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Abstract: Oscillation is a frequent type of control performance degradation in the process. Multiple 
oscillations may propagate in the coupled control loops, bringing challenges to detection and localization 
of oscillations. In this paper, a time-frequency analysis framework including detection, extraction, and 
localization of oscillations is proposed. The method is based on a new variant of slow feature analysis 
(SFA), termed multi-lag derivatives dynamic slow feature analysis (MDSFA), and a new indicator, 
termed oscillation matched degree (OMD). To detect and reveal the possible oscillation sources, MDSFA 
is proposed to extract features with different rates from the observed data and probe into the time-delay 
effect and multi-lag autocorrelations specific to control loops. To pinpoint the root loops and travel paths 
of oscillations, the OMD indicator is designed via the spectral analysis, which can measure the oscillation 
frequencies and amplitudes. The proposed method is verified to be able to detect and locate oscillations 
automatically and efficiently via the real thermal power process. 

Keywords: Oscillations, slow feature analysis, time-delay effect, one-lag autocorrelation, coupled control 
loops, control performance monitoring, spectral analysis, oscillation propagation. 

 

1. INTRODUCTION 

In modern industries, the routine monitoring of control 
performance has been increasingly recognized as a critical 
way to maintain the process at the predesigned operating 
conditions, safely and efficiently (Zhao et al. 2018). Among 
the multiple aspects of control performance monitoring, 
oscillation analytics has drawn considerable attention due to 
its high incidence and corrupted impacts on plant profitability 
and safety (Dambros et al. 2019). 

The causes of oscillations are not limited to poorly designed 
controllers, non-linearities, and external disturbances (Jelali 
et al. 2009). Multiple oscillations may propagate in the 
coupled loops through the direct connections, energy transfer, 
and flow paths. Detection and isolation of oscillations are 
critical. The relevant research can be summarized into three 
categories: (i) developing time-domain criteria such as 
integral absolute error (IAE) based rules (Hägglund et al. 
1995, Thornhill et al. 1997) and auto-correlation function 
(ACF) approach (Miao et al. 1999), (ii) performing signal 
processing like multivariate empirical mode decomposition 
(MEMD) method (Aftab et al. 2018), GA based factorization 
(El-Ferik et al. 2012), and wavelet transform method 
(Naghoosi et al. 2017), (iii) employing spectral analysis (Xia 
et al. 2005, Jiang et al. 2007, Xu et al. 2016). 

With the development of machine learning (ML) techniques, 
another group of methods has been explored for fault 
detection over the last two decades. However, few ML-based 
methods (Zabiri et al. 2009, Dambros et al. 2019) have been 
published for oscillation analytics. Recently, slow feature 

analysis (SFA) (Berkes et al. 2005) is widely applied to the 
process monitoring (Zhang et al. 2019) with extraction of 
slowly-varying features (SFs) from the time series data 
(Zheng et al. 2019). SFA is appropriate to oscillation 
detection for the following characteristics: (i) As SFA aims at 
minimizing the slowness of features, multiple oscillations can 
be extracted because most oscillations in control loops have 
low frequencies owing to the long settling time of most 
controllers (Gao et al. 2015). (ii) Being able to separate 
signals with different rates (Yu et al. 2018), SFA is helpful to 
separate multiple oscillations with different periods. (iii) 
Another interpretation of SFA is to find a set of mappings, 
such that the outputs have the largest one-lag autocorrelations. 
It in a sense eliminates the disturbances of white noise whose 
one-lag autocorrelation is zero. 

However, the original SFA does not consider the time-delay 
effect which results from the long settling time of controllers 
and the hysteresis of processes. Moreover, as SFA only 
focuses on the one-lag temporal derivative, it does not cover 
other derivatives with different lags which may also reflect 
characteristics of oscillations. In summary, three important 
problems should be addressed: (i) How to detect and extract 
multiple oscillations in the coupled control loops with SFA? 
(ii) How to localize root loops and pinpoint travel paths of 
multiple oscillations? (iii) How to consider the influence of 
the time-delay effect and multi-lag temporal derivatives? 

