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Abstract: We present in this paper a timed discrete event model for system identification with the
aim of fault detection, called Timed Automaton with Outputs and Conditional Transitions (TAOCT).
The TAOCT is an extension of a recent untimed model proposed in the literature, called Deterministic
Automaton with Outputs and Conditional Transitions (DAOCT). Differently from the DAOCT, where
only the logical behavior of the discrete event system is considered, the TAOCT takes into account
information about the time that the events are observed, and, for this reason, it can be used for the
detection of faults that cannot be detected by using untimed models, such as faults that lead the fault
detector to deadlocks. The TAOCT represents the fault-free system behavior, and a fault is detected
when the observed behavior is different from the behavior predicted by the model, considering both
logical and timing information. A practical example is used to illustrate the results of the paper.
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1. INTRODUCTION

In the past years, interest in the domain of fault diagnosis of
discrete-event systems (DES) has increased. Since the introduc-
tion of the concept of diagnosability of discrete-event systems
in Sampath et al. (1995), several methods have been proposed
in the literature for fault diagnosis of DES (Debouk et al., 2000;
Moreira et al., 2011; Zaytoon and Lafortune, 2013; Cabral
et al., 2015). These methods provide a theoretical framework
for the study of fault diagnosis of DES. However, their appli-
cation to complex real systems, such as industrial plants, is a
difficult task since these methods rely on an accurate model of
the system, including its post-fault behavior.

In general, the modeling of a real-world system is very labo-
rious and time consuming, since, depending on its size and
complexity, it is very difficult to take into account all possible
behaviors of the system in the model. This problem is amplified
when we consider the post-fault behavior, since there may exist
unpredicted consequences to a fault occurrence. In addition, the
modeling process requires engineers that know the plant behav-
ior, and are familiar with discrete-event modeling techniques.
All these problems restrict the application of methods based on
the complete system model to small systems, where the fault-
free and faulty behaviors can be completely known.

In order to circumvent the aforementioned problems, fault de-
tection techniques based on an identified fault-free model of the
system have been proposed in the literature (Roth et al., 2011;
Klein et al., 2005; Moreira and Lesage, 2019a). In these works,
the two main ideas are: (i) to automate the process of obtain-
ing the fault-free model of the system by using identification;
? This study was financed in part by CNPq, FAPERJ, and the Coordenação
de Aperfeiçoamento de Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance
Code 001.

and (ii) when a fault has been detected through a discrepancy
between the system behavior and the model, to use a technique
based on residuals for fault localization.

A model for the identification of closed-loop industrial DES,
called Non-Deterministic Autonomous Automaton with Out-
puts (NDAAO), is presented in Klein et al. (2005). The identi-
fication procedure is based on the acquisition of binary signals
exchanged between the programmable logic controller (PLC)
and the plant. These signals correspond to sensor readings (in-
puts to the controller) and actuator commands (outputs of the
controller), as shown in Fig. 1. Using the recorded data, an au-
tomaton which is capable of simulating the observed behavior
is constructed. In Klein et al. (2005), with a view to obtaining
a compact model, loops are introduced in the identified model,
leading to the generation of sequences that have not been ob-
served during the identification process. These sequences form
the exceeding language generated by the identified model, and
can be associated to non-detectable faults, since they are in-
cluded in the fault-free model.

In order to reduce the exceeding language while keeping the
compactness of the identified model, in Moreira and Lesage
(2019a) a new automaton model, called Deterministic Automa-
ton with Outputs and Conditional Transitions (DAOCT), is pro-
posed. Conditions for the transposition of the transitions asso-
ciated with the observed paths are added to the model by using
a path estimation function. The use of the path estimation func-
tion reduces the exceeding language generated by the model
in comparison with the NDAAO, and, consequently, it reduces
the number of non-detectable faults. In Moreira and Lesage
(2019b), an algorithm for fault diagnosis using the DAOCT
model proposed in Moreira and Lesage (2019a) is presented.
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Fig. 1. Closed-loop system showing the signals exchanged
between plant and controller.

