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Abstract: In this paper, an approach for the tracking control problem for discrete event systems modeled
by timed Petri nets (TPN) is proposed. The approach applies the Monte-Carlo Tree Search to the tracking
control problem for TPN to find a firing sequence from an initial marking to the desired destination
marking that minimizes the required duration. The proposed tracking control method randomly searches a
small part of the reachability graph and incrementally constructs a search tree to find the optimal solution.
This reduces the computational effort and allows the approach to solve the tracking control problem for
larger systems. The approach has capabilities for deadlock avoidance and can be applied to a wide range
of control problems like reachability analysis, fault-tolerant control and scheduling problems.
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1. INTRODUCTION

Discrete event systems (DES) are a suitable tool to model
and control modern manufacturing systems and transportation
systems (Cassandras and Lafortune (2008)). For larger systems
with concurrent operations, DES described by Petri nets (PN)
are often applied. The focus in this paper is on DES described
by timed Petri nets (TPN) and the control problem of finding
the time optimal firing sequence that reaches the desired state.
The inclusion of temporal specification introduces additional
complexity into the tracking control problem since not only the
sequence of the transitions but also their firing times have to be
decided. This problem is called tracking control problem and
has applications like reachability analysis (Lefebvre (2018)) and
scheduling (Lee and DiCesare (1994); Fritz et al. (2019)).

A method to determine optimal firing sequences for TPN based
on integer linear programming (ILP) problem is presented in
Mbaye et al. (2018). Lee and DiCesare (1994) apply the A*
algorithm to the scheduling problem for TPN. This approach
is further developed in Jeng and Chen (1998) with a heuristic
function based on the state equation, in Zhang et al. (2005) with
dynamic programming, in Pan et al. (2013) with a temporal
analysis and Wang and Wang (2012) use a dynamic search
window with best-first algorithm. Branch and Bound search is
used by Jung et al. (2013) for scheduling in TPN. A Beam search
based approach has been proposed by Cherif et al. (2019). Xing
et al. (2012) apply a genetic algorithm and Lei et al. (2014)
use a heuristic function based on firing count vectors to find an
appropriate timed firing sequence. Lefebvre (2018) proposed an
approach based on model predictive control.

A core part of the approach proposed in this paper for the
tracking control of TPN is a Monte-Carlo method called Monte-
Carlo Tree Search (MCTS). It combines tree search methods
with random sampling of the search space (Browne et al. (2012)).
In each iteration of the MCTS, a search tree is incrementally
built, where the nodes are evaluated based on simulations.
Google Deepmind’s AlphaGo demonstrated that MCTS can
solve problems with large search spaces (Silver et al. (2016)).

The first idea of applying MCTS to tracking control for untimed
PN has been proposed in Fritz et al. (2019). In this paper, the
approach is further developed to handle timed Petri nets and find
an optimal or near-optimal timed firing sequence. It is shown
how the MCTS is adapted to handle the timing components of
TPN. The resulting MCTS based approach efficiently solves
the tracking control problem for TPN while avoiding deadlocks.
The main challenge is to find an appropriate cost function to
evaluate a marking during the search. A new method to evaluate
the cost for a marking is proposed. The method is based on
the combination of the evaluation functions used in Fritz et al.
(2019) which results in a more accurate cost estimation and a
faster convergence to the destination marking.

2. PRELIMINARIES
2.1 Petri net
This section provides the necessary definitions based on David
and Alla (1992) that will be used later. A Petri net can be
represented by the four-tuple PN = (P,T,N+,N−), with a set
of m places P = {p1, p2, . . . , pm} and a set of n transitions
T = {t1, t2, . . . , tn}. The post-incidence matrix N+ (pre-incidence
matrix N−) specifies the arcs and their weights from transitions
to places (from places to transitions). N = N+ − N− is the
incidence matrix. M ∈ Nm

0 is a marking and (PN,M0) is a PN
with initial marking M0. Transition t j is represented by the
n-dimensional firing vector q(k) = (q1(k) q2(k) · · · qn(k))

T ,
whose j-th entry q j(k) is 1, while all other entries are 0. The new
marking M(k+1), resulting from firing t ∈ T at time instant k is
determined by the PN state equation M(k+1) = M(k)+Nq(k).
A transition t ∈ T is enabled at marking M(k), only if