In this paper, to consider the time-delay effect and cover the 
multi-lag temporal derivatives, the multi-derivative dynamic 
slow feature analysis, termed MDSFA here, is proposed for 
extracting multiple oscillations hidden in the observed data. 
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Besides, as spectral analysis (Nussbaumer 1981) can give 
some power information of oscillations and eliminate the 
disturbance of oscillations with the same frequency but 
different phases, a new index, termed oscillation matched 
degree (OMD) is proposed. It is a useful reference to reveal 
the root loops and travel paths of multiple oscillations. 

The remainder of this paper is organized as follows. First,  
brief methods preliminaries are given in Section 2. In Section 
3, the proposed MDSFA and an automatic analytics scheme 
for oscillations are presented in detail. After that, a case study 
is shown to verify the performance of the proposed method in 
Section 4. Finally, some conclusions are drawn in Section 5. 

2. METHODS PRELIMINARIES 

2.1  SFA 

For the given process data ( ) ( ) ( ) ( )1 2
T, , , Mt t t t=   x x x x , 

the original SFA aims at finding a set of transform functions 
( ) ( ) ( ) ( ){ }1 2g g ,g , ,gM=x x x x , such that the extracted 

features can vary as slowly as possible. The features can be 
obtained by ( ) ( )( )gj jt t=s x , and J SFs are denoted as 

( )( )1,2, ,j t j J=s  , ranked from the slowest to the fastest. 

The above target can be realized by (1), where 
t

⋅  denotes 
the time averaging, calculated as in (2). The one-lag temporal 
derivative of js  is denoted as js , calculated as in (3). 

2min j t
s                                (1) 

( )1

01 0

1 t

j jt t
t dt

t t
=

− ∫s s                          (2) 

( ) ( )
( ) j j

j

t t t
t

t
− − ∆

≈
∆

s s
s                         (3) 

The following three constraints should be kept to normalize 
the features, avoid trivial constant solutions, and force the 
extracted features to be uncorrelated with each other. 

0j t
=s                                    (4) 

2 1j t
=s                                   (5) 

, 0i j t
i j∀ < =s s                            (6) 

For linear SFA, features can be calculated simply as a linear 
combination of columns of the observed data as in (7), where 

[ ]T
1 2, , , Mw w w=W   is the transform matrix. 

=s WX                                         (7) 

The solution of linear SFA can be easily derived by solving 
the generalized eigenvalue problem of the one-lag temporal 
derivative of data. 

2.2  Dynamic SFA 

A simple extension of SFA is dynamic SFA (DSFA), which 
is proposed to consider  the process dynamics (Zheng et al. 
2019). DSFA has been widely used in the field of chemical 
processes with typical dynamics. The basic idea is to include 
previous measurements to construct an augmented matrix X . 
The input matrix with N available samples can be stacked as 
in (8) by augmenting the original data with d lagged samples. 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

T T T

T T T

T T T

1

1 1

1 2 1

t t t d

t t t d

t N t N t N d

 − −
 
 + − +

=  
 
 + − + − + − − 

x x x

x x xX

x x x





   



 (8) 

The solution of DSFA is the same of SFA except for the 
input matrix. 

3. ANALYTICS FRAMEWORK FOR MULTIPLE 
OSCILLATIONS VIA MDSFA 

3.1  The proposed MDSFA 

A new variant of SFA is presented here. First, the motivation 
of MDSFA is discussed. By in-depth analysis of the goal of 
SFA, we can find that the goal of SFA is equivalent to extract 
features that maximize the one-lag autocorrelation, 

( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

22 1

       1 1

                   1 1

       2 2 1

       2 2 (1)

j j jt t

j j j jt t

j j j jt t

j j t

j

t t

t t t t

t t t t

t t

R

= + −

= + + +

− + − +

= − +

= −

s s s

s s s s

s s s s

s s



    (9) 

where the one-lag autocorrelation of js  is defined as (1)jR  

in (10), and [ ](1) 1,1jR ∈ − . Due to the zero mean and unit 
variance of  the SF, the calculation can be further simplified 
as follows. 