It is important to remark that some faults cannot be detected
by using untimed models. For instance, faults that prevent the
system from generating events that are expected by the fault de-
tector, lead it to a deadlock that makes the fault non-detectable.
Thus, in some cases, it is necessary to add timing information in
order to improve the capability of detecting faults. In Schneider
et al. (2012), the NDAAO model is extended to consider timing
information, and timing constraints in the form of guards are
added to each transition. Each transition has a guard that is
defined as a single timing interval, and the guard pre-condition
is satisfied when the event occurs in this interval. This model,
called Timed Autonomous Automaton with Outputs (TAAO),
is capable of detecting faults if the system deadlocks.

In this paper we introduce a new timed model for DES identifi-
cation with the aim of fault detection. The new model, called
Timed Automaton with Outputs and Conditional Transitions
(TAOCT), is an extension of the DAOCT model in which timing
information is added to the transitions in the form of guards for
the transposition of the transitions. Since the TAOCT is based
on the DAOCT, it inherits the same advantages of the underly-
ing DAOCT model in terms of exceeding language reduction
in comparison with the TAAO model, which is based on the
NDAAO. In addition, differently from the TAAO model, the
procedure to define the guards of the transitions of the TAOCT
is capable of distinguishing different timing intervals associated
with the same transition. Thus, more accurate guards can be
defined, increasing the number of detectable faults in com-
parison with the TAAO model that considers a single timing
interval for each transition. In addition, the timing information
can also be used to refine the path estimate carried out by the
path estimation function of the underlying DAOCT, reducing
the number of non-detectable faults. It is important to remark
that, as in the TAAO, deadlocks caused by faults can also be
detected by using the TAOCT.

This paper is structured as follows. In Section 2, we present
some preliminary concepts. Then, in Section 3, we explain the
identification procedure. The TAOCT is defined in Section 4.
A practical example is presented and discussed in Section 5.
Finally, conclusions are drawn in Section 6.

2. PRELIMINARIES

Let G be a Timed Automaton with Timing Intervals (TATI)
defined as follows (Cassandras and Lafortune, 2008).
Definition 1. A timed automaton with timing intervals is a six-
tuple:

G = (X ,Σ, f ,cg,guard,x0),

where X is the set of states, Σ is the finite set of events, f : X ×
Σ∗ → X is the transition function, cg is the global clock with
value cg(t) ∈ R+, t ∈ R+, guard : X × Σ → A is the guard
function, where A is the set of admissible timing intervals for
the global clock cg, and x0 ∈ X is the initial state. 2

A timed automaton with timing intervals is an automaton to
which a global clock cg is added. Thus, timed sequences are
generated by the TATI. Function guard : X ×Σ→A specifies
the timing conditions that need to be satisfied on the global
clock for the transition to occur, and A are the admissible clock
constraints defined as timing intervals. In the TATI, the global
clock is reset to zero each time an event occurs. Let t ′ denote
the time that a state x ∈ X is reached in the timed automaton,
and let τ denote the time that has elapsed after reaching state
x. Then, transition (x,σ ,x′), where x′ = f (x,σ), occurs in the
TATI if event σ occurs at time t ′+ τ , and τ ∈ guard(x,σ).

The TATI is a simplified version of the timed automaton with
guards (Cassandras and Lafortune, 2008). In this paper, a simi-
lar formalism is used to add timing information to the proposed
identification model.

A timed path of a timed automaton with timing intervals G is a
sequence of states, events and time values that can be executed
by G. A timed path p can be written in the following form:

p = (x1,σ1,τ1,x2,σ2,τ2, ...,xl−1,σl−1,τl−1,xl) , (1)
where x j ∈ X , j = 1, ..., l, are the states visited in the path,
σ j ∈ Σ are the events that trigger the transition from state x j to
x j+1, j = 1, ..., l−1, and τ j ∈ R+ are the time durations where
the system remains in state x j up to the occurrence of event σ j,
j = 1, ..., l−1. The length of a path p, denoted by |p|, is equal
to the number of vertices in the path, i.e., |p|= l.

