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Abstract: Dealing with the effects from uncertainties properly is a key problem in stochastic
energy management problems to achieve safe and efficient operation of the system. In this paper,
we study the problem of coordinating multi-period electric vehicles charging amidst uncertainty
from the embedded renewable generation in a local distribution network under transformer
capacity limits. A stochastic generalized game is presented to formulate the underlying electric
vehicle coordination problem wherein the cost function of each player is affected by the
intermittent renewable energy supply. Existing algorithms for seeking the equilibrium rely on
conditions on the form of the cost functions. In our setting, however, stochastic effects are
not known in advance which results in an unknown form of the cost functions. We propose a
distributed iterative zeroth-order algorithm, which only relies on the observations of costs, to
achieve a stochastic generalized Nash equilibrium of the game under the concept of Gaussian
smoothing. Under certain mild assumptions, the proposed algorithm is guaranteed to converge to
the neighborhood of the stochastic generalized Nash equilibrium. We demonstrate the algorithm
for a distribution network energy management problem with 3 heterogeneous subgroups of
electric vehicles.

Keywords: Energy coordination, random renewable generation, capacity limit, stochastic
generalized Nash equilibrium, distributed zeroth-order algorithm.

1. INTRODUCTION

Trends in energy demand and environmental concerns
have prompted the electric grid to evolve into a smart
system incorporating distributed energy sources (includ-
ing renewable energy) and electric vehicles (EVs) at the
distribution level. Together with the advent of advanced
information and communication systems, this enables the
utilization of resources at the residential level of networks
Stephens et al. (2015); Zipperer et al. (2013). This paper
focuses on optimal energy management of a local distribu-
tion network under transformer capacity limits featuring
EVs and uncertain local renewable supply. The users of
such systems are usually modeled as self-interested agents
with communication and control capabilities, who are able
to control local generation and active loads to minimize
their energy costs. Without a mechanism to coordinate
the facilities, the overall performance of the power grid
may deteriorate, due to the intermittent and volatile char-
acteristics of EV charging and renewable generation.
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In this paper, we analyze the optimal energy coordination
of EV charging in a distribution network with embedded
with renewable sources. Due to the limited capacity of
the transformer connecting the distribution network to the
grid, a generalized Nash equilibrium (GNE) model is used
wherein individual users minimize their energy costs by
adjusting their EV’s charging strategy. The GNE model
is similar to the formulation in Paccagnan et al. (2016),
but is also popular in signal processing Yu et al. (2017)
and cloud computing Ardagna et al. (2017). Motivated by
this, many iterative algorithms, like the asymmetric pro-
jection method Paccagnan et al. (2016), ADMM/operator-
splitting methods Yi and Pavel (2017), have been de-
veloped to solve GNE problems. Most of these focus on
solving a subclass of GNEs called variational generalized
Nash equilibrium Facchinei and Kanzow (2007); Facchinei
and Pang (2003).

Note that all algorithms mentioned above require gradient
information. However, due to the inevitable estimation
error of renewable energy generation, it is more reasonable
to formulate these problems as stochastic generalized Nash
equilibrium (SGNE) problems Yu et al. (2017), where
players minimize their expected cost functions. For SGNE
problems, gradient-based algorithms are usually not appli-
cable without some assumptions on the expectation and
variance of the gradient information. Motivated by prob-
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lems like the one of interest here, where the expected cost
of each player is easy to compute but that of the gradient
is not, the so-called zeroth order (ZO) algorithms that
do not require gradient information have been developed
in optimization Liu et al. (2018); Balasubramanian and
Ghadimi (2018).

In this work, we propose a distributed zeroth-order (DZO)
algorithm that does not require any information about
the stochastic gradient but only some noise-corrupted ob-
servations of players’ cost. The algorithm originates from
Thathachar and Sastry (2004); Nesterov and Spokoiny
(2017). At each iteration, the system operator broadcasts
information to every player used for their cost calculation.
Usually, aggregation of all players’ decision is chosen by
the system operator for broadcasting to alleviate commu-
nicational burden Grammatico (2017). After that, each
player updates their own decision based on several noisy
cost observations and sends their new decision back to
the system operator. In our mechanism, we assume the
renewable estimation error is compensated by electricity
purchase from the power grid, which means power flow
through the transformer is also unpredictable. To ensure
safe operation of the transformer, we design a robust
coupling constraint set that takes any possible estimation
error into accounts. We provide the condition for the con-
vergence of our distributed zeroth-order algorithm, which
works for broader classes of GNE problem than Tatarenko
and Kamgarpour (2019a,b).

