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Abstract: We consider the problem of guaranteeing output consensus, with prescribed transient
and steady-state performance bounds, for a class of uncertain, heterogeneous, high-order,
nonlinear multi-agent systems, in a leader-following scheme. The proposed control protocol
is decentralized and of low-complexity. An interesting feature is that information (state
measurements, control inputs) is exchanged only in quantized form. For that purpose, uniform-
hysteric quantizers are utilized. Simulations illustrate the effectiveness of the approach.
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1. INTRODUCTION

Motivated by numerous applications, the problem of reach-
ing consensus in a group of dynamical systems, which
exchange information via an underline communication net-
work (multi-agent system), has received significant atten-
tion. The problem is decomposed into achieving synchro-
nization between specific variables of interest, irrespec-
tively of the presence of nonlinear and possibly uncertain
agent dynamics. Particularly, when heterogeneity is a lead-
ing property of agent dynamics, the focus is on reaching an
agreement between the outputs of the agents. In this work,
we consider heterogeneous high-order nonlinear agent dy-
namics in a leader-following scheme.
A large literature is available on the topic Mondal et al.
(2017), Li et al. (2017), Zhang and Li (2017), incorporating
various constraining assumptions, among which, the most
significant one, concerns the level of knowledge required
regarding the leader and the following agent dynamics,
to develop a decentralized control solution. Even in cases
where partial knowledge is available Xu et al. (2016),
Yang et al. (2016), Ding (2015), the utilization of adaptive
algorithms and/or neuro/fuzzy approximating structures
to acquire such knowledge or to compensate for its ab-
sence, inevitably increase the complexity of the control
solution. This observation stems from the fact that pa-
rameter estimates have to be updated on-line, increasing
the number of nonlinear differential equations that have
to be solved numerically, and additional calculations have
to be conducted to produce the control signals; making
difficult the distributed implementation of the proposed
control scheme. Constraints in the computational power
available on each agent platform, which typically applies,
elevates further the problem.
In addition to the aforementioned, in a networked control
systems framework, limitations apply with respect to the
available bandwidth. To reduce the communication load,
all signals in the closed-loop system are subject to quanti-

zation. However, the presence of quantization introduces
discontinuities in the closed-loop, thus jeopardizing stabil-
ity and degrading performance. In the literature of high-
order nonlinear multi-agent systems, proposed solutions
have been restricted in the homogeneous agent dynamics
Li et al. (2019), Wang et al. (2017), addressing heterogene-
ity only in conjunction with linear agent dynamics Fu and
Wang (2014), Zhu et al. (2015).
In the framework of multi-agent systems, enforcing con-
sensus with guaranteed performance during transient and
steady-state has received less attention despite its signif-
icance. In this direction, and exploiting the Prescribed
Performance Control (PPC) methodology, first introduced
by Bechlioulis and Rovithakis (2008), the work Wang
et al. (2015) addresses nonlinear, uncertain, high-order,
heterogeneous multi-agent systems. However, the utiliza-
tion of fuzzy approximating structures to handle the un-
certain nonlinearities and the associated adaptive laws,
increase the complexity of the control solution. A low-
complexity solution to the aforementioned problem was
provided in Bechlioulis and Rovithakis (2016). Yet, none
of the above-mentioned works discusses the incorporation
of quantization in the closed-loop. A solution was pro-
vided in Liang et al. (2019), utilizing PPC methodology
and fuzzy approximating structures. Only control input
quantization was considered and the agent dynamics were
homogeneous. Furthermore, the use of fuzzy systems led
to a relatively complex control protocol.
From the aforementioned literature review becomes ev-
ident that currently, no approximation-free and low-
complexity control protocol exists to guarantee consen-
sus with prescribed performance for high-order, hetero-
geneous, nonlinear multi-agent systems, with all closed-
loop signals (state measurements and control inputs) being
quantized. A solution to fill this gap is proposed in this
work.
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2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider an heterogeneous multi-agent system consisting
of a leader and N followers, with the leader acting as
an external system that produces the desired reference
trajectory for the group of followers. The dynamics of each
agent satisfy an mith-order SISO nonlinear system:

ẋi,j = xi,j+1, j = 1, ...,mi − 1
ẋi,mi

= fi(xi) + gi(xi)q(ui) + di(t)
yi = xi,1

}
, i = 1, ..., N (1)

where xi = [xi,1, ..., xi,mi
]T ∈ Rmi , i = 1, ..., N represent

the state of each agent, fi : Rmi → R, i = 1, ..., N
and gi ∈ Rmi → R, i = 1, ..., N are unknown locally
Lipschitz functions, ui ∈ R, i = 1, ..., N is the control
input, yi ∈ R, i = 1, ..., N is the output and di : R+ →
R, i = 1, ..., N represent piecewise continuous and bounded
external disturbances.
Assumption 1. The function gi is either strictly positive
or strictly negative for all xi ∈ Rmi , i = 1, ..., N and its
sign denoted as sgn(g) is considered known.
Assumption 2. The output of the leader x0(t) : R+ →
R and its first-order derivative ẋ0 are assumed to be
bounded. However, only x0 is available for measurement at
each time instant and is considered unknown in advance.

A directed graph G = (V, E) is used to model the com-
munication among the followers, where V = {v1, ..., vN}
indicates the set of vertices that represent the followers and
E ⊆ V×V indicates the set of edges. The graph is assumed
as simple ((vi, vi) /∈ E). The adjacency matrix is denoted
as A = [aij ] ∈ RN×N with aij ∈ {0, 1} , i, j = 1, ..., N .
If aij = 0 then the agent i does not obtain information
regarding the state of the agent j ((vi, vj) /∈ E), whereas
if aij = 1 there is an information-sharing from agent j
to agent i ((vi, vj) ∈ E). State information regarding the
leader agent (labeled as v0) is only provided to a subgroup
of the N agent. This information-sharing is modeled by
a diagonal matrix B = diag([b1, b2, ..., bn]) ∈ RN×N . If
bi = 1, then agent i obtains information regarding the
state of the leader node, if there is no such information-
sharing, then bi = 0. The set of neighbors of an agent vi is
denoted by Ni = {vj : (vi, vj) ∈ E}. The augmented graph
is defined as Ḡ = (V̄, Ē), where V̄ = {v0, v1, ..., vN} and
Ē = E ∪ {(vi, v0) : bi = 1} ⊆ V̄ × V̄.
We pose the following assumption for the graph.
Assumption 3. The augmented graph Ḡ is a directed
acyclic graph composed of layers and each agent in a layer
receives information only from an agent at a higher-level.
The highest level contains only the leader 1 .

The signals ui(t), xi(t), x0(t), i = 1, ..., N enter the closed-
loop in quantized form. In this work we consider uniform-
hysteric quantizers (Ceragioli et al. (2011)) of the form:

q(z) =


q−(z)− δ , if z ≤ q−(z)− δ

q−(z) , if q−(z)− δ < z < q−(z) + δ.

q−(z) + δ , if z > q−(z) + δ

(2)

In (2), the step size of the quantizer is denoted by δ > 0
and the value of q(z) at the time instant before t is denoted
1 An example graph satisfying Assumption 3 is presented in Fig. 1