The timed sequence associated with timed path p = (x1,σ1,τ1,
x2,σ2,τ2, ...,xl−1,σl−1,τl−1,xl) is the sequence formed of
events σ and time durations τ , st = (σ1,τ1)(σ2,τ2) . . .(σl−1,
τl−1). It is important to remark that, in general, in the literature,
timed sequences consider an absolute time that specifies when
the event has occurred with respect to the beginning of the
sequence execution, and not with respect to the sojourn time
of each state of the path. However, the same information is
contained in both types of timed sequences, since it is always
possible to obtain a timed sequence with respect to the begin-
ning of the process, from the timed sequence considering time
durations st , and vice-versa.

The set of non-negative integers is denoted by N, and the set
formed only with 0 and 1 is denoted by N1 = {0,1}. The
symbol ‘!’ denotes ‘is defined’.

3. IDENTIFICATION PROCEDURE

Let us consider a closed-loop industrial DES whose scheme is
shown in Fig. 1. Suppose the controller has ni input signals,
which correspond to sensor readings, and no output signals,
which correspond to actuator commands. Let us define the I/O
vector, whose elements are the current status of each one of the
controller signals:

u(t) := [i1(t) i2(t) ... ini(t) o1(t) o2(t) ... ono(t)]
T ,

where im(t) ∈ N1, m ∈ {1, ...,ni}, are the values of the input
signals at time t ∈ R+, and om(t) ∈ N1, m ∈ {1, ...,no}, are the
values of the output signals at time t ∈ R+.

Suppose that at a given time instant t j, j ∈ N, the I/O vector
becomes u j := u(t j). Then, this vector remains unchanged until
at least one of the controller signals changes its value at time
t j+1, leading to I/O vector u j+1 = u(t j+1). The events of the
identified model are defined as the observed changes in the
controller signals. Thus, when the I/O vector changes from
u j to u j+1, we consider that an event σ j has occurred. The
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sojourn time τ j is the time duration during which the I/O
vector remained equal to u j, i.e., τ j = t j+1 − t j. Thus, when
the observed I/O vector changes from u j to u j+1, we say that
transition (u j,σ j,τ j,u j+1) has been observed. A finite sequence
of such transitions constitutes an observed timed path executed
by the system p = (u1,σ1,τ1,u2,σ2,τ2, ...,ul−1,σl−1,τl−1,ul).
It is assumed in this paper that the system has a unique initial
state, whose corresponding I/O vector is denoted as u0, and that
all observed paths start at the initial state of the system, with
the same I/O vector u0. The initial state may correspond, for
example, to the beginning of a production cycle in the case of
an industrial process.

The objective of system identification is to compute a model
that simulates the observed behavior described by the paths
generated by the system. When untimed models are used, the
behavior of the system is described only by the sequences of
events that it generates. However, in the case of timed models,
the identified model must simulate the observed sequences of
events and must also be coherent with the time these events
occur, i.e., it must be capable of simulating the timed sequence
of events of the system. In both cases, it is possible that the
identified model generates more sequences than those observed.
In this case, there is an exceeding language that is associated
with non-detectable faults if their sequences cannot be gen-
erated by the original fault-free system. In order to obtain an
accurate model for identification, its exceeding language must
be reduced.

