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Abstract: The current work proposes a novel information theoretic based sensor network design
(SND) approach for data reconciliation in a steady state linear process. The proposed approach is
based on Kullback-Leibler divergence (KLD), which measures the difference of a density function
from a reference density function. In particular, the optimal design is the one that leads to the
smallest KLD value of the designed density function of the estimates from a reference density
function. This reference density function can be provided by the end-user, and the approach thus
enables explicit incorporation of the end-user’s preference in the SND procedure. Additionally,
the approach does not assume specific forms for the density functions of the estimates and is
thus also applicable for cases when the estimates have non-Gaussian density. The significance of
the approach is illustrated on a small example. To demonstrate its utility in obtaining optimal
sensor networks, it is also applied to a popular case study from SND literature and results are
compared with existing approaches.
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1. INTRODUCTION

Given a set of measurements and a process model, obtain-
ing better estimates of the measured variables as well as
estimating the unmeasured variables is the problem of data
reconciliation, which has been a widely studied problem
in literature (Narasimhan and Jordache, 1999). However,
the success of any data reconciliation approach depends
critically on the choice of variables being measured in
the process. Choosing the optimal set of variables to be
measured is the sensor network design (SND) problem. In
literature, the available SND approaches can be broadly
classified as considering the design problem mainly from
an individual variable, or a systems perspective.

From the systems perspective, Kretsovalis and Mah (1987)
presented an SND approach for a steady state linear pro-
cess, where the trace of the covariance matrix of estimates
of variables is minimized to increase the estimation accu-
racy of those variables. Joshi and Boyd (2008) minimized
the determinant of the covariance matrix of estimates
to obtain optimal sensor network. Krause et al. (2008)
discussed several ways to quantify the smallness of the co-
variance matrix, which in turn lead to different approaches
for SND based on A-, D-, T-, and E-optimality criteria. In
particular, Nabil and Narasimhan (2012) focused on A-
optimal design approach for SND in a steady state linear
process. They emphasized on the process economics while
formulating the SND objective, which involved minimiza-
tion of the trace of the weighted covariance matrix. Fur-
ther, Balaji et al. (2018) used A-optimal design approach
of SND for optimal selection of reference components in a
reaction system, where the measurement model was linear.
It should be noted that the A-, D-, T-, and E- optimal

designs implicitly assume Gaussianity since they work only
with the covariance matrix of the estimates and, as such,
cannot directly address scenarios where the estimates are
non-Gaussian. Additionally, even for Gaussian cases, these
design approaches, in general, lead to different optimal
sensor networks, and the choice of the appropriate ap-
proach to be used is thus not clear. Further, in such design
approaches, there is no way for the end-user to directly
specify her preference about the desired performance of
the sensor network.

The current work focuses on the SND from systems
perspective. In particular, we present a novel approach
for SND for data reconciliation in a steady state linear
process where an information theoretic framework based
on Kullback-Leibler divergence (KLD) is considered. The
proposed approach involves the specification of a reference
(target) distribution of the estimates by the end-user. The
optimal SND is the design that leads to a distribution of
the estimates, which is closest to the reference using the
KLD measure. Thus, our approach does not assume the
estimates to have Gaussian distributions and can work
with any arbitrary distribution. Further, the approach
provides a direct way for the end-user to specify a desired
reference distribution. In the current work, the reference
distribution is specified to be the distribution of the
estimates for the ideal (but non-implementable) case when
all variables in the process are measured. Recently, Jusoh
and Ampountolas (2019) have proposed the use of KLD
for optimal selection of traffic sensors. However, unlike a
physics based linear model considered in our work, their
approach is data driven. The presence of a model leads
to degenerate density functions for the estimates. This
degeneracy is addressed in our work by considering the
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density function of the estimates of a carefully chosen
subset of variables.

The rest of the paper is organized as follows. KLD, and
relevant approach to data reconciliation and SND are
summarized in Section 2. Section 3 presents the SND
formulation proposed in this work and illustrates it with
an example. The proposed formulation is applied to a case
study in Section 4, and paper is concluded in Section 5.

2. RELEVANT BACKGROUND

2.1 Introduction to Kullback-Leibler divergence

For a continuous random variable x, Kullback-Leibler
divergence (KLD) is an asymmetric measure of how far a
probability density function (pdf) g(x) is from a reference
pdf f(x). Denoted as DKL, it is defined as (Hershey and
Olsen, 2007):

DKL(f(x)||g(x)) :=

∫ ∞
−∞

f(x) ln

(
f(x)

g(x)

)
dx (1)

For multivariate Gaussian distributions, namely f(x) =
N (µf ,Σf ), and g(x) = N (µg,Σg), KLD can be analyti-
cally obtained as (Hershey and Olsen, 2007):

DKL (f(x)||g(x)) =
1

2

[
tr
(
ΣfΣg

−1)+ ln

(
det(Σg)

det(Σf )

)
+(µg − µf )TΣg

−1 (µg − µf )− n] (2)

where tr(·), det(·), and (·)T is the trace, the determinant,
and the transpose of a matrix (·), respectively, and n is
the dimension of random variable x.

2.2 Data Reconciliation

A general measurement model is:

y = x + v (3)

where y ∈ Rn is the measurement vector, x ∈ Rn is the
corresponding vector of true values of the variables, and
v ∈ Rn is the measurement noise vector. The measurement
noise is considered to be zero mean random vector since
it is assumed that the gross errors in the measurements, if
any, are pre-treated. In the current work, the true variables
are assumed to be linearly related to each other by a known
process model given as follows:

Cx = 0 (4)

where C ∈ Rm×n represents the constraint matrix of
the process model, and m is the number of independent
constraints in the process.