N−q(k)≤M(k) (1)
is fulfilled. The set of enabled transitions Te contains all
t ∈ T that fulfill (1) for a specific M(k). Assume that σ =
tq(0)tq(1) . . . tq(k−1) is a firing sequence of transitions with the
length |σ |= k. The firing count vector q corresponding to the
firing sequence σ is the sum of all firing vectors q(i), i =
0,1, . . . ,k−1, thus q = ∑

k−1
i=0 q(i). Activating the firing sequence

σ under the initial marking M0 leads to the M(k), described by
M(k) = M0 +Nq.
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A timed Petri net is defined as T PN = (PN,M0,D) where D is a
vector containing the firing durations di of the transitions ti ∈ T .
A transition ti can fire at the earliest di time units (TU) after it is
enabled (see (1)). A timed firing sequence is denoted as

στ = (tq(0),τ0) (tq(1),τ1) . . . (tq(k−1),τk−1) (2)
where τ0, . . . ,τk−1 denote the firing times of the transitions. The
duration of the στ is d(στ) = τk−1 and the length is |στ | = k.
Activating the timed firing sequence στ under the initial marking
M0 leads to marking M(k), i.e.
(στ ,M0)=M0[(tq(0),τ0)〉M(1) · · ·M(k−1)[(tq(k−1),τk−1)〉M(k)

(3)
or in short M0[στ〉Mk.

2.2 Monte-Carlo Tree Search

The Monte-Carlo Tree Search method combines tree search
with random sampling of the search space. The method builds
incrementally a tree and in each iteration the four basic steps of
MCTS are executed (Browne et al. (2012)): 1) Starting from the
root node, a leaf node is selected, 2) child nodes are added to the
selected leaf node in the expansion, 3) simulations are carried out
from the child nodes and the result of the simulation is evaluated,
4) the evaluation results from the simulations are backpropagated
through the tree and the visited nodes are updated. The procedure
is shown in Fig.1. These four steps are repeated until a stopping
criterion is fulfilled.

2.3 Problem formulation

The problem discussed in this paper is the tracking of a
destination marking Mdes in a TPN by finding an appro-
priate timed firing sequence, i.e. M0[στ〉Mdes with στ =
(tq(0),τ0) (tq(1),τ1) . . . (tq(k),τk). The timed trajectory (στ ,M0)
should have minimal duration, i.e. no other timed firing sequence
σ
′
τ exists that reaches the destination marking Mdes and has a

duration d(σ
′
τ)< d(στ).

3. MONTE-CARLO TREE SEARCH FOR TIMED PN

This section demonstrates how the basic concept of the four
MCTS steps can be applied to the tracking control problem for
TPN. The tracking control approach of Fritz et al. (2019) can
only handle untimed PN, therefore the different MCTS steps
have to be adapted to fit the new control goal of finding the timed
firing sequence στ with the minimal duration.
The following notations are used. The root node of a tree is
v0, vparent is a parent node with the set of child nodes Vchild .
A single child node is denoted as vchild . A leaf node is node
without any child nodes and is denoted as vl . All the nodes are
collected in the search tree denoted by Tree. Each node

v = {M(v),q(v),q(v),vparent(v),τ(v),cost(v)} (4)
in the tree contains the corresponding marking denoted by M(v),
the firing vector q(v) corresponding to the transition that has
fired from the previous node to the current node, the firing count
vector q(v) containing the transitions fired from the root node to
the current node and the parent node vparent(v) of node v. The
accurate duration of the firing sequence from the root node to
the current node is denoted by τ(v) which is also the firing time
of the transition corresponding to q(v). The cost cost(v) denotes
the duration estimation for the whole timed firing sequence, i.e.
the sum of the accurate cost τ(v) and the estimated cost from
M(v) to the destination marking Mdes.
Finding an appropriate method to calculate cost(v) is the main
challenge. cost(v) is used in the selection process and guides