Fig. 1. Communication graph that obeys Assumption 3

by q−(z). The output of the quantizer takes values from
Q = {wδ | w = 0,±1,±2, ...}. Even though in generality
we could employ quantizers (2) possessing different step-
size for each signal, to simplify notation, in this work we
shall consider identical step-sizes. It is true (Bikas and
Rovithakis (2019a)):

q(z) = z +D(z), ∀t ≥ 0, (3)
with D(z) satisfying |D(z)| ≤ δ, ∀t ≥ 0.
Signal quantization introduces discontinuities in the closed
loop. This leads to problems concerning the existence of
solutions. Additionally, the chattering phenomenon must
be prevented. Hysteric quantizers are employed to effec-
tively avoid these problems. Such quantizers demonstrate
a positive dwell time (Bikas and Rovithakis (2019a)) that
guarantee the existence of solutions over a maximal time
interval and the chattering-free performance.
Our objective is to design a low-complexity, distributed
control protocol for the heterogeneous multi-agent system
(1) satisfying Assumptions 1, 2, under a directed com-
munication graph obeying Assumption 3, when all signals
in the closed-loop are quantized, such that the output
disagreement errors

εi(t) = xi,1(t)− x0(t) ∈ R, i = 1, ..., N (4)
are driven to predefined and arbitrarily small neighbor-
hoods of the origin, with prespecified minimum conver-
gence rate, keeping all signals in the closed-loop bounded.
Remark 1. Besides being decentralized, the proposed con-
trol protocol should be of low-complexity as well. The
latter, which is a highly desirable implementation prop-
erty, should be attributed to i) no a priori knowledge
regarding the agent nonlinearities should be required, ii)
no approximating structures (i.e., neural networks, fuzzy
systems) should be incorporated to acquire such knowl-
edge, iii) no hard calculations (analytic or numerical)
should be required to produce the control protocol and iv)
the controller should be static, thus avoiding the expansion
of the dynamic order of the closed-loop.

3. MAIN RESULTS

The following theorem, whose proof is presented in Sec-
tion 4, summarizes the main results of this work.
Theorem 1. Consider the heterogeneous multi-agent sys-
tem (1) satisfying Assumptions 1, 2, under a directed
communication graph obeying Assumption 3. Given any
initial conditions xi(0) ∈ Rmi and for all i = 1, ..., N , the
distributed control protocol:
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ψi,0 ,
∑

l∈Ni
ailq(xl,1) + biq(x0))∑

l∈Ni
ail + bi

, (5a)

ξi,j =
q(xi,j)− ψi,j−1

ρi,j − δ
∈ R, j = 1, ...,mi, (5b)

ψi,j = −ki,j ln(
1 + ξi,j
1− ξi,j

) ∈ R, ki,j > 0 , j = 1, ...,mi − 1,

(5c)

ui = −sgn(gi)ki,mi
ln(

1 + ξi,mi

1− ξi,mi

) ∈ R, ki,mi
> 0, (5d)

where
ρi,j(t) = (ρ0i,j − ρ∞i,j)e

−li,jt + ρ∞i,j (5e)
with
0 < li,j , ρ

0
i,j ≡ ρi,j(0) > |q(xi,j(0))− ψi,j−1(0)|+ δ (5f)

ρ0i,j >ρ
∞
i,j > δ, j = 1, ...,mi (5g)

guarantees:
(i)

|εi(t)| < (N+1)(
N3 +N2 −N

N − 1
)

N−1
2 (ρi,1(t)+δ) (6)

(ii) the boundedness of all signals in the closed-loop
Remark 2. Careful inspection of (6) reveals that all output
disagreement errors εi(t) present a predefined minimum
convergence rate equal to li,1. Furthermore, the minimum
output synchronization accuracy at steady state is pre-
scribed to be 2δ(N +1)(N

3+N2−N
N−1 )

N−1
2 . The latter is true

owing to (6), (5g) and the exponentially decaying structure
of (5e). However, following closely the line of proof of
Theorem 1, it is not difficult to verify that the minimum
output synchronization accuracy can be reduced by 50%,
if we assume that each agent measures its own state
without the intervention of quantization. Nevertheless, as
anticipated, state quantization constraints the achievable
prescribed output synchronization accuracy, whose effect
on performance is effectively shrunk, only if we select the
quantization step-size δ so as 2δ(N + 1)(N

3+N2−N
N−1 )