( )( ) ( )( )
( )( )

( ) ( )

1

1
2

1

1
(1)

         = 1

N
j j j jt

j N
j jt

j j t

t t
R

t

t t

−

=

=

− + −
=

−

+

∑
∑
s s s s

s s

s s

                (10) 

It can be simply understood that the slower the signal varies 
over time, the closer the value of (1)jR  would be to +1. 

However, one-lag autocorrelation is only a specific case of  
the multi-lag autocorrelations. The multi-lag autocorrelations 
of the output often determine the potential of a controller, 
which is closely related to the control performance (Huang et 
al. 2006). Therefore, autocorrelations over other different 
time lags with more information need to be explored and 
analyzed. Since the original SFA has covered the one-lag 
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autocorrelation, it is natural to consider extending the SFA to 
cover multi-lag autocorrelations. 

Besides, the time-delay effect is a typical characteristic of 
process data from coupled control loops. It means that one 
variable sampled in the current time may be closely related to 
another variable sampled in the previous time. The structure 
of the initial process data does not allow the linear 
combination of measurements in different time instances. 
However, including the measurements of a past time to 
construct an augmented matrix X  is helpful to eliminate the 
influence of the time-delay effect. 

Motivated by the above analysis, MDSFA is proposed to 
consider the time-delay effect and multi-lag autocorrelations 
concurrently. First, the modified optimization function can be 
constructed as in (11),  

2
,

1
min

K

k j t
k =
∑ s                                  (11) 

where the subscript k denotes the lag of temporal derivatives, 
and K is often set to be relatively small. This optimization 
function can be interpreted as to find a map that maximizes 
the sum of autocorrelations of the SFs over different time 
lags. The solutions of MDSFA are summarized here. 

Step 1: Construct the augmented data matrix as in (8). 
Normalize the data to have zero mean and unit variance and 
denote the normalized data as X. 

Step 2: Conduct sphering on the process data to eliminate the 
cross-correlations between variables by applying singular 
value decomposition (SVD) as in (12). Obtain the sphered 
matrix Z by (13). 

T T

t
=XX UAU                               (12) 

1/2 T−=Z A U X                                 (13) 

Step 3: Calculate the k-lag temporal derivative of each vector 
jz  in sphered matrix Z as in (14), assuming the time interval 

is small. Obtain the transform matrix W as in (15) and (16). 

,

( ) ( )
( ) j j

k j

t t k
t

k
− −

≈
z z

z                           (14) 

T T

1

K

k k t
k =

=∑ Z Z P ΩP                             (15) 

1/2 T−=W PA U                                  (16) 

Step 4: Extract features by using (7). 

It should be noted that the matrix P must be an orthogonal 
matrix, whose elements are orthogonal eigenvectors { }

1

M

j j=
p , 

and Ω  is a diagonal matrix with eigenvalues { }
1

M

j j
ω

=
 

arranged in the ascending order. The following relationships 
can be verified. 

T T T

t t
= =ss P zz P I                       (17) 

2 T T
j j j jt t

ω= =s p zz p                      (18) 

3.2  Detecting and extracting oscillations via MDSFA 

Oscillation is a common problem as it harms to the product 
quality and process safety. Since oscillations often reproduce 
wave patterns periodically, leading to large autocorrelations 
over several time lags, oscillations hidden in the data can be 
revealed in the form of SFs. Moreover, oscillations with 
different frequencies can be extracted and ranked from the 
slowest to the fastest by SFA. 