In Section 2 and Section 3, we formulate the energy co-
ordination problem as a SGNE problem, where an ex-
tended game for SGNE is introduced for tackling coupling
constraints and enforcing distributed optimization. Then,
the details of our algorithm to solve the extended game
is introduced in Section 4, where we also introduce some
backgrounds for the ZO algorithm, and our modifications
to ensure convergence to the neighborhood of the SGNE.
Numerical results are provided in Section 5. Finally, Sec-
tion 6 draws conclusions and future works.

2. SYSTEM MODEL

We consider a local distribution network, depicted in
Fig. 1, including a group of electricity users N =
{1, 2, · · · , N} who may have distributed renewable gen-
eration, an electric vehicle (EV) and inelastic demand
Stephens et al. (2015) and are jointly subject to the
transformer capacity limit. The objective of this paper
is to carry out an optimization coordination of energy
consumption over a finite time horizon, indexed by T =
{0, 1, · · · , T − 1}. We assume that the time steps are
of unit length, so that energy and power quantities are
interchangeable.

2.1 Individual Model for Each User

Suppose that for each user n ∈ N , the inelastic demand
is known private information, and denote the inelastic
demand over the horizon of interest as a vector dn =
[dn,t, t ∈ T ]> ∈ RT , where y> represents the transpose of
y. The individual renewable generation is not controllable
but we assume that it comes at zero cost so that users
would like to consume renewable generation first. Due to

I.D. I.D. I.D.

Fig. 1. Topology of a local distribution network.

the intermittent nature of renewable resources, generation
forecasts are usually inaccurate to some degree. We denote
renewable generation for each user n ∈ N by gn = [gn,t, t ∈
T ]> ∈ RT , and express it as the sum

gn = rn + δn ,

where rn = [rn,t, t ∈ T ]> ∈ RT is the forecast and
δn = [δn,t, t ∈ T ]> ∈ RT is a random forecast error. Here
we do not have assumptions on δn.

Hence, the control variable of each user n ∈ N is its EV’s
charging demand over the time horizon T . In this paper,
only grid to vehicle operations are considered, i.e. EVs
are not allowed to give feedback to the grid. Denote by
un = [un,t, t ∈ T ]> ∈ RT a charging decision of its EV,
with un,t satisfying

un,t ∈ [0, u+n ], ∀t ∈ T , (1)

where u+n > 0 is the maximum charging rate. Let xn =
[xn,t, t ∈ T ]> ∈ RT denote the normalized state of charge
(SoC) trajectory for user n’s EV. This must satisfy

xn,t ∈ [x−n , x
+
n ], ∀t ∈ T ,

where x−n and x+n represent the minimal and maximal SoC
values respectively. The case that user n does not have an
EV can be modelled by setting u+n , x−n , and x+n to zero.

The state dynamics governing xn are

xn,t+1 = xn,t + snun,t, (2)

where sn is a constant that depends on the charging
efficiency and the battery capacity of n.

Suppose that at the beginning of the time horizon, the
initial state of user n’s EV is xn,0 with xn,0 ∈ [x−n,0, x

+
n,0].

Then constraint (2) is equivalent to:

sn

t∑
τ=0

un,τ ≥ x−n − xn,0, ∀t ∈ T , (3a)

sn

t∑
τ=0

un,τ ≤ x+n − xn,0, ∀t ∈ T . (3b)

The set of user n’s feasible actions can then be written

Un , {un | s.t. (1) and (3)} . (4)

2.2 Electricity Purchases

Since the system is connected to the electricity market
via a transformer, matching the net demand of the local
distribution system after accounting for local generation
and consumption is subject to the transformer capacity
limits. We use bn = [bn,t, t ∈ T ]> ∈ RT to denote
the vector of user n’s purchases by time step. Then, the
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total energy purchase should satisfy the transformer limit,
which brings coupling among users:∑

n∈N
bn ≤ ca, (5)

where ca = [cat , t ∈ T ]> ∈ RT is the transformer limit. The
power balance that should be satisfied at all times leads
to:

bn(δn) , un + dn − rn − δn , un − δn +wn, (6)

where wn = dn − rn is the nominal net demand. Substi-
tuting (6) into (5) gives a coupling constraint set for all
the users:

Q ,

{
u ∈ U

∣∣∣ ∑
n∈N

(un − δn +wn) ≤ ca
}
, (7)

where u represents the charging profile of all the users and
U = U1 × · · · × Un.