Selection Expansion Simulation Backpropagation

Fig. 1. Monte-Carlo Tree Search

the search. A good calculation method for cost(v) leads to a
fast convergence to the destination marking and a time optimal
firing sequence. Since cost(v) is an estimation of the total
firing sequence duration from M0 to Mdes, the determination of
cost(v) is executed in multiple steps in the MCTS. This requires
significant changes in the expansion step, the simulation step
and the evaluation function to handle the timed tracking control
problem compared to the untimed approach in Fritz et al. (2019).
3.1 Selection
In each iteration of the MCTS, the selection starts in the root
node and selects the node used for the expansion step. From the
root node v0, the tree is traversed until a leaf node vl is reached.
The selection strategy used in this paper selects for each node,
starting from the root node v0, the child node vchild with the
lowest cost cost(vchild) until a leaf node vl is reached.
3.2 Expansion
During the expansion steps, the search tree is expanded by
finding the direct successor nodes, i.e. child nodes, of the
selected leaf node and adding them to the search tree. The child
nodes of the selected leaf node vl can be determined based on
the enabled transitions. Different from the MCTS for untimed
PN in Fritz et al. (2019), the parallel firing of multiple transitions
should be considered, since the goal is to find the time optimal
firing sequence. This requires the calculation of the earliest
possible firing times of the transitions fired during the expansion.

Suppose that after extracting the tokens from a marking M re-
quired for firing a transition t ∈ T , another transition t ′ ∈ T is still
enabled, i.e. N−qt ′ ≤M− with the reduced predecessor marking
M− = M−N−qt and q′t as the firing vector corresponding to
t ′. Therefore, the firing of t ′ can already commence before t
finishes firing, reducing the total time required for firing both
transitions. To find the earliest possible firing time of t ′, we
adopt the assumption from Lefebvre (2018) that the untimed
firing sequence σ and the timed firing sequence στ have the
same order of transitions. Thus the firing time τt ′ of t ′ cannot be
earlier than the firing time τt of t. To get the correct firing time
of t ′, not only direct reduced predecessor marking M− has to be
considered, but all reduced predecessor markings for which t ′ is
still enabled. Additionally the firing time has to fulfill τt ′ ≥ τt .
Otherwise, firing order in στ would change.

The procedure of the expansion step is shown in Algorithm 1.
In line 3, the set of enabled transitions Tr for the leaf node
marking M(vl) is determined. The while loop (lines 4-18) is
executed until all t ∈ Tr are fired and their correct firing time
is determined. Lines 5-7 determines the information of the next
predecessor node, by first determining the firing time τ+, firing
count vector q− associated with the transitions fired from the
current predecessor node to vl and next predecessor node v−.
Based on this information, the reduced predecessor marking M−
and the enabled transitions Te at M− can be determined. For
the remaining transitions in Tr that that are not enabled at M−,
a child node vchild is added to the tree (lines 8-12), where qt is
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Algorithm 1: Expansion of a leaf node vl

1 Input: PN, vl , Tree
2 Init: v− = vl ,q− = 0
3 Determine enabled transition set Tr of M(vl) with (1)
4 while Tr 6= /0 do
5 τ+ = τ(v−), q− = q−+q(v−), v− = vparent(v−)
6 M− = max{M(v−)−N−q−,0}
7 Determine enabled transition set Te of M− with (1)
8 for t ∈Tr \Te do
9 Add a child node vchild to vl and Vchild

10 q(vchild) = qt , q(vchild) = q(vl)+qt ,
vparent(vchild) = vl , M(vchild) = M(vl)+Nqt

11 τ(vchild) = max{τ(vl),τ
++dt}

12 Tr = Tr \ t
13 for t ∈Tr do
14 if τ(v−)+dt < τ(vl) ∨ v− = v0 then
15 Add a child node vchild to vl and Vchild
16 q(vchild) = qt , q(vchild) = q(vl +qt ,

vparent(vchild)=vl , M(vchild)=M(vl)+Nqt
17 τ(vchild) = max{τ(vl), dt}
18 Tr = Tr \ t

19 Output: Vchild , Tree

the firing vector of transition t and the parent node is set to vl .
The corresponding firing time τ(vchild) is calculated in line 11
and the transition is removed from from Tr. For the remaining
transitions in Tr (transitions that are still enabled at M−), it is
checked whether an earlier firing time would change the order
of transitions in the timed firing sequence στ or the root node is
reached (line 14). If that is the case, the node corresponding to
the transitions is added, the firing time is set to the firing time
of τ(vl) or dt in case the root node is reached and t is removed
from Tr. This is repeated until all transitions fire, either because
they are not enabled in the predecessor state, the firing order of
transitions in στ or the root node is reached.