It is important to remark that, in order to obtain a model by
identification of a DES, capable of reproducing all possible
behaviors of the system in fault-free operation, it is necessary
to observe the paths executed by the system for an arbitrarily
long time. However, in a finite time, only part of the paths
generated by the system can be observed. This fact has a direct
impact on the accuracy of the identified model and, therefore,
on fault detection, since an observed behavior that the model is
not capable of executing is interpreted as being faulty. If it is a
fault-free behavior, then the fault detection system generates a
false alarm. Thus, in order to reduce the number of false alarms,
as in Moreira and Lesage (2019a), we assume in this paper that
the system has been observed for a sufficiently long time such
that all untimed paths of length up to a given number n0 ∈ N
have been observed. Moreover, we assume that each untimed
path has been observed a number of times sufficient to capture
the timing information regarding event occurrences.

The set formed of all observed events during the identification
procedure is denoted by Σ. The set of all I/O vectors that have
been observed is denoted by Ω. Thus, Ω⊆ Nni+no

1 .

3.1 Time-interval paths

Let us assume that N timed paths (not necessarily dis-
tinct) have been observed. Each path is denoted by pn =(
un,1,σn,1,τn,1,un,2,σn,2,τn,2, ...,un,ln−1,σn,ln−1,τn,ln−1,un,ln

)
,

where n ∈ {1, ...,N}, un, j ∈Ω, for j = 1, ..., ln, and σn, j ∈ Σ and
τ j,n ∈ R+, for j = 1, ..., ln−1.

The set containing all of the N observed paths is denoted by
P. Let us partition P as follows: P = P1∪̇P2∪̇...∪̇Pr, r ≤ N,
where all paths that form Pi share the same logical sequence
of states and events, given by a unique untimed path pui =
(ui,1,σi,1,ui,2,σi,2, ...,ui,li−1,σi,li−1,ui,li) for each set Pi, i =
1, . . . ,r. As in Moreira and Lesage (2019a), we assume here

that none of the untimed paths pui has an associated sequence
of events si = σi,1σi,2 . . .σi,l−1 that is a prefix of the sequence
of events of another path pu j , where i 6= j.

For each set of paths Pi we build a time-interval path p′i given
by:

p′i =
(
ui,1,σi,1, Ii,1, ...,ui,li−1,σi,li−1, Ii,li−1,ui,li

)
,

where ui, j = un, j, j = 1, . . . , li, σi, j = σn, j, j = 1, . . . , li − 1,
for any n ∈ {1, . . . ,N} such that pn ∈ Pi, and Ii, j ⊂ R+, for
j = 1, . . . , li−1. Note that, in the time-interval path p′i, instead
of timing values τi, j, sets Ii, j ⊂R+ are used. Each set Ii, j is built
in the following manner: (i) construct set Ti, j = {τn, j : pn ∈ Pi};
(ii) form a set of clusters S = {S1, . . . ,SK} from Ti, j; (iii) form
set Ii, j =

⋃K
h=1[max{0,minSh− δ},maxSh + δ ]. Note that an

uncertainty δ ∈ R+ is added to form each real interval in Ii, j
to represent possible errors in measuring the time occurrence
of the events, caused, for example, by the scan cycle of the
controller. The value of δ must be chosen such that the intervals
do not overlap with each other, i.e., the user-specified threshold
for defining the separation of the clusters must be greater than
2×δ .

The cluster function, used in the process of forming the sets Ii, j,
takes as input a finite set of real values, and gives as output a
set of subsets S, each one containing the values which are more
densely grouped compared with the values in the other subsets
of the input set. We say that the values in each subset Sh ∈ S
form a cluster. Clustering methods have been widely discussed
in the literature, and there are several methods that can be used
to implement the cluster function in the process of obtaining the
sets Ii, j, as it can be seen in Jain et al. (1999). In this paper, the
NEAREST NEIGHBORS method (Lu and Fu, 1978) is used. In
this method, an element is assigned to a cluster if the minimum
distance between this element and the other members of the
cluster is smaller than a user-specified threshold.