Since renewable generation δn is unpredictable, it intro-
duces uncertainty into the energy management system.
We therefore have to design a mechanism that ensures
any deviation of renewable generation can be compensated
by the grid. Since the constraint coupling the actions of
the users only imposes an upper bound, to simplify the
problem, we design a new robust coupling constraint set:

Qs ,

{
u ∈ U

∣∣∣ ∑
n∈N

(un +wn) ≤ ca − δs
}
, (8)

where δs is the worst underestimation of renewable gen-
eration that we expect to face across the distribution
network. Since the amount of renewable generation in the
distribution network is relatively small compared with the
capacity limit of a transformer, the robust constraint above
is not very conservative. Moreover, the conservativeness
can be reduced if we have more accurate prediction for
the renewable generation.

The common electricity price billed to all users consists of
a baseline value derived from a day-ahead market price,
varying by time step t, plus a real-time component that
depends on the total energy purchase, after uncertainty
values have been revealed. We use b(δ) as shorthand for
all users’ purchases and, following Bompard et al. (2007),
assume the real-time price component is linearly increasing
in b(δ):

p(b(δ)) = αp
∑
n∈N

bn(δn) + βp,

where αp is a positive parameter, and βp = [βpt , t ∈ T ]> ∈
RT is a given time-varying tariff set in the day-ahead
market.

3. ENERGY COORDINATION GAME

We focus on a distributed and non-cooperative scheme
to coordinate user actions where users care only about
optimizing individual objectives. Due to the existence of
the coupling constraint in (7), we develop a stochastic
generalized game which admits a stochastic generalized
Nash equilibrium (SGNE).

For a given realized value of δ, the cost to user n is the
sum of the power purchases and the battery cost,

Jn(un,u−n; δ) = p(b(δ))>bn(δn) + hn(un) , (9)

where hn(un) is the tradeoff between the battery degra-
dation and the charging benefit, which we assume to be a
quadratic function,

hn(un) =
∑
t∈T

(αfnu
2
n,t + βfnun,t) + αsn

(∑
t∈T

un,t − Γn
)2
,

where αfn > 0 and βfn ≥ 0 are coefficients of the degrada-
tion cost depending on battery characteristics, and Γn ≤
1
sn

(x+n,T − xn,0) is the desired charging energy over the
time horizon. As usual, un denotes the decisions of player
n whereas u−n those of all other players. We note that
under our assumptions, for given u−n and δ, Jn(·,u−n; δ)
is quadratic.

In a stochastic game, each player wishes to minimize the
expected cost over possible realizations of δ. Let fn denote
the cost function of player n, then

fn(un,u−n) , Eδ[Jn(un,u−n; δ)]

=
(
αp
∑
i∈N

(ui +wi)
> + (βp)>

)
(un +wn) + hn(un)

−
(
αp
∑
i∈N

(ui +wi)
> + (βp)>

)
E[δn]

− αp
∑
i∈N

E[δi]
>(un +wn) + αp

∑
i∈N

E[δ>i δn] . (10)

Hence, the stochastic generalized game can be written as

G = 〈N , {un}n∈N , {fn}n∈N 〉 ,
and the individual best response problem for each player
by

u∗n = arg min
un∈Qn(u−n)

fn(un,u−n),

where Qn(u−n) is the strategy set of player n such that

Qn(u−n) = {un ∈ Un |u(u−n) ∈ Qs}.
Definition 1. (Stochastic Generalized Nash Equilibrium).
A strategy u∗ ∈ Q is called a SGNE of the game G, if the
following holds

fn(u∗n,u
∗
−n) ≤ fn(un,u

∗
−n), ∀un ∈ Qn(u∗−n),∀n ∈ N .