N−1
2

becomes less than the accuracy of the corresponding mea-
surement device, thus achieving practical convergence of
εi(t) to zero.
Remark 3. As already stated in Remark 2, only ρi,1 is
related, via the selection of li,1 and ρ∞i,1, to the introduction
of prescribed performance on the output disagreement
error εi(t). The rest of the ρi,j-functions, j = 2, ...,mi

comprise together with ki,j control elements can be freely
chosen provided they satisfy (5f), (5g).
Remark 4. The proposed control protocol (5) is decentral-
ized and of low-complexity as it satisfies all qualitative
properties stated in Remark 1.

4. PROOF OF THEOREM 1

Let the strictly increasing function T : (−1, 1) → R with
T (∗) = ln((1 + ∗)/(1 − ∗)) and for all i = 1, ..., N , define
the normalized errors:

ξσi,j =
xi,j + γδ − ψσ

i,j−1

ρi,j − δ
∈ R, j = 1, ...,mi, (7)

where σ = {min,max},

γ =

{
1 , if σ = max,
−1 , if σ = min,

and

ψσ
i,0 =

∑
l∈Ni

ail(xl,1 − γδ) + bi(x0 − γδ)∑
l∈Ni

ail + bi
(8a)

ψσ
i,j = −ki,jT (ξσi,j), j = 1, ...,mi − 1 (8b)

Taking into account (3), (8b), and the strictly increasing
property of T , it is concluded that for all t ≥ 0,

ξmin
i,j ≤ ξi,j ≤ ξmax

i,j , i = 1, ..., N , j = 1, ...,mi (9)
Define ri,j = ρi,j − δ > 0, i = 1, ..., N , j = 1, ...,mi.
Differentiating (7) with respect to time and using (3), it is
obtained for all i = 1, ..., N and j = 1, ...,mi − 1

ξ̇σi,j =
1

ri,j
[ξσi,j+1ri,j+1 − γδ + ψσ

i,j − ψ̇σ
i,j−1 − ξσi,j ṙi,j ]

(10a)

ξ̇σi,mi
=

1

ri,mi

[fi(xi) + gi(xi)ui + gi(xi)D(ui) + di(t)

− ψ̇σ
i,mi−1 − ξσi,mi

ṙi,mi
] (10b)

Define ξσ = [ξσ1,1, ..., ξ
σ
N,mN

] ∈ RM , where M =
∑N

i mi.
Moreover, define:

ξ̇σ = hσ(ξσ, t) = [hσ1,1, ..., h
σ
N,mN

]T (11)
where the hσ functions are the right-hand sides of (10).
Further, the ψσ

i,j have been substituted by (8b). Defining
ξ = [ξmin, ξmax]

T , we can write (10) in compact form as:
ξ̇ = [hTminh

T
max] ∈ R2M (12)

Additionally, let us define the open set Ωξ = (−1, 1)2M ⊂
R2M . To prove Theorem 1, it is sufficient to show that the
controller (5), guarantees that the functions T (ξσi,j), i =
1, ..., N , j = 1, ...,mi, appearing in (10) remain bounded.
Since the function T is strictly increasing, it leads to
proving that ξ evolves strictly within a subset of Ωξ for all
t ≥ 0. Indeed, the latter and (9), leads us to the conclusion
that ξi,j , i = 1, ..., N , j = 1, ...,mi will also evolve strictly
within (−1, 1) for all t ≥ 0. Therefore, concluding that all
closed-loop signals ui, ξi,j , ψi,j , i = 1, ..., N , j = 1, ...,mi−
1 remain bounded for all t ≥ 0.
The proof of Theorem 1 consists of two phases. First, a
unique maximal solution ξ(t) of (12) over the set Ωξ for
a time interval [0, τmax) is ensured. Then, in the second
phase we show the validity of statements (i), (ii).
Phase A: The set Ωξ is open and non-empty. Also the
performance functions ρi,j(t), i = 1, .., N, j = 1, ...,mi