3.3 Simulation

The neighborhood of the child nodes vchild ∈Vchild are examined
by randomly firing transitions. This results in a random explo-
ration of part of the reachability graph. For each vchild ∈ Vchild ,
a number of simulations denoted by sim are carried out. The
simulation have a predetermined depth depth, denoting the
number of transitions that should fire in sequence. In Algorithm
2, the execution of a single simulation for a vchild is shown.
The for-loop (line 4-22) executes the simulation until depth
transitions have fired. At first, the set of enabled transitions
Te for the M(vsim,i−1) are determined. If Te is empty, it is
checked whether M(vsim,i−1) is the destination marking Mdes or
a deadlock and the corresponding variable is set to one (lines 6-
9). If Te is not empty, a transition is randomly selected from Te
(qt is the firing vector of t) and a corresponding simulation node
is generated (lines 10-12). Lines 13-21 contain the determination
of the earliest firing time of the fired transition. The approach is
similar to Algorithm 1. The result is the final simulation node
vsim, the variables convergesim and deadlock.

3.4 Evaluation

An important part of the MCTS is the selection of the evaluation
function. The goal of the tracking control approach in this
paper is to find the timed firing sequence with the minimum
duration that forces the TPN from the initial marking to
the destination marking. In Fritz et al. (2019), two different

Algorithm 2: Simulation
1 Input: PN, vchild , Tree, depth
2 Init: v− = vchild , q− = 0, vsim,0 = vchild ,
3 convergesim = 0, deadlock = 0
4 for i = 1 to depth do
5 Determine enabled transition set Te of marking

M(vsim,i−1) with (1)
6 if Te = /0 then
7 if M(vsim,i−1) = Mdes then convergesim = 1
8 else deadlock = 1
9 break

10 Randomly select a t ∈Te
11 Add simulation node vsim,i
12 q(vsim,i) = qt , q(vsim,i) = q(vsim,i−1)+qt ,

vparent(vsim,i)=vsim,i−1, M(vsim,i)=M(vsim,i−1)+Nqt
13 while True do
14 τ+ = τ(v−), q− = q−+q(v−), v− = vparent(v−)
15 M− = max{M(v−)−N− q−,0}
16 if N−qt > M− then
17 τ(vsim,i) = max{τ(vsim,i−1),τ

++dt}
18 break
19 else if τ(v−)+dt < τ(vsim,i−1)∨ v− = v0 then
20 τ(vsim,i) = max{τ(vsim,i−1), dt}
21 break
22 v− = vsim,i
23 vsim = vsim,depth
24 Output: vsim, convergesim, deadlock

evaluation functions are proposed for the tracking control of
untimed PN. These approaches are adapted to handle TPN.
Furthermore a combination of the two approaches is proposed
to exploit their advantages and reduce the disadvantages. The
idea for both approaches is to estimate the weighted number of
required transitions from M(vsim) to Mdes with the weights as
the firing durations di in vector D.

ILP-based approach: The first approach is based on an inte-
ger linear programming (ILP) problem to determine solution
candidates of the firing count vector. The firing count vector is
weighted by the firing durations resulting in the following ILP:

τ(M,Mdes) = min
q(M,Mdes)

Dq(M,Mdes)

subject to Nq(M,Mdes) = Mdes−M (5)
q j(M,Mdes) ∈ N0, j = 1, . . . ,n

We denote with q∗(M,Mdes) the optimal firing count vector
found by (5). τ(M,Mdes) is the estimation of the duration of
the firing sequence from M to Mdes. It is important to note
that τ(M,Mdes) is an upper bound of the duration of the firing
sequence represented by q∗(M,Mdes), since Dq(M,Mdes) in (5)
is the sum of the firing durations which does not consider the
parallel firing of transitions.
Difference-based approach: The idea is to executed (5) once
at the beginning of the MCTS to get q∗(M0,Mdes). Afterwards
the evaluation of a marking M is done based on the weighted
absolute difference between firing count vector q(M0,M) of the
firing sequence connecting M0 to M and q∗(M0,Mdes), i.e.