3.2 Parametric identification approach

In Moreira and Lesage (2019a), inspired by Klein et al. (2005),
the parametric identification algorithm allows to obtain a model
satisfying an important property called k-completeness that
guarantees that, once the value of a free parameter k has been
chosen for system identification, all and only all sequences
of length 1 to k + 1 that have been observed are generated
by the identified DAOCT. By increasing the value of the free
parameter k, the exceeding language generated by the DAOCT
reduces, but the size of the model grows. Thus, there is a
trade-off to be found between complexity and accuracy of the
identified model.

Since the timed model proposed in this paper is based on the
DAOCT model presented in Moreira and Lesage (2019a), we
use the same strategy proposed in Moreira and Lesage (2019a)
to obtain a parameterized model for identification. In order to
do so, the same steps for the computation of the DAOCT model
are considered here, where the first step is the computation
of modified paths p′ki , according to the free parameter k, as
follows:

p′ki =
(
yi,1,σi,1, Ii,1, ...,yi,li−1,σi,li−1, Ii,li−1,yi,li

)
,

where

yi, j =

{
(ui, j−k+1, ...,ui, j), if k ≤ j ≤ li
(ui,1, ...,ui, j), if j < k .
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Set Ωk is defined as Ωk :=
⋃

i∈R{yi, j : j = 1, . . . , li}. The last
element of yi, j is denoted by yl

i, j. Thus, yl
i, j = ui, j, j = 1, . . . , li,

and i ∈ R.

4. TIMED AUTOMATON WITH OUTPUTS AND
CONDITIONAL TRANSITIONS

We present in the sequel the timed model proposed in this
paper for the identification of DES. The model is based on
Definition 1 of Timed Automaton with Timing Intervals, and on
the DAOCT model proposed in Moreira and Lesage (2019a).
Definition 2. The Timed Automaton with Outputs and Condi-
tional Transitions is a ten-tuple:

TAOCT = (X ,Σ, f ,cg,Ω,λ ,R,g,x0,X f ),

where X is the finite set of states, Σ is the finite set of events,
f : X×Σ∗→ X is the transition function, cg is the global clock,
with value cg(t)∈R+, t ∈R+, Ω⊆Nni+no

1 is the set of outputs,
where ni and no denote, respectively, the number of inputs and
outputs of the controller, λ : X→Ω is the state output function,
R = {1,2, ...,r} is the set of path indexes, g : X×Σ×R→ C is
the guard function, x0 ∈ X is the initial state, and X f ⊆ X is the
set of final states. 2

The set of admissible constraints C is formed of all sets I⊂R+.
As in the TATI, presented in Definition 1, in the TAOCT a
unique global clock cg is used, and it is reset every time a
transition occurs. Function g(x,σ , i) specifies a subset of R+

to which the clock value cg(t) must belong so that transition
(x,σ ,x′), where x′ = f (x,σ), associated with observed path p′i,
can occur. The output function λ is the same presented in the
DAOCT model, and associates an I/O vector with each state
x ∈ X of the model.

Differently from the DAOCT, where a path estimation function
is defined in the model, in the TAOCT the path estimation
function θ : X ×Σ×R+ → 2R can be defined using the guard
function g as follows:

θ(x,σ ,τ) = {i ∈ R : τ ∈ g(x,σ , i)}.
Function θ(x,σ ,τ) provides the path estimate when the current
state is x, and event σ occurs at clock value cg(t) = τ . If f (x,σ)
is not defined for a given path j, then g(x,σ , j) is not defined,
and j 6∈ θ(x,σ ,τ) for any value of τ . Moreover, if f (x,σ) is
defined, but the observed time τ does not belong to g(x,σ , i),
then i 6∈ θ(x,σ ,τ).