We denote the set of SGNEs for game G as SGNE(G). It
is easy to verify that the local constraint sets Un and the
coupling constraint set Q are compact and convex, and
satisfy the Slater’s constraint qualification. Moreover, the
expected cost fn(un,u−n) is quadratic on un for a given
u−n.

For game G, its corresponding variational inequality
(VI) problem is denoted by VI(Q,M), where M(u) =
[Mn(u), n ∈ N ] : RNT → RNT is the game mapping to
represent the stacked gradients of the cost functions of
each player with respect to their own strategies, that is,

Mn(un,u−n) =
∂fn(un,u−n)

∂un
.

As fn(un,u−n) is quadratic, it is easy to verify that
M(u) is τ -strongly monotone with τ = αp + 2 minn∈N α

f
n

and admits a Lipschitz constant L1 of it thanks to the
continuity and the fact that U is compact. Under these
conditions, and denoting the solutions to VI(Q,M) by
SOL(Q,M), Facchinei and Kanzow (2007)[Theorem 5] and
Facchinei and Pang (2003)[Theorem 2.3.3] then lead to
that a solution to VI(Q,M) is also a SGNE of G and the
game G has a unique equilibrium.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4138



To deal with the global coupling constraint, we introduce
an additional player indexed by 0, whom we refer to as the
dual player, to minimize the cost.

fe0 (λ,u) , λ>
(
ca − δs −

∑
n∈N

(un +wn)
)
, (11)

where λ ∈ RT≥0 is the strategy of player 0. Correspond-
ingly, the cost functions of the original N players, whom
we refer to as the primal players, incorporate the cou-
pling constraints and construct the individual optimiza-
tion problem:

min
un∈Un

fen(un,u−n,λ) , fn(un,u−n)− fe0 (λ,u).

The resulting game, denoted by Ge, has N + 1 play-
ers but no coupling constraints. The corresponding op-
erator Me(u,λ) = [Me

0 (u,λ);Me
1 (u,λ); · · · ;Me

N (u,λ)] :

R(N+1)T → R(N+1)T , is defined by

Me
0 (u,λ) = ca − δs −

∑
n∈N

(un +wn),

Me
n(u,λ) =

∂fn(un,u−n)

∂un
+ λ, ∀n ∈ N

and can be verified to be a monotone operator. Then
Paccagnan et al. (2016) ensures that a solution (u∗;λ∗) to
VI(U × RT≥0,Me) is a stochastic Nash equilibrium (SNE)
of game Ge and u∗ is a SGNE of game G.

For notation simplicity, we denote the strategy profile in
the extended game by η, i.e. η = (u;λ) ∈ RNT+T .

4. DISTRIBUTED ZEROTH-ORDER ALGORITHM

In distributed zeroth-order (DZO) algorithms, an iterative
algorithm is typically implemented to estimate the gradi-
ents. Suppose that the index k denotes the iteration of the
DZO algorithms and vectors with subscript k represent
the corresponding values of the vectors at iteration k.

For each player n at iteration k, an extra vector xn,k is
generated as follows,

xn,k = un,k + σk · vn,k
where vn,k is generated from a Gaussian distribution with
the identity covariance matrix. The Gaussian approxi-
mation, see Nesterov and Spokoiny (2017), of fen(·) with
parameter σk is defined as

fen,σk
(un,k,u−n,k,λk)

,
∫
fen(xn,k,u−n,k,λk) p(xn,k|un,k, σ2

kIT )dxn,k

=

∫
fen(un,k + σkvn,k,u−n,k,λk) p(vn,k|0, IT )dvn,k.

If σk is sufficiently small, the Gaussian approximation of a
function is almost the same as the original one. Taking the
partial derivative of fen,σk

(un,k,u−n,k,λk) with respect to

un,k, denoted by M̃e
n(ηk), it gives

M̃e
n(ηk) ,

∂fen,σk
(un,k,u−n,k,λk)

∂un,k

=

∫
(fen(xn,k,u−n,k,λk)− fen(un,k,u−n,k,λk))

xn,k − un,k
σ2
k

· p(xn,k|un,k, σ2
kIT )dxn,k. (12)

The last equality relies on the following equation, which is
also the critical point to design the zeroth-order algorithm,∫

xn,k − un,k
σ2
k

· p(xn,k|un,k, σ2
kIT )dxn,k = 0.