τ(M,Mdes) = D|q∗(M0,Mdes)−q(M0,M)| (6)
The main advantage of (6) is the lower computational effort re-
quired for the evaluation. The ILP-based evaluation with (5) give
a more accurate estimation of the still required duration, since
it updates the duration based on the current marking M. Due
to the execution of (5) for each simulation, the computational
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burden is much higher. Since the evaluation is required for every
simulation, a faster evaluation method is preferred.
Combination approach: In the following, an approach to
combine those two evaluation methods is proposed. It can be
easily determined if the firing count vector of a firing sequence
matches the firing count vector q∗(M0,Mdes) calculated for
evaluation (6). If an element of q∗(M0,Mdes)− q(M0,M) is
negative, the firing count vector q(M0,M) represents a different
firing sequence than q∗(M0,Mdes). The basic idea is to execute
the ILP-based evaluation (5) in these cases, resulting in a more
accurate estimation of the duration τ(M,Mdes). By adding the
firing count vector found by the ILP-based evaluation (i.e.
q∗(M,Mdes)) to the firing count vector from M0 to M (i.e.
q(M0,M)), a new firing count vector q from M0 to Mdes that
goes through M can be generated. This vector is then added to
the set of possible firing count vectors Qdes. For the evaluation of
the next marking, evaluation (6) is executed for every q ∈ Qdes
and the shortest duration is used for the estimation.

Deadlock avoidance: To incorporate deadlock avoidance
capabilities into the proposed tracking control method, the
penalty approach from Fritz et al. (2019) is used. If Te is empty
during the execution of Algorithm 2, the current marking is a
deadlock. The evaluation is modified into τ(M,Mdes) = ρdl with
ρdl as the penalty cost of a deadlock. Since ρdl influences the
evaluation of vchild and through the backpropagation all nodes
upstream, ρdl should be selected to balance deadlock avoidance
and exploration.
Evaluation of a simulation: The evaluation procedure for a
single simulation combining the new evaluation method with the
deadlock penalty is shown in Algorithm 3. At the beginning, it is
checked whether the simulation converges to the destination
marking or a deadlock has occurred (lines 2-3). In case of
convergence, the remaining duration is set to zero. For deadlocks,
the estimated duration is set to the penalty cost ρdl . If neither
a deadlock occurs nor the destination marking is reached, the
simulation marking Msim = M(vsim) is evaluated based on the
approach combining (5) and (6) (lines 5-16). In lines 5-10, it
is checked whether q(vsim) matches a firing count vector in
Qdes. If this is the case, the smallest duration estimation is
determined by comparing q(vsim) with every firing count vector
in Qdes. If q(vsim) does not match any firing count vector in
Qdes, the estimation is done with ILP-based evaluation (5) (lines
11-16). If no solution is found, penalty cost are assigned. In
case a solution is found, the resulting firing count vector is
combined with the firing count vector from M0 to Msim and a
new firing count vector q is added to Qdes. The estimation of the
duration of the complete firing sequence cost(vsim) is done by
adding the accurate duration τ(vsim) of already fired transitions
to the duration estimation τ(Msim,Mdes) of the remaining firing
sequence (line 17).

3.5 Backpropagation

The final step of a MCTS iteration is backpropagating the
information gained by the simulation upstream. At first, the
cost of the child nodes vchild ∈ Vchild are updated. Two different
approaches for the calculation of the cost of a child node vchild
are considered in this paper.
(1) Mean cost of all simulations, i.e.

cost(vchild) =
∑

sim
i=1 costi(vsim)

sim
(7)

(2) Minimal cost of all simulations, i.e.