Considering that M control loops are designed in the system, 
M-dimensional measurements of setpoint (SP) and process 
variable (PV) can be collected at time t in (19) and (20). 

[ ]1 2( ) ( ), ( ), , ( )Mt sp t sp t sp t=SP                (19) 

[ ]1 2( ) ( ), ( ), , ( )Mt pv t pv t pv t=PV               (20) 

To remove the influence of varying setpoints, the difference 
between SP and PV is used here to construct the input matrix 
as in (21). 

[ ]1 1 2 2( ) ( ) ( ), ( ) ( ), , ( ) ( )M Mt sp t pv t sp t pv t sp t pv t= − − −x 
(21) 

By using MDSFA, we can obtain the feature matrix, in which 
the first J features are selected as SFs and denoted as 

( )1,2, ,j j J=s  . After that, the ACF of each SF is obtained 
by (22) and depicted in Fig. 1. 

( )( ) ( )( )
( )( )

1
2

1

( ) , 1, 2, ,
N k

j j j jt
j N

j jt

t t k
R k j J

t

−

=

=

− + −
= =

−

∑
∑
s s s s

s s
 (22) 

 

Fig. 1. ACF: Plot of ACF of an oscillatory signal. 

To detect the appearance of oscillations, the curve shown in 
Fig. 1 is used to calculate the oscillation index acfR  by (23), 

=acf
aR
b

                                    (23) 

where a is the distance from the first peak to the straight line 
connecting the first two minima, and b is the distance from 
the first minimum to the straight line connecting the zero-lag 
auto-covariance coefficient and the first peak. If the index is 
greater than the threshold, the SF is oscillatory. Usually, the 
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threshold is set to be 0.5 (Miao et al. 1999). However, it can 
be adjusted depending on the practical process. 

In general, there may be some redundant oscillatory SFs, that 
is, SFs with the same period, because of the time-embedding. 
With the increase of lagged measurements, the occurrence of 
redundancy will increase as more overlapping information is 
covered. However, as more lagged measurements are added, 
the extracted SFs would be more similar to the real 
oscillations, enabling more precise isolation. Hence, the 
determination of d is a trade-off between the redundancy and 
accuracy. However, a large d is recommended here since 
redundant SFs can be removed by using the cyclic cross-
correlation analysis to pick out redundant SFs with the same 
period. After that, the feature with a larger value of acfR  is 
chosen as an oscillation source, while other similar SFs are 
removed. H oscillation sources can be extracted and denoted 
as ( 1, 2, )h h H=y   for further analysis. 

3.3  Localization of oscillations via OMD 

The basic idea of localization of oscillations is that as the 
oscillatory signal travels outward, the energy of the signal 
would decrease gradually due to the attenuation of processes 
without external power. Hence, the root loop often has the 
largest energy at the dominant frequency (Naghoosi et al. 
2014). Based on it, a novel OMD indicator is proposed here. 

To achieve the goal, H oscillation sources are reconstructed 
by the data from each control loop (Gao et al. 2015). The 
reconstructed features of M control loops for hy  can be 
calculated by projecting hy  into the subspace spanned by the 
augmented data of each control loop and denoted as 

( ),ˆ 1, 2, ,h m m M=y  . To avoid the matrix irreversibility, 
least square (Aldrich et al. 1998) based reconstruction is 
recommended and utilized here as in (24). 

( ) 1T T
,ˆ h m m m m m h

−
=y X X X X y                   (24) 

Considering that the spectrogram can reveal the spectral 
information, the spectral analysis is employed to obtain 
frequencies and amplitudes of a signal. The power spectrum 
of an oscillation is characterized by a peak at the dominant 
frequency with much larger power compared to other 
frequencies. Hence the oscillatory frequency of hy , termed 

hf , can be measured by finding the peak in the power 
spectrum. By transforming ,ˆ h my  into the frequency-domain, 
the amplitudes at different frequencies can be collected. To 
quantitatively describe the energy of oscillation in the 
different control loops, the OMD index is designed as in (24).  