Algorithm 1 presents the procedure for constructing the iden-
tified TAOCT model from the modified time-interval paths p′ki ,
for i= 1, . . . ,r. In order to do so, function λ̃ : X→Ωk is defined.
The guards and its associated path estimation function are used
in the TAOCT evolution rule to reduce the exceeding language
generated by the model, reducing the number of non-detectable
faults. We present in the sequel the timed language generated
by the model. In order to do so, we first define the set of timed
events Σt of the TAOCT as follows:

Σt :=
{
(σ ,τ) ∈ Σ×R+ : (∃x ∈ X)[θ(x,σ ,τ) 6= /0]

}
.

Set Σt is formed of all pairs (σ ,τ), where σ ∈ Σ and τ ∈ R+,
such that there exist x∈ X , where f (x,σ) is defined, and at least
one path p′i, such that τ ∈ g(x,σ , i). Let us define Σ∗t as the set of
all possible sequences formed of elements σt ∈ Σt , and assume
that the empty sequence ε belongs to Σ∗t .

Function ψ : Σ∗t → Σ∗ removes the timing information from
a timed sequence in Σ∗t , obtaining its equivalent untimed se-

Algorithm 1: TAOCT identification

Input: Modified time-interval paths p′ki , for i = 1, ...,r
Output: TAOCT = (X ,Σ, f ,cg,Ω,λ ,R,g,x0,X f )

1 Create initial state x0 and define λ (x0) = λ̃ (x0) = y1,1
2 X ←{x0}, Σ← /0, Ω←{y1,1}, R←{1, ...,r}, X f ← /0
3 Create global clock cg
4 for i = 1 to r do
5 for j = 1 to li−1 do
6 Find state x ∈ X such that λ̃ (x) = yi, j

7 if λ̃ (x) 6= yi, j+1 ∀x ∈ X then
8 Create state x′ and define λ̃ (x′) = yi, j+1
9 X ← X ∪{x′}

10 Σ← Σ∪
{

σi, j
}

11 λ (x′)← yl
i, j+1

12 Ω←Ω∪{λ (x′)}
13 else
14 Find x′ ∈ X such that λ̃ (x′) = yi, j+1

15 f (x,σi, j)← x′
16 if g(x,σi, j, i)! then
17 g(x,σi, j, i)← g(x,σi, j, i)∪ Ii, j

18 else
19 g(x,σi, j, i)← Ii, j

20 if j = li−1 then
21 X f ← X f ∪{x′}

quence, i.e., for any st = (σ1,τ1)...(σn,τn) ∈ Σ∗t , then ψ(st) =
σ1...σn ∈ Σ∗. By convention, ψ(ε) := ε .

Let us define, now, recursively, the extended path estimation
function θs : X ×Σ∗t → 2R as follows: θs(x,ε) = R, and for any
sequence st(σ ,τ) ∈ Σ∗t , where st ∈ Σ∗t and (σ ,τ) ∈ Σt , we have
that:

θs(x,st(σ ,τ)) =

 θs(x,st)∩θ(x′,σ ,τ), where
x′ = f (x,ψ(st)), if f (x,ψ(st)σ)!

undefined, otherwise.

The timed language generated by the TAOCT model is given
by:

Lt := {st ∈ Σ
∗
t : θs(x0,st) 6= /0} .

Language Lt simulates the timed sequences of the paths used in
the identification procedure as stated in the sequel.
Theorem 1. Let Lt,Obs denote the language formed of all timed
sequences associated with the observed paths pn, for n =
1,2, . . . ,N. Then, Lt,Obs ⊆ Lt . 2

Proof. The proof is straightforward from the construction of
the TAOCT according to Algorithm 1, and will be omitted due
to the lack of space. �

Since timing information is added to the TAOCT model, the
fault detection scheme based on the timed model can detect
faults that are not possible to be detected by using the DAOCT
model. There are three faulty scenarios for which the fault can
be detected by the TAOCT and not by the DAOCT model: (i)
faults that lead the system to a deadlock; (ii) faults that cause
the occurrence of an event σ in a state x, such that f (x,σ)
is defined, at a time instant τ that does not belong to any set
defined by the guard conditions g(x,σ , i), for all i ∈ R; and (iii)
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Fig. 2. Sorting unit system of the practical example.