Algorithm 3: Evaluation
1 Input: PN,D,vsim,Qdes,convergesim, deadlock
2 if convergesim = 1 then τ(Msim,Mdes) = 0
3 else if deadlock = 1 then τ(Msim,Mdes) = ρdl
4 else
5 τ(Msim,Mdes) = ∞

6 for j = 1 to |Qdes| do
7 if Qdes( j)−q(vsim)> 0 then
8 τ = D(Qdes( j)−q(vsim))
9 if τ < τ(Msim,Mdes) then

10 τ(Msim,Mdes) = τ

11 if τ(Msim,Mdes) = ∞ then
12 Calc. τ(Msim,Mdes) and q∗(Msim,Mdes) with (5)
13 if no solution for (5) then τ(Msim,Mdes) = ρdl
14 else
15 q = q∗(Msim,Mdes)+q(vsim)
16 Qdes = Qdes∪q
17 cost(vsim) = τ(vsim)+ τ(Msim,Mdes)
18 Output: cost(vsim)

cost(vchild) = min
i=1,...,sim

(costi(vsim)) (8)

costi(vsim) denotes the cost of the i-th simulation calculated by
Algorithm 3.
Finally, starting from the leaf node, the new cost is backpropa-
gated through the tree until the root node is reached. Similar to
the child node cost, two approaches are considered here.
(1) Cost of parent node as the mean cost of child nodes

cost(vparent) =
∑vchild∈Vchild

cost(vchild)

|Vchild |
(9)

(2) Cost of parent node as the minimal cost of child nodes
cost(vparent) = min

vchild∈Vchild
cost(vchild) (10)

The backpropagation traverses the tree from leaf node vl to v0
and updates cost(v) of each visited node with either (9) or (10).

4. TIMED TRACKING CONTROL WITH MCTS
The MCTS steps developed in Section 3 can be combined to
get the tracking control algorithm as shown in Algorithm 4. The
stopping criteria is that the algorithm converges to the destination
marking Mdes or that a pre-specified time limit ∆max is exceeded.
At the beginning converge is set to 0, the root node of the tree is
added and Qdes is initialized with q∗(M0,Mdes). In each MCTS
iteration, the MCTS steps are executed. After the execution of
the expansion step, it is checked if a marking in the set of child
nodes is the destination marking (line 7). If this condition is
fulfilled, the MCTS is stopped and the timed firing sequence
στ that forces the initial marking M0 to the destination marking
Mdes is determined in line 18. By traversing the search tree from
node vdes to the root node v0, the transitions and corresponding
firing times can be taken from the visited nodes. If the MCTS
algorithm did not converge in the current iteration, the simulation
and backpropagation steps are executed (lines 10-16). In case
that the pre-specified time limit ∆max is reached before the
algorithm converges, the search is terminated and the tracking is
not successful.
The computational effort of Algorithm 4 scales linearly with
the simulation parameters sim and depth. These parameters
also influence the convergence rate of the algorithm. If a finite
time limit ∆max is pre-specified, Algorithm 4 may stop before it
converges to the destination marking Mdes, due to the random
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Algorithm 4: Monte-Carlo Tree Search
1 Input: PN, M0, Mdes, depth, sim, ∆max
2 Init: create root node v0 with marking M0, converge = 0
3 Calculate q∗(M0,Mdes) with (5), Qdes = q∗(M0,Mdes)
4 while (converge = 0) ∧ (∆ < ∆max) do
5 Execute Selection starting from v0 resulting in leaf

node vl (Section 3.1)
6 Execute Expansion with Algorithm 1
7 if Mdes ∈ {M(vchild)|vchild ∈ Vchild} then
8 converge = 1, vdes={v ∈ Vchild |M(vchild)=Mdes)}
9 else

10 for vchild ∈ Vchild do
11 for i = 1 to sim do
12 Execute Simulation with Algorithm 2
13 Execute Evaluation with Algorithm 3
14 Calculate cost(vchild) with (7) or (8)
15 Delete simulation nodes from Tree
16 Execute Backpropagation starting from vl

(Section 3.5).
17 if converge = 1 then
18 Determine timed firing sequence στ from v0 to vdes
19 Output: στ

20 else Output: Tracking not successful

exploration of the reachability graph in the simulation step.
Algorithm 4 cannot guarantee to find the timed firing sequence
with the minimal duration, since the random exploration of
the reachability graph may lead to suboptimal selection of the
transitions. The globally optimal solution can often not be found
for larger systems in finite time, therefore a fast convergence to
a near optimal solution as provided by the proposed method is
often preferred.