are selected so that ξ(0) ∈ Ωξ. System (12) consists of
discontinuous dynamics owing to the quantized feedback
in ui. Therefore, it is not clear whether for any initial con-
dition ξ(0) ∈ Ωξ, there exist a unique maximal solution of
ξ(t) in [0, τmax), with τmax ∈ [0,+∞]. However, following
standard arguments (Bikas and Rovithakis, 2019a, Lemma
A.1), we can readily show the correctness of the latter
statement. Hence, ξ(t) ∈ Ωξ for all t ∈ [0, τmax) with
τmax ∈ [0,+∞]. Additionally, the chattering phenomenon
is prevented.
Phase B: Owing to (9) and the results of Phase A, we
conclude that ξi,j ∈ (−1, 1), i = 1, .., N, j = 1, ...,mi, for
all t ∈ [0, τmax). Therefore,

ϵi,j = T (ξi,j), i = 1, .., N, j = 1, ...,mi (13a)
ϵσi,j = T (ξσi,j), i = 1, .., N, j = 1, ...,mi (13b)

are well-defined for all t ∈ [0, τmax).
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Let Lκ, κ = 1, 2, ... denoting the layers of the communica-
tion graph stated in Assumption 3, excluding the highest
(layer 0), which contains only the leader. In what follows,
we shall restrict our attention to the agents comprising
L1, utilizing a recursive step-like procedure. The analysis
for all subsequent graph layers is similar and it is thus
omitted.
Define m = mini∈L1mi and m = maxi∈L1mi.
Step 1 (j = 1 and i ∈ L1): Define the positive definite
functions:

V1,σ =
∑
i∈L1

(ϵσi,1)
2. (14)

Differentiating (14) with respect to time and using (10a),
it is obtained for all t ∈ [0, τmax):

V̇1,σ =
∑
i∈L1

ϕσi,1ϵ
σ
i,1(ξ

σ
i,2ri,2−γδ+ψσ

i,1−ψ̇σ
i,0−ξσi,1ṙi,1), (15)

where ϕσi,j = 2/(1 + (ξσi,j)
2)ri,j . Notice that ϕσi,j > 0 for

all t ∈ [0, τmax), since ξσ ∈ (−1, 1)M for all t ∈ [0, τmax)
and ri,j > 0 for all t ≥ 0. Furthermore, since i ∈ L1,
it is concluded that ψσ

i,0 = x0 − γδ. Differentiating ψσ
i,0

with respect to time, yields ψ̇σ
i,0 = ẋ0, which are bounded

owing to Assumption 2. Also, ri,2 and ṙi,1 are bounded
by construction. Additionally, define Sσ

i,1 = |ξσi,2ri,2|+ δ +
|ẋ0| + |ξσi,1ṙi,1| > 0. Using the aforementioned arguments,
we conclude the existence of positive constants S̄σ

i,1, such
that Sσ

i,1 ≤ S̄σ
i,1 for all t ∈ [0, τmax). Thus, for all t ∈

[0, τmax):

V̇1,σ ≤
∑
i∈L1

ϕσi,1|ϵσi,1|S̄σ
i,1 + ϕσi,1ϵ

σ
i,1ψ

σ
i,1

=
∑
i∈L1

ϕσi,1|ϵσi,1|(S̄σ
i,1 − ki,1|ϵσi,1|), (16)

where we have also employed (8b) and (13b).
Consequently, V̇1,σ < 0 when |ϵσi,1| > S̄σ

i,1/ki,1. Therefore,
|ϵσi,1| ≤ ϵ̄σi,1 , max{|ϵσi,1(0)|, S̄σ

i,1/ki,1} for all t ∈ [0, τmax).
Using the inverse logarithmic function we conclude that