faults that cause the occurrence of an event σ at a time instant
τ that satisfies a guard condition, but leads the path estimation
function to θs(x0,st) = /0. The first type of fault can be detected
by counting the time elapsed after reaching a state of the model.
If the elapsed time is greater than all possible times defined
in the guards, then the deadlock is detected. The second and
third types of faults can be detected by verifying if the observed
timed sequence can be generated by the model, since, in both
cases, it can be seen that, although f (x0,ψ(st)) is defined, we
have that θs(x0,st) = /0, i.e., the observed timed sequence is not
in Lt .

5. PRACTICAL EXAMPLE

The identification method proposed in this paper is illustrated
using the sorting unit system presented in Figure 2. Three
different types of pieces are sorted in the system: white plastic
pieces (WP), black plastic pieces (BP), and metallic pieces (M).
Each type of piece is pushed to one of the three slides shown on
the bottom of Figure 2, such that pieces of type WP are pushed
to the right slide, pieces of type M are pushed to the slide in the
middle, and pieces of type BP are pushed to the left slide.

On the right of Figure 2, there is a stack magazine where
the pieces are stored in any order. In the sorting process, the
pieces at the bottom of the stack magazine are placed onto the
conveyor belt by a pneumatic pusher. Then, the conveyor belt is
turned on, and the piece is moved in the direction of two sensors
in order to determine its type. An inductive sensor detects
metallic pieces (type M), and an optical sensor detects metallic
(type M) and white plastic pieces (type WP). If a black plastic
piece (type BP) is on the conveyor, then none of the sensors is
capable of detecting it. The optical sensor is located close to the
inductive sensor, such that metallic pieces are detected by both
sensors almost at the same time.

It is also important to remark that there is a photoelectric sensor
next to each sorting pusher on the conveyor. When a piece
is detected by the photoelectric sensor next to the pusher that
should remove it from the conveyor, the conveyor is stopped
and the pusher is extended. Then, the pusher is retracted and a
new piece can be placed on the conveyor by the pusher of the
stack magazine.

x0

x1 x2 x3 x4

x5 x8

↑17

↓2 ↑1.↓17.↑18 ↓1

↑2.↓18

↑19

↑13

↓13

Fig. 3. Part of the TAOCT model obtained for the practical
example.

The sorting unit system has 13 sensors and 6 actuator signals.
Thus, the controller has 19 input and output signals. The initial
state of all observed paths is defined as the I/O vector corre-
sponding to the case where the conveyor belt is turned off, and
all pushers are retracted.

During the identification process, 2294 timed paths were ob-
served, which corresponds to two hours and fifty three minutes
of observation of the controller signals. From all the observed
timed paths, 12 logically different paths were obtained. As
there are only three types of pieces, we could expect only three
different logically distinguishable sequences. However, it has
been observed that, since the inductive and optical sensors are
very close to each other, the order of sensor readings (rising
and falling edges) may change for different sorting cycles of
metallic pieces, increasing the number of paths.

In this practical example, we have chosen the threshold for the
clustering algorithm to be 100ms, since this value is coherent
with the dynamics of the sorting system. In this case, the cluster
function returned a single closed interval for each transition of
the time interval paths p′i, for i = 1, . . . ,12.

After obtaining the time interval paths p′i, the TAOCT model is
identified following the steps of Algorithm 1. In this case, for
k = 1, the identified TAOCT has 26 states and 38 transitions.
In Figure 3, we present only part of the identified TAOCT
due to lack of space. Since each transition of p′i is associated
with a single time interval, then all guards g(x,σ , i) of the
identified TAOCT are single closed intervals. In Figure 3 we
do not present the guards due to lack of space. The events
of the TAOCT are rising and falling edges of the elements of
the I/O controller vector, which are represented by ↑z and ↓z,
respectively, where z is the position of the signal in the I/O
vector. It is important to remark that an event can be formed
of more than one rising or falling edge of controller signals.