For each player n ∈ N , we define

gen(ηk,xn,k) =
fen(xn,k,u−n,k,λk)− fen(un,k,u−n,k,λk)

σk
· vn,k. (13)

Then, (12) can be rewritten as

M̃e
n(ηk) =

∫
gen(ηk,xn,k) · p(xn,k|un,k, σ2

kIT )dxn,k.

This form suggests that gen(·) can be interpreted as the
stochastic gradient descent of the Gaussian approximation
of the original objective function.

Since the cost function fn is quadratic with respect to un,
we could obtain the following lemma.

Lemma 1. For each n ∈ N , the following holds

M̃e
n(ηk) =

∫
Me
n(xn,k,u−n,k,λk)p(xn,k|un,k, σ2

kIT )dxn,k

For the uncertainty of renewable generation, we make the
following assumption on the second moment of stochastic
effects.

Assumption 1. The variance of the function value on δ is
finite, i.e., there exists a constant D1, such that

Var[Jen(·; δ)] = E[(Jen(·; δ)− fen(·))2] ≤ D1, ∀n ∈ N . (14)

We compute an approximation ĝen of the pseudo-gradient
(13),

ĝen(ηk,xn,k) =
f̃en,k(xn,k,u−n,k,λk)− f̂en,k(un,k,u−n,k,λk)

σk
· vn,k (15)

where f̃en,k(xn,k,u−n,k,λk), f̂en,k(un,k,u−n,k,λk) are esti-

mations of fen,k(xn,k,u−n,k,λk) and fen,k(un,k,u−n,k,λk)
respectively, based on some noisy observations,

f̃en,k(xn,k,u−n,k,λk) =
1

T1

T1∑
t1=1

Jen(xn,k,u−n,k,λk; δk,t1),

f̂en,k(un,k,u−n,k,λk) =
1

T2

T2∑
t2=1

Jen(un,k, ·, ·; δk,T1+t2),

where T1, T2 are the counts of noisy observations at point
xn,k and un,k respectively per iteration.

Hence, the update of the primal players is given as follows:

un,k+1 = ΠUn‖un,k − hk · ĝen(ηk,xn,k)‖, ∀n ∈ N , (16)

where hk is the step-size at iteration k.

To recover strong monotonicity, we apply the so-called
Tikhonov regularization Facchinei and Pang (2003) to the
dual update,

λk+1 = ΠRT
≥0
‖λk + hk · (

∑
n∈N

(un +wn)− (ca − δs)

− rkλk)‖, (17)

where rk > 0 is the regularization parameter that de-
creases along the iterations.
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Our algorithm is summarized in Algorithm 1. The conver-
gence properties of this algorithm are demonstrated in the
simulation results.

Algorithm 1 DZO Algorithm for Energy Coordination

Require:
Initialize k ← 0, un,k,∀n ∈ N and λk;
The number of iterations K;

1: while k < K do
2: ηk = [u1,k; · · · ;uN,k;λk];
3: hk = 1

(k+1)a , σk = 1
(k+1)b

, rk = 1
(k+1)c ;

4: for n ∈ N do
5: Choose a vn,k (Gaussian) to get xn,k
6: Generate

Jen(xn,k,u−n,k,λk; δk,t1),∀t1 ∈ {1, . . . , T1}
Jen(un,k,u−n,k,λk; δk,T1+t2),∀t2 ∈ {1, . . . , T2}

7: Update un,k+1 by (16);
8: end for
9: Update λk+1 by (17);

10: k ← k + 1
11: end while
12: return un,k,∀n ∈ N and λk

5. SIMULATION RESULTS

In this section, we provide numerical results to illustrate
the effectiveness of our algorithm. Assume that in the
distribution network, there are N groups of households
within each the homes have the same EVs and renewables.

Besides the terms defined in (9), we add one more
quadratic cost for coupling constraints’ violation into the
cost function Jn(un,u−n; δ):

Jn(un,u−n; δ) = p(b(δ))>bn(δn) + hn(un)

+ ρ

∥∥∥∥∥max

{
0,
∑
n∈N

(un +wn)− (ca − δs)

}∥∥∥∥∥
2

.

After adding the new penalty above, the mapping M(u)
remains τ -strongly monotone and locally Lipschitz con-
tinuous. By this small change, the optimal solution will
not change but the algorithm becomes more robust as
otherwise the stochastic generation deviation introduces
inaccuracy into the gradient estimation ĝen(ηk,xn,k) and
causes coupling constraint violation.