−1 < T−1(−ϵ̄σi,1) ≤ ξσi,1 ≤ T−1(ϵ̄σi,1) < 1 (17)
for all t ∈ [0, τmax). In addition, owing to (8b) and (13b),
ψσ
i,1 are also bounded for all t ∈ [0, τmax). Combining the

latter with (9), it is obtained that for all t ∈ [0, τmax),
−1 < T−1(−ϵ̄min

i,1 ) ≤ ξi,1 ≤ T−1(ϵ̄max
i,1 ) < 1 (18)

Finally, notice that owing to the continuity of hσi,1 in (11),
there exists positive constants h̄σi,1 that satisfy |hσi,1| ≤ h̄σi,1
for all t ∈ [0, τmax). The latter and (8b) lead to |ψ̇σ

i,1| ≤
2ki,1h̄

σ
i,1/(1 − (ξσi,1)

2) for all t ∈ [0, τmax) and so ψ̇σ
i,1 are

bounded.
To continue, let us define the neighborhood synchroniza-
tion error:

ei =

∑
l∈Ni

ail(q(xi,1)− q(xl,1)) + bi(q(xi,1)− q(x0))∑
l∈Ni

ail + bi
(19)

and the neighborhood errors:

eσi =

∑
l∈Ni

ail(xi,1 − xl,1 + 2γδ) + bi(xi,1 − x0 + 2γδ)∑
l∈Ni

ail + bi
,

(20)

It is not difficult to verify that ξσi,1 = eσi /ri,1 and emin
i ≤

ei ≤ emax
i . Further, after performing some straightforward

algebraic manipulations, it yields:

eσi =
(L+B)εi∑
l∈Ni

ail + bi
+ 2γδ (21)

By construction, the maximum value of
∑

l∈Ni
ail + bi is

N + 1 and owing to Assumption 3 the L+B matrix is
nonsingular. Utilizing the aforementioned, we conclude:

|εi(t)| ≤
(N + 1)(|eσi |+ 2δ)

ϑmin(L+B)
, ∀t ∈ [0, τmax) (22)

where ϑmin(∗) denotes the minimum singular value of a
matrix. However, ϑmin(L+B) is a global topology variable
and therefore cannot be employed in distributed control
schemes. To relax this issue, the conservative lower bound
ϑmin(L+B) ≥ N−1

N3+N2−N

N−1
2 , Hong and Pan (1992), that

depends solely on the the number of agents N and not the
graph is utilized. Also, using (17) and the definition of
ri,j , we conclude that |eσi (t)| < ρi,1(t) − δ. Thus, for all
t ∈ [0, τmax):

|εi(t)| < (N + 1)(
N3 +N2 −N

N − 1
)

N−1
2 (ρi,1(t) + δ), (23)

− ρi,1(t) < q(xi,1)(t)− q(x0)(t) = ei < ρi,1(t). (24)
Step j (j = 2, ..,m − 1 and i ∈ L1): Using the positive
definite functions Vj,σ =

∑
i∈L1

(ϵσi,j)
2, employing the

boundness of ψ̇σ
i,j−1 from the previous step, and using the

same line of analysis, we conclude for all t ∈ [0, τmax):
−1 < T−1(−ϵ̄min

i,j ) ≤ ξi,j ≤ T−1(ϵ̄max
i,j ) < 1, (25)

|hσi,j | ≤ h̄σi,j and the boundness of ψ̇σ
i,j .

Step m (j = m and i ∈ L1): Let w be the agent, whose
dynamic model is of order m. For all agents of L1, we
follow the same line of analysis as in the previous steps
using the positive definite function Vm,σ =

∑
i∈L1

(ϵσi,m)2,
with the exception of agent w, which is provided below. In
this direction define:

Vw,m,σ = (ϵσw,m)2. (26)
Differentiating (26) with respect to time and using (10b),
it is obtained:
V̇w,m,σ = ϕσw,mϵ

σ
w,m(fw(xw) + gwuw + gwD(uw) + dw(t)

− ψ̇σ
w,m−1 − ξσw,mṙw,m),∀t ∈ [0, τmax). (27)

Notice that owing to the continuity of f, g, application
of the extreme value theorem guarantees the existence of
positive constants f, g, g such that |f(∗)| ≤ f and 0 <
g ≤ |g(∗)| ≤ g. Additionally, define the functions: Sσ

w,m =

|fw(xw)|+|gwD(uw)|+|dw(t)|+|ψ̇σ
w,m−1|+|ξσw,mṙw,m| > 0.