In the sequel, we illustrate the three faulty scenarios for which
the fault can be detected thanks to the timing information added
to the TAOCT model.

In the first scenario, let us consider that, after a piece is placed
on the conveyor belt by the pusher of the stack magazine, the
pusher stuck extended and cannot be retracted. The path asso-
ciated with this behavior is p = (x0,↑17,x1,↓2,x2,↑1. ↓17. ↑18,
x3), where 17, 2, 1, and 18 are, respectively, the command
to extend the pusher of the stack magazine, the sensor that
indicates that the pusher of the stack magazine is retracted,
the sensor that indicates that the pusher of the stack magazine
is extended, and the command to retract the pusher. In this
case, the system deadlocks, since the conveyor belt is turned
on only after the retraction of the pusher is detected (↑2).
This fault cannot be detected by using the DAOCT model,
but can be detected by using the TAOCT model, since the
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falling edge of the sensor that indicates that the pusher is ex-
tended (↓1) must occur before the maximum time of the guard
g(x3,↓1,1) = [87,161]. Thus, when the elapsed time is greater
than 161 milliseconds, the fault is detected.

To illustrate the second faulty scenario, let us consider a fault
in the speed controller of the conveyor that makes it work
faster than expected. Let us consider, for instance, that after a
BP piece is placed on the conveyor belt, and the conveyor is
turned on (↑19), which corresponds to state x5 of the TAOCT, it
reaches the photoelectric sensor next to the first sorting pusher
(↑13) in a time smaller than the minimum time of the guard
g(x5,↑13,4) = [4058,4146]. Thus, the fault is detected. It is
important to remark that, since ↑13 is coherent with the logical
behavior of the system, then the diagnosis system based on the
DAOCT model would not be capable of detecting the fault.

The third faulty scenario can be illustrated by the following
example. Consider all observed paths associated with BP or M
pieces, and consider that the piece is in front of the photoelectric
sensor next to the right sorting pusher, i.e., the rising edge
of the photoelectric sensor (↑13) has been observed, which
corresponds to state x8 of Figure 3. By analyzing the time
elapsed between ↑13 and ↓13, two distinct sets of time values
can be defined according to the type of piece, as shown in
Figure 4. This occurs because metallic pieces are detected for
a longer time than plastic pieces by the photoelectric sensor
due to their brightness. Let us consider now a fault that causes
both the optical and inductive sensors to fail at the same
time. In this case, a piece of type M would lead to the same
logical behavior than a BP piece, making such a fault non-
detectable by the diagnosis system based on the DAOCT model.
However, as shown in Figure 4, it is possible to distinguish
the types of pieces by using the guards associated with the
timed paths. While a BP piece would take some time in the
interval g(x8,↓13,4) = [915,937], a metallic piece would take
some value in the interval [1035,1052] milliseconds, which
corresponds to the union of all guards defined in state x8, for
event ↓13, and the timed paths associated with metallic pieces.
Thus, if a metallic piece is on the conveyor belt, and the fault
occurs, the time elapsed between the rising and falling edges
of the photoelectric sensor will be compatible with the guard
condition associated with metallic pieces, and non-compatible
with the guard condition of black plastic pieces. Since the
logical behavior is not coherent with the timing behavior, the
fault is detected.

6. CONCLUSIONS

In this paper, a new timed model for the identification of DES
with the aim of fault detection is proposed. In this model,
called Timed Automaton with Outputs and Conditional Tran-
sitions (TAOCT), timing information regarding the occurrence
of events are added as guards to the transitions. By doing so, a
refinement of the path estimation can be carried out using the
timing information, and faults that cannot be detected by using
untimed models, can be detected by using the TAOCT. We are
currently working on a fault detection and isolation algorithm
based on the TAOCT.
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