5. EXAMPLE
In order to illustrate the timed tracking control approach based
on MCTS, a manufacturing system with two types of products
is considered. The corresponding PN model is shown in Fig.
2. The system is a slightly modified model of the system
used in Lefebvre (2018) (places p20 and p21 and transitions
t15 and t16 are added to the model to separate input and
output storage). The firing duration vector for the transitions
is D = [1 1 2 1 2 1 1 1 3 3 3 3 3 3 1 1]T .
The goal is to find a time optimal firing sequence that allows
the production of the two product types. The production of the
products is finished when the tokens from the initial places p1
and p8 are transported to the destination places p20 and p21.
The proposed timed tracking control algorithm is tested with
the initial marking as shown in Fig. 2 and different destination
marking Mdes. The destination markings Mdes in Tables 1-4
indicate how many tokens from p1 and p8 are transported to
p20 and p21. For example [1 1] indicates that one token is
transported from p1 to p20 and one from p8 to p21.

The MCTS based timed tracking control approach is tested
by selecting different parameters. The penalty cost is set to
ρdl = Dq∗(M0,Mdes) (firing vector q∗(M0,Mdes) is calculated
with (5)). The algorithm is implemented on a PC with 3.4 GHz
CPU and 8 GB RAM. The test results are compared based on
four performance indices: 1) The Success rate in in % that shows
the number of times the algorithm converges to Mdes, 2) the
mean computation time to solve the tracking control problem,
3) the number of times the algorithm has found the time optimal
firing sequence in %. Since the globally optimal solution can
often not be found in finite time, the best result found with all
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Fig. 2. Petri net model of a manufacturing system

Table 1. Comparison of backpropagation strategies

M
de

s

Success in %/
Mean time in (s)

Opt. sequence found in %/
Mean error in TU

Mean (7) &
Mean (9)

Min (8) &
Min (10)

Mean (7) &
Mean (9)

Min (8) &
Min (10)

[1 1] 100/0.9 100/0.13 83/0.17 48/0.7
[2 2] 0/x 100/5.52 0/∞ 66/0.56

Table 2. Comparison of evaluation methods

M
de

s

Success in %/
Mean time in (s)

Opt. sequence found in %/
Mean error in TU

ILP (5) Diff. (6) Algo. 3 ILP (5) Diff. (6) Algo. 3

[1 1] 100 /6.41 100/0.04 100/0.1 70/0.3 40/0.6 48/0.7
[2 2] 100/19.1 100/0.04 100/5.5 29/0.7 0/3.5 22/0.5
[3 3] 85/43.7 100/0.09 100/6.2 6/0.5 0/6.2 2/0.6

algorithms is regarded as the time optimal firing sequence. And
4) the mean error from the duration of the time optimal firing
sequence in time units. Each test is repeated 100 times and the
mean computation times and mean error of the durations only
include the successful runs. The time limit ∆max is set to 120s.

5.1 Selection of optimal parameters for the MCTS

At first, we compare the influence of the different backpropaga-
tion strategies proposed in Section 3.5, i.e. selection of child cost
and parent cost calculation method. For both, either the mean
cost ((7) and (9)) or the minimal cost ((8) and (10)) are used
for the calculation. Due to space limitation only the results of
two combinations are shown in Table 1. The MCTS parameter
are depth = 1, sim = 4. Using the minimal child cost and the
minimal parent cost leads to a faster convergence to Mdes. The
main reason is that the mean values lead to a lower gradient in
the cost function and thus a slower convergence.
Next, the influence of the three different evaluation methods
presented in Section 3.4 is compared. It can be seen in Table 2
that the evaluation based on (6) results in the fastest convergence,
but also introduces the highest mean error. The results from
applying the ILP (5) and the proposed evaluation method in
Algorithm 3 results in comparable durations for the firing
sequence, but the mean computation time using Algorithm 3
is much shorter. The proposed algorithm combines the low
computational effort of (6) with the accuracy of (5).
Based on the results in Tables 1 and 2, the best parameter
combination for the MCTS is evaluation of the simulation results
with Algorithm 3, child cost and parent cost estimation as the
minimal cost, i.e. (8) and (10).
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Table 3. Success rate/ solution time of approaches