( ) ( )

( )
1

,
,

,

h
M

h
m

a f m
OMD h m

a f m
=

=

∑
                         (25) 

In (24), ( ),ha f m  denotes the amplitude at hf  for ,ˆ h my , and 
1,2, ,m M=  . To ascertain the root loop, M scalars can be 

obtained for each oscillation with hf . The criterion is that the 
loop with the largest ( ),OMD h m  is judged as the root cause. 
Besides, the travel path can be found out according to the 
decreasing direction of the OMD index. 

3.4  Framework of analytics for multiple oscillations 

For detection problem, possible oscillations can be detected 
and extracted to constitute the set of oscillation sources based 
on the proposed MDSFA. For the localization problem, the 
time-frequency analysis is employed to reveal the root loops 
and travel paths. The completed procedures of the analytics 
for multiple oscillations are summarized as follows. 

Step 1: Use SP and PV to form the input matrix. Extend the 
matrix with d lagged time-embedding. Normalize the input 
matrix to have zero mean and unit variance to obtain X . 

Step 2: Perform MDSFA on X  to obtain J SFs. Calculate the 
ACF-based index for SFs to detect oscillations. Use cyclic 
cross-correlation analysis to determine H oscillation sources. 

Step 3: Reconstruct each oscillation source in the subspace 
spanned by each variable and its lagged measurements. 

Step 4: Use spectral analysis to determine the oscillatory 
frequencies of H oscillation sources and the amplitudes at the 

hf  of reconstructed features to calculate the OMD indicator. 

Step 5: Locate the root loop of each oscillation source by 
finding the largest value of OMD. Make sure the travel paths 
according to the decreasing direction of the OMD indicator. 

4. CASE STUDY 

A complex industrial process of the thermal power plant is 
adopted to verify the performance of the proposed method. 
The thermal power plants use coal as primary energy and 
heat the steam by the boiler to drive the turbo-generator to 
generate electricity (Hu et al. 2020).  

The data used in this work are collected from one power plant 
of Zhejiang Energy Group. In this case, the fan system is 
chosen as the object, which involves induced draft fan loop 
(loop 1), blower loop (loop 2), and primary fan loop (loop 3). 
Hence, M is set as three. Two oscillations are contained in the 
fan system, one originates from the loop 3 without 
propagation while the other is also generated in the loop 3 
and travels to loop 1. 

A data set with 3000 samples are collected. The deviations of 
SP and PV are used as input variables. By using the MDSFA, 
eight SFs are extracted as in Fig. 2, indicating that SFs 
extracted by MDSFA can reveal two oscillation sources. To 
compare the performance of SFA and MDSFA, three features 
extracted by SFA are also shown in Fig. 3. It can be seen that 
SFs in Fig. 3 are still corrupted by other signals without clear 
periodic patterns. The above comparison implies that the 
time-embedding and multi-lag temporal derivatives are useful 
and important. The further analysis of SFs extracted by SFA 
is omitted for the bad performance in extraction. 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11812



 
 

     

 

0 1000 2000 3000

Time(Second)

-2

0

2

SF
1

0 1000 2000 3000

Time(Second)

-2

0

2

SF
2

0 1000 2000 3000

Time(Second)

-2

0

2

SF
3

0 1000 2000 3000

Time(Second)

-2

0

2

SF
4

0 1000 2000 3000

Time(Second)

-2

0

2

SF
5

0 1000 2000 3000

Time(Second)

-2

0

2

SF
6

0 1000 2000 3000

Time(Second)

-2

0

2

SF
7

0 1000 2000 3000

Time(Second)

-2

0

2

SF
8

 

Fig. 2. Eight SFs: Plot of eight SFs extracted by MDSFA. 
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Fig. 3. Three SFs: Plot of three SFs extracted by SFA. 
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Fig. 4. ACF: Plot of ACFs of eight SFs extracted by MDSFA.  
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Fig. 5. Oscillation index: Plot of oscillation index for eight 
SFs by MDSFA. 