We select the transformer capacity to be large enough to
serve all inflexible demand, but small enough so that not
all EV demand can be served in addition at all times;
this ensures that some of the coupling constraints will
be active. For the initialization of this simulation, we
set the number of the types of the players N = 3, and
the length of the time horizon T = 12, so that each
time slots is equivalent to 2 hours. We consider each
type of players as an aggregate player. Without loss of
generality, we set sn = 1. The capacity of the EV of
each player is Bn = 100kWh and the upper bound for
the charging decision is u+n = 0.4Bn ∈ Rd. Assume that
x+n = 0.9Bn, x−n = xn,0 and xn,0 is uniformly chosen from
the interval [0, 0.2Bn] for each player. The limited capacity
of the transformer is ca = 0.26NBn. Cost parameters are
αp = 0.1

N , βp = 0.3, αsn = 100, αfn = 1, βfn = 0, ρ = 100.
For the renewable generation, we keep the maximum entry
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Fig. 2. Norm of primal variables, T1 = T2 = 10
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Fig. 3. Norm of dual variables, T1 = T2 = 10
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Fig. 4. Aggregate load, T1 = T2 = 10

of
∑
n∈N gn to be 20% of ca and the renewable energy

generation comes from solar panel. The base load shown
in Fig. 4 is tuned to ensure the coupling constraints are
active. In the end, we set the number of iterations to
K = 106 and the stochastic effect is set to be a Gaussian
distribution with zero means and variance is 10% of the
magnitude of gn. We set δs to be 3 times of the sum of
variance, i.e. we ignore those stochastic effects beyond the
range of 3 times of the variance.

Firstly, we set T1 = T2 = 10. Fig. 2 shows the convergence
of players’ actions to the SGNE while Fig. 3 the corre-
sponding values of the dual λ that seems to be gradually
decreasing. This can be explained by the slowly decreasing
rate rk, which affects the convergence of yλ,k to λ∗ and
consequently the convergence of λk.

Figure 4 shows the aggregate load. The green line corre-
sponds to the capacity of the transformer whereas the red
line to the base load. Fig. 4 shows the so-called valley-
filling property of the Nash equilibrium. We note that
result of our regularized DZO is very close to the “Social
welfare” solution where the sum of the cost functions for
all players is minimized in a centralized way.

When we decrease the numbers of observations to T1 =
T2 = 2, the solution again approaches the SGNE for the
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Fig. 5. Norm of primal variables, T1 = T2 = 2
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Fig. 6. Norm of primal variables (gradually increasing
times of averaging)

first few iterations. However, as the number of iterations
increases, the solution appears to drift, as shown in Fig. 5,
the iterates seem to deviate from SGNE albeit slowly. The
reason for this behavior is the absence of an averaging
step, since the gradient estimation (15) involves only
two points at xn,k and un,k. Although the convergence
under diminishing step size is theoretically correct, the
gradient estimation becomes ineffective if the magnitude
of the stochastic effects is comparable to the difference of
expected cost at xn,k and un,k. Therefore, if the averaging
number is fixed, the diminishing smoothing parameter σk
would gradually magnify the stochastic effects and cause
the drifting in Fig. 5.

To solve this problem, we can either fix the value of
the smoothing parameter σk after a certain number of
iterations, or increase the averaging number as the number
of iterations increases. Though a formal way for doing
this is beyond the scope of this paper, we give a simple
implementation for the latter method where the number
of averaging step per iteration is increased for every 105

iterations, leading to an averaging number of 10 by the end
of the iteration K = 106. As shown in Fig. 6, this resolves
the drifting issue observed in Fig. 5 and the iterates stay
near the SGNE. We note that this issue is not uncommon
when the cost function fn is very smooth near the SGNE.

6. CONCLUSION

We analyzed the properties of a zeroth-order algorithm
in distributed case and implemented two variants to deal
with the issue of drifting due to inadequate averaging.
Moreover, a regularization term was added to the dual
update in the DZO algorithm to ensure the convergence to
the unique SGNE of the strongly monotone game. Future
work will focus on finding a better method to regularize
stochastic effects that does not require an increasing
number of observations per iteration.
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