M
de

s

|στ |

Success in %/ Mean time in (s)
MCTS

depth=2
sim=4

MCTS
depth=7
sim=14

DFS BFS
MPC
H=2
Hτ=5

MPC
H=4

Hτ=10

[1 1] 12 100/3.1 100/2.1 100/47.2 100/0.3 100/0.6 100/8.7
[2 2] 24 100/3.6 100/0.9 0/x 100/1 100/1.6 100/34.7
[5 5] 60 100/1.5 100/1.9 0/x 100/6.2 100/6.2 0/x
[10 10] 120 100/3.4 100/4.2 0/x 100/25.8 100/20.4 0/x
[15 15] 180 100/4.8 100/7 0/x 100/62.4 100/46.2 0/x

Table 4. Performance comparison of approaches

M
de

s

Opt. sequence found in %/ Mean error in TU
MCTS

depth=2
sim=4

MCTS
depth=7
sim=14

DFS BFS
MPC
H=2
Hτ=5

MPC
H=4

Hτ=10

[1 1] 18/5 28/2.8 0/7 24/0.8 21/4.4 15/4.1
[2 2] 2/1.5 0/1.2 0/∞ 0/2.4 0/5.7 0/6.9
[5 5] 3/3.4 10/2.6 0/∞ 0/3.4 0/8.8 0/∞
[10 10] 2/4.5 1/4 0/∞ 0/4.7 0/14.1 0/∞
[15 15] 2/5 2/3.8 0/∞ 0/5.7 0/22 0/∞

5.2 Comparison with other tracking control methods
To evaluate the performance of the tracking control approach
based on MCTS for TPN, the proposed approach is compared
with three other approaches, Depth-first search (DFS) (Cormen
et al. (2001)), Best-first search (BFS) (Wang and Wang (2012))
and Model predictive control (MPC) (Lefebvre (2018)).

The three approaches are compared to the proposed MCTS with
two different search parameter cases. In the first case depth = 2
& sim = 4 and in the second case depth = 7 & sim = 14. Table 3
sums up the convergence rate, mean computation times and also
shows the firing sequence lengths |στ | of the optimal sequence
and Table 4 shows the optimality indices. It can be seen in
Table 3 that the MCTS approach, independent of the selected
parameters, converges for every destination marking. The same
is true for the BFS and the MPC with lower search depth.
The DFS only finds a solution for the smallest marking, while
the MPC with bigger search depth struggles to find solutions
for the larger problems. BFS and MPC (H = 2,Hτ = 5) have
comparable mean computation times. The MCTS exhibits the
best results with the lowest computation times.
The results for the optimality indices in Table 4 show that
the DFS has a high mean deviation from the optimal solution.
Comparing the BFS and MPC, it can be seen that the results
are comparable for smaller problems, but the BFS has a lower
error for larger problems. The proposed MCTS approach has the
lowest mean error from the time optimal solution. It can also be
seen that with the increase in simulation numbers and simulation
depth, the mean error decreases. In general, all other approaches
find the optimal solution only for small sizes of problems, while
for larger problems only the MCTS finds the time optimal firing
sequence. In summary, the proposed tracking control approach
based on MCTS can reduce the computation time significantly
and also finds solutions of better quality in comparison to other
existing tracking control approaches for TPN.

6. CONCLUSION
An efficient approach to solve the tracking control problem for
timed Petri nets based on Monte-Carlo Tree Search has been
proposed. The adaption of the basic MCTS steps to the timed
tracking control problem has been presented. Due to the incre-
mentally constructed search tree and limited search in part of
the reachability graph, the proposed approach can significantly
reduce the computational burden while still providing optimal or

near optimal solutions. Compared with the existing approaches,
the proposed approach has shown advantages in computation
time and optimality of solutions.
In future research, it will be investigated whether the parameters
depth and sim of the MCTS can be selected more systematically.
An important question is also to ensure the optimality of the
solution, which cannot be guaranteed currently.
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