The ACFs of eight SFs are shown in Fig. 4 whereas the 
results of acfR  are shown in Fig. 5. In Fig. 5, three SFs are 
tested to be oscillatory with the threshold of 0.5. Besides, 
SF6 and SF7 are similar to each other via the cyclic cross-
correlation analysis. Since the oscillation index of SF7 is 
larger than that of SF6, SF1 and SF7 are finally chosen as 
oscillation sources for the further analysis. 
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Fig. 6. Reconstruction: Plot of reconstructed features (blue 
line) and oscillation sources (red line). 
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Fig. 7. OMD index: Plot of OMD index for two oscillations. 

After the extraction of two oscillation sources, we aim to 
localize the root loops for isolations. Three reconstructed 
features for each oscillation source are obtained by (24), 
shown in Fig. 6. By transforming these signals into 
frequency-domain, the frequencies and amplitudes can be 
collected, and the OMD index is calculated as in Fig. 7. 

The propagation can be inferred according to the value of 
OMD: As for the first oscillation, the OMD index of loop 3 is 
the largest, reflecting that the oscillation starts from loop 3. 
The OMD index of loop 1 and loop 2 are near to zero, 
indicating that the oscillation does not travel to loop 1 and 
loop 2. For the second oscillation, the OMD index of loop 3 
is the largest, showing that the root cause is loop 3. The 
OMD index of loop 1 is a little bit smaller, and the value of 
loop 2 is almost zero, indicating that the oscillation travels 
from loop 3 to loop 1, while loop 2 is not influenced. The 
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results of two oscillations are consistent with the facts, hence 
the proposed method is verified to be effective and applicable. 

5.  CONCLUSION 

In the present work, a new variant of SFA, termed MDSFA, 
is proposed to consider the time-delay effect and multi-lag 
temporal derivatives when extracting SFs. Besides, the 
MDSFA based automatic analytics framework is developed 
for multiple oscillations in coupled control loops. The 
proposed method can not only detect and extract the 
oscillations, but also pinpoint the root loops and travel paths 
of oscillations using the OMD index based on the feature 
reconstructions and frequency-domain analysis. The 
feasibility and efficacy of the proposed method have been 
evaluated in the real industrial process. 

ACKNOWLEDGEMENT 

This work is supported by NSFC-Zhejiang Joint Fund for the 
Integration of Industrialization and Informatization (No. 
U1709211), and Zhejiang Key Research and Development 
Project (2019C03100). 

REFERENCES 

Nussbaumer, H.J. (1981). Fast Fourier transform and 
convolution algorithms. Springer, Berlin. 

Hägglund, T. (1995). A control-loop performance monitor. 
Control Engineering Practice, 3(11): 1543-1551. 

Thornhill, N.F. and Hägglund, T. (1997). Detection and 
diagnosis of oscillation in control loops. Control 
Engineering Practice, 5(10): 1343-1354. 

Miao, T. and Seborg, D.E. (1999). Automatic detection of 
excessively oscillatory feedback control loops. IEEE 
International Conference on Control Applications. 359–
364. 

Berkes, P. and Wiskott, L. (2005). Slow feature analysis 
yields a rich repertoire of complex cell properties. 
Journal of Vision, 5(6): 579-602. 

McNabb, C.A. and Qin, S.J. (2005). Fault diagnosis in the 
feedback-invariant subspace of closed-loop systems. 
Industrial & Engineering Chemistry Research, 44(8): 
2359-2368. 

Xia, C., Howell, J. and Thornhill, N.F. (2005). Detecting and 
isolating multiple plant-wide oscillations via spectral 
independent component analysis. Automatica, 41(12): 
2067-2075. 