The use of the above analysis guarantees the existence of
positive constants S̄σ

w,m, such that Sσ
w,m ≤ S̄σ

w,m for all
t ∈ [0, τmax). Therefore, for all t ∈ [0, τmax)

V̇w,m,σ ≤ ϕσw,m|ϵσw,m|S̄σ
w,m + ϕσw,mϵ

σ
w,mgwuw

= ϕσw,m|ϵσw,m|S̄σ
w,m

− ϕσw,mϵ
σ
w,mgwsgn(gw)kw,mϵw,m

= ϕσw,m|ϵσw,m||gw|
( S̄σ

w,m

g
w

− sgn(ϵσw,m)sgn(ϵw,m)kw,m|ϵw,m|
)
. (28)
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Proposition 1. Bikas and Rovithakis (2019b), it holds that
sgn(ϵσi,mi

)sgn(ϵi,mi
) = 1 and |ϵi,mi

| = ci(t)|ϵσi,mi
| where

ci(t) ∈ [ci,+∞] for positive constants ci and for all ϵi,mi /∈
Di, where Di are compact subsets of R. Furthermore, ϵσi,mi

remain bounded if ϵi,mi ∈ Di.

To proceed, we distinguish two cases.
Case (ϵw,m /∈ Dw): Using Proposition 1, V̇w,m,σ becomes

V̇w,m,σ ≤ ϕσw,m|ϵσw,m||gw|
( S̄σ

w,m

g
w

− kw,mcw|ϵσw,m|
)
, (29)

which is negative provided that |ϵσw,m| > S̄σ
w,m/kw,mgwcw.

Thus, |ϵσw,m| ≤ ϵ̄σ1,w,m , max{|ϵσw,m(0)|, S̄σ
w,m/kw,mgwcw}.

Case (ϵw,m ∈ Dw): Since ϵw,m ∈ Dw, there exists constants
ϵ̄σ2,w,m > 0 such that |ϵσw,m| ≤ ϵ̄σ2,w,m.
Combining the two cases, we conclude that V̇w,m,σ < 0 for
|ϵσw,m| ≤ ϵ̄σw,m , max{ϵ̄σ1,w,m, ϵ̄

σ
2,w,m} for all t ∈ [0, τmax).

Hence, as in Step 1, we show that −1 < T−1(−ϵ̄σi,m) ≤
ξσi,m ≤ T−1(ϵ̄σi,m) < 1. Owing to the aforementioned results
and (9), we conclude for all t ∈ [0, τmax):

−1 < T−1(−ϵ̄min
i,m ) ≤ ξi,m ≤ T−1(ϵ̄max

i,m ) < 1. (30)
Step j (j = m + 1, ..,m and i ∈ L1): Using the positive
definite functions Vj,σ =

∑
i∈L1

(ϵσi,j)
2, employing the

boundness of ψ̇σ
i,j−1 from the previous step, and using the

same line of analysis, we conclude for all t ∈ [0, τmax):
−1 < T−1(−ϵ̄min

i,j ) ≤ ξi,j ≤ T−1(ϵ̄max
i,j ) < 1, (31)

|hσi,j | ≤ h̄σi,j and the boundness of ψ̇σ
i,j . Furthermore, owing

to (30), (31) and (5d), we conclude the boundness of ui for
all t ∈ [0, τmax).
Finally, from (18), (25), (30) and (31), we conclude that ξ
evolves strictly within a compact subset of Ωξ. Therefore,
by (Khalil, 2001, Theorem 3.3), we can extend the solution
to τmax = +∞. Consequently, from (7) we conclude the
boundness of xi,j , i ∈ L1, j = 1, ...,mi.

5. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed con-
troller, we consider an heterogeneous multi-agent system
consisted of N = 5 agents and a leader. For simulation
purposes, we assume that the leader dynamics satisfy:

ẍ0 = −cos(t/3) (32)
The dynamics of the agents obey:

ẋi,1 = xi,2
ẋi,2 = 2x2i,2 + g(xi)q(u) + di(t)
yi = xi,1

 i ∈ {1, 3, 4} (33)

and
ẋi,1 = (xi,1 + 3)2 + g(xi)q(u) + di(t)
yi = xi,1

}
i ∈ {2, 5} (34)

where q(u) represents the quintized control input, di(t)
are external disturbances with di(t) = 0.2cos(3t), i ∈
{1, 2, 3, 4, 5} and g(xi) = (1+(xi,1+3)2), i ∈ {1, 2, 3, 4, 5}.
Furthermore, the communication topology is described by
a the following augmented neighboring sets N1 = {0},
N2 = {1}, N3 = {1}, N4 = {3}, N5 = {4}. For control
input quantization, uniform hysteric quantizers (2) are
employed having step-size δu = 1.
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Fig. 2. Evolution of the agents output yi, i ∈ {1, 2, 3, 4, 5}
alongside of leaders output x0
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Fig. 3. Evolution of the output disagreement errors εi, i ∈
{1, 2, 3, 4, 5} along with the prescribed performance
specifications

For the output disagreement errors, a maximum steady
state error of 0.1 and minimum convergence rate e−t are
requested. To a priori satisfy that demand, we utilize (6)
and conclude that state quantization should be performed
by uniform hysteric quantizers having step-size δx =
10−7. In addition, we select ρ∞i,1 = 1.2 10−5 > δx, i ∈
{1, 2, 3, 4, 5}. Furthermore, we set li,1 = 1 and ρ0i,1 =
2|ei(0)|+0.5 for all i ∈ {1, 2, 3, 4, 5}. The rest of the control
elements are chosen as ρi,2(t) = e−0.3t + 3, i ∈ {1, 3, 4},
k1,1 = 1.8, k2,1 = 8, k3,1 = 3, k4,1 = 1.8, k5,1 = 8,
k1,2 = 10, k3,2 = 15, k4,2 = 15.
Simulation results are presented in Figs. 2-5. Specifically,
in Fig. 2 the output of all agents and the leader are
plotted, illustrating the achievement of output consensus.
As clearly presented in Fig. 3, all output disagreement
errors εi converge to a neighborhood of zero of size
significantly less than the predefined value of 0.1 with
a minimum convergence rate e−t. The requested control
effort in its quantized form is plotted in Fig. 4. Fig. 5
presents the bounded evolution of the rest of the system
states, i.e., xi,2, i ∈ {1, 3, 4}

6. CONCLUSION

The problem of achieving consensus with prescribed tran-
sient and steady-state bounds, for high-order, heteroge-
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Fig. 4. The required quantized control inputs q(ui), i ∈
{1, 2, 3, 4, 5}
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Fig. 5. Evolution of states xi,2, i = {1, 3, 4} along with ẋ0

neous, uncertain, multi-agent systems, utilizing a low-
complexity control protocol and quantized signals (state
measurements, control inputs), was not considered in the
past. A solution to fill this gap was proposed in this
work. We used uniform-hysteric quantizers owing to their
simplicity. The low-complexity property of the proposed
solution is attributed to the fact that it is approximation-
free, requiring simple calculations and it is static, thus pre-
venting the expansion of the dynamic order of the closed-
loop. Simulation results clarify and verify the approach.
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