

3.1. In-Phase Excitation  

For the in-phase excitation, all nine actuators were triggered 

simultaneously to ensure the sinusoidal excitation at all nine 

points of the mesh were in-phase. As shown in Fig. 7a, 6b, 

6c, and 6d, it is seen that the mesh was pushed from its initial 

position to its maximum convexity before returning to its 

initial position. Fig. 7a shows the net moving rightwards in 

the left camera’s view (magnified for clarity) which indicates 

a positive Z-axis motion. Conversely, Fig. 7d shows a 

leftward motion indicating a negative Z-axis motion. The 

Mesh’s motion at the interface to actuators A8 and A5 are 

quantified by plotting the time series Z-axis position of points 

P1 and P2 respectively in Fig. 7e. We are able to fit 

sinusoidal waves to the time series data where both 

waveforms were found to have a frequency of 1.7964Hz, 

which is close to the actuator’s input waveform of 1.8182Hz. 

Note that the regions highlighted as I, II, III and IV in Fig. 7e 

corresponds to Fig. 7a, Fig. 7b, Fig. 7c and Fig. 7d 

respectively. It can also be observed that there is no 

noticeable phase difference between the two waveforms as 

the actuators were triggered simultaneously. The amplitude 

distribution (Fig. 7e) shows that the rigid connection between 

the mesh and the actuator has higher amplitude as compared 

to the mesh around each actuator as expected. Furthermore, 

as seen in Fig. 7f, the areas near the edge display rather low 

amplitude as expected, due to the stationery plastic frame 

limiting the mesh fluctuation. As for the phase across the 

mesh, Fig. 7g illustrates the phase angle distribution where 

the distribution is almost uniform as the actuators were 

triggered simultaneously. 

3.2. Out-of-Phase Excitation  

Looking into the triggering sequence of the out-of-phase 

excitation, the first set of actuators (A3, A6 and A9) were 

triggered together to move outwards (positive Z direction). 

After a 185ms delay the second set was triggered with the A2 

and A8 moving outward while the A5 moved inwards. After 

which the third set (A1, A4 and A7) was triggered to move 

outwards 185ms after the second set. Based on Fig. 8a to Fig. 

8d, we can observe that each set of actuators act in unison 

while remaining at a different phase to other sets. This is 

observed as similar Z-axis displacements within sets of 

actuators. Looking at the time series of P1 and P2 (Fig. 8e), 

we were able to fit two sinusoidal waveforms of 1.8018Hz 

which are close to the actuating 1.8182Hz. A detected phase 

difference of 0.86π between P1 and P2 does not differ too 

much from the expected phase difference of π. This error may 

be due to faults in the actuator triggering or video capturing 

and compression. The amplitude distribution (Fig. 8f) 

provides interesting insight as we can observe a significant 

overall lower amplitude in regions between the actuation 

points as compared to Fig. 7f, where the actuators were 

triggered in-phase. This may be due the regions between the 

actuation points experiencing a force opposing its direction of 

motion from the antagonistic actuators before reaching the 

same displacement as the actuating points. It could also be 

due to destructive interference of the excitation due to the 

out-of-phase actuators. The phase distribution intensity plot 

(Fig. 8g) further illustrates the phase difference as expected 

where there is a large phase difference between A5 with the 

rest of the surface, while the right side is also out of phase 

from the left by about 0.64π.  

4. CONCLUSION 

We have demonstrated a novel approach developed for the 

dynamic behavior study of a continuous surface. As a proof-

of-concept, the presented scheme was applied to study the 

dynamic motion of a mesh under two different excitations; an 

in-phase and an out-of-phase excitation applied to nine points 

on the mesh. The scheme displayed promising sensitivity in 

detecting phase differences while attaining an accuracy of 

86.0%. In addition, the fluctuation frequency was able to be 

detected with an accuracy of 99.1%. Although still in its 

infancy the proposed method presents a unique attraction in it 

being able to reconstruct the traditionally difficult mesh 

structure using only 2 cameras. We believe that this scheme 

will also be able to play a role in uncovering previously 

illusive details when paired with better cameras. We see great 

potential of this enabling technology in providing new insight 

into existing research and allowing a wider audience of 

researchers the opportunity to study the transient response of 

dynamic surfaces. 
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Fig. 7 Response of mesh to in-phase excitation. The top portion shows the position of the features in the left view (camera) for 

the current frame (t = 0.250s) in red and the previous frame (t = 0.125s) in green with the displacement marked by a black line. 

The portion below shows the reconstructed point cloud for the current frame with the intensity plot depicting the Z-axis 

movement relative to the previous frame. (b to d) are produced in the same way as (a) for frames t = 0.150s to t = 0.375s, t = 0. 

375s to t = 0.500s and t = 0.500s to t = 0.625s, respectively. (e) Time series Z-axis position of P1 and P2 plotted as dots with 

superimposed sinusoid with frequency calculated from the Fourier transform of the time series and amplitude corresponding to 

half the distance between the recorded maximum and minimum. (f) Z-axis amplitude distribution across the mesh visualized as 

intensity plot. (g) Phase angle distribution across the mesh visualized as intensity plot. 

 

Fig. 8 Response of mesh to out-of-phase excitation. (a to d) Visualization of first 0.625 seconds. (e) Sinusoid fit to time series 

Z-axis position of P1 and P2. The amplitude (f) and phase angle (g) distributions. 
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