Huang, B., Ding, S.X. and Thornhill, N. (2006). Alternative 
solutions to multi-variate control performance 
assessment problems. Journal of Process Control, 16(5): 
457-471. 

Jiang, H., Shoukat Choudhury, M.A.A. and Shah, S.L. (2007). 
Detection and diagnosis of plant-wide oscillations from 
industrial data using the spectral envelope method. 
Journal of Process Control, 17(2): 143-155. 

Jelali, M. and Huang, B. (2009). Detection and diagnosis of 
stiction in control loops: State of the art and advanced 
methods. Springer, London. 

Zabiri, H., Maulud, A. and Omar, N. (2009). NN-based 
algorithm for control valve stiction quantification. 

WSEAS Transactions on Systems and Control, 4(2): 88-
97. 

El-Ferik, S., Shareef, M.N. and Ettaleb, L. (2012). Detection 
and diagnosis of plant-wide oscillations using GA based 
factorization. Journal of Process Control, 22(1): 321-329. 

Naghoosi, E., Huang, B. (2014). Automatic detection and 
frequency estimation of oscillatory variables in the 
presence of multiple oscillations. Industrial and 
Engineering Chemistry Research, 53(22): 9427–9438. 

Xu, S., Baldea, M., Edgar, T.F., Wojsznis, W., Blevins, T. 
and Nixon, M. (2016). Root cause diagnosis of plant-
wide oscillations based on information transfer in the 
frequency domain. Industrial & Engineering Chemistry 
Research, 55(6): 1623-1629. 

Naghoosi, E. and Huang, B. (2017). Wavelet transform based 
methodology for detection and characterization of 
multiple oscillations in nonstationary variables. 
Industrial & Engineering Chemistry Research, 56(8): 
2083-2093. 

Aftab, M.F., Hovd, M. and Sivalingam, S. (2018). Plant-wide 
oscillation detection using multivariate empirical mode 
decomposition. Computers and Chemical Engineering, 
117: 320-330. 

Yu, W.K. and Zhao, C.H. (2018). Recursive exponential slow 
feature analysis for fine-scale adaptive processes 
monitoring with comprehensive operation status 
identification. IEEE Transactions on Industrial 
Informatics, 15(6): 3311-3323. 

Zhao, C.H. and Huang B. (2018). A full condition monitoring 
method for nonstationary dynamic chemical processes 
with cointegration and slow feature analysis. AIChE 
Journal, 64(5): 1662-1681. 

Dambros, J.W.V., Farenzena, M. and Trierweiler, J.O. (2019). 
Oscillation detection and diagnosis in process industries 
by pattern recognition technique. IFAC PapersOnLine, 
52(1): 299-304. 

Dambros, J.W.V., Trierweiler, J.O. and Farenzena, M. (2019). 
Oscillation detection in process industries-Part I: Review 
of the detection methods. Journal of Process Control, 78: 
108-123. 

Dambros, J., Trierweiler, J., Farenzena, M. and Kloft, M. 
(2019). Oscillation detection in process industries by a 
machine learning-based approach. Industrial & 
Engineering Chemistry Research, 58(31): 14180-14192. 

Zhang, S.M. and Zhao, C.H. (2019). Slow-feature-analysis-
based batch process monitoring with comprehensive 
interpretation of operation condition deviation and 
dynamic anomaly. IEEE Transactions on Industrial 
Electronics, 66(5): 3773-3783. 

Zheng, J.L. and Zhao, C.H. (2019). Online monitoring of 
performance variations and process dynamic anomalies 
with performance-relevant full decomposition of slow 
feature analysis. Journal of Process Control, 80: 89-102. 

Hu, Y.Y. and Zhao, C.H. (2020). Fault Diagnosis with Dual 
Cointegration Analysis of Common and Specific 
Nonstationary Fault Variations. IEEE Transactions on 
Automation Science and Engineering, 17(1): 237–247. 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11814