Typically all the variables in a process are not measured.
The general approach to solve the steady state data
reconciliation problem in such cases is to rewrite the
process model so that it involves only the measured
variables, and minimize the least square residuals of the
measurements, subject to the model constraints (4) but
now expressed only in terms of the measured variables. The
estimates of the unmeasured variables are subsequently
obtained using the reconciled estimates of the measured
variables. The model equations thus used in the two steps
are dependent on the measured variables (Narasimhan and
Jordache, 1999). Chmielewski et al. (2002) proposed an

equivalent formulation which integrated the measurement
model in (3) and the model constraints in (4) into one
model. Towards this end, x is partitioned into two disjoint
sets: primary variables (xp) and secondary variables (xs),
such that xp contains the minimum number of variables
satisfying the observability criteria, which is defined as
the ability to estimate all variables using either direct
measurements or estimates using measurements of other
variables and the process model (Ali and Narasimhan,
1993). Then, (4) can be written as:

Cpxp + Csxs = 0 (5)

where Cp and Cs are appropriately partitioned sub-
matrices of C. Further, it should be noted that the choice
of primary variables (xp) is not unique, but every set of
primary variables will consist of p = n −m variables. To
ensure observability xp should be chosen such that Cs is
a full rank matrix in (5), and thus xs can be written as:

xs = −Cs
−1Cpxp (6)

Therefore, the measurement and process model in (3) and
(4) can be integrated into a single model as:

y = Axp + v with, A =

[
Ip

−Cs
−1Cp

]
(7)

where Ip is an identity matrix of size p× p.

2.3 Existing SND Approach

Existing SND formulations from the systems perspective
for data reconciliation in a steady state linear process
involve A-, D-, T-, or E- optimal designs. These design
approaches assume that the measurement noise v (in (3)
and (7)) has a Gaussian distribution, i.e., v ∼ N (0,Σv).
For the specific case when the measurement noises are un-
correlated, the solution to the data reconciliation problem
is given as (Chmielewski et al., 2002):

ŷ = Ax̂p = A(ATΣv
−1A)−1ATΣv

−1y, (8a)

cov(ŷ) = Σŷ = AΣx̂pAT (8b)

where, Σx̂p = cov(x̂p) = (ATΣv
−1A)−1, (8c)

Σv
−1 = diag(qi/σ

2
i ), i = 1, 2, . . . , n, (8d)

and qi ∈ {0, 1}, i = 1, 2, . . . , n

where (̂·) represents the estimate of the variable (·), diag(·)
represents a diagonal matrix with ith diagonal entry given
in (·), σ2

i is the variance of measurement noise of sensor
used to measure variable xi, and qi is the binary variable
to indicate the presence (qi = 1) or absence (qi = 0) of
measurement yi. Note that invertibility of ATΣv

−1A in
(8c) is ensured when observability criteria is satisfied.

The generic optimization formulation for SND is as follows:
Formulation I:

min
q

J(q) subject to,

n∑
i=1

qi = N∗ (9)

where q = {qi : qi ∈ {0, 1}, ∀i ∈ {1, . . . , n}} is the
decision variable for the SND problem, and N∗ is the user
specified number of sensors to be placed in the process.
The objective J(q) in (9), depending on various existing
design approaches, is given as follows (Krause et al., 2008):

A-opt.: trace(Σŷ), D-opt.: det(Σŷ) (10)

T-opt.: − trace(Σŷ
−1), E-opt.: −min eig(Σŷ

−1) (11)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

3646



where eig(·) represents the eigen value of a matrix (·). It
is to be noted that the covariance matrix Σŷ is a rank
deficient matrix since matrix A ∈ Rn×p in (7), is a tall
matrix. Equivalently, this can be understood by noting
that the process variables are related by the process model
(4), and hence the covariance matrix of the estimates
of all the variables will be rank deficient. This rank
deficiency of Σŷ precludes use of D-, T-, and E- optimal
design approaches to obtain optimal sensor networks.
Hence, to enable the applicability of these approaches in
the current work, the objectives in A-, D-, T-, and E-
optimal designs are defined using the covariance matrix
Σx̂p (in (8c)) of the estimates of the primary variables only
since Σx̂p is a full rank matrix. With this modification,
these design approaches can be applied to obtain optimal
sensor networks. However, in general, they will result
in different optimal sensor networks since these existing
design approaches measure the smallness of the covariance
matrix in different ways.

Remark 1. The assumption of uncorrelated measurement
noise was just to simplify the presentation. The exist-
ing objectives for SND, mentioned in (10-11) (with Σŷ

replaced by Σx̂p), are valid for correlated measurement
noise case as well. For such a scenario, the estimates and
the covariance matrix of the estimates can be obtained
using the two-step data reconciliation approach discussed
in Section 2.2.

3. PROPOSED FORMULATION

The existing design approaches for SND (Formulation I,
Section 2.3) implicitly assume that the measurement noise
has a Gaussian distribution since they involve minimizing
an objective function which depends only on the covari-
ance matrix of the estimates. Hence, these approaches are
not directly applicable for the case when measurement
noises have non-Gaussian distributions. These existing ap-
proaches also do not provide a mechanism for the end-user
to specify her specifications for the quality of estimates. In
the current section, we propose an information theoretic
formulation based on Kullback-Leibler divergence for SND
in a steady state linear process. This formulation does not
assume a specific form of pdf for the estimates. Further,
in the proposed formulation, the end-user can specify the
reference (target) pdf of the estimates, and the optimal
design is the one which is as close to the reference pdf
as possible. KLD can be used to quantify the distance
between the pdf obtained by the designed sensor network
from the reference pdf. Thus, the proposed optimization
formulation for SND could be given as:

min
q

DKL(f(x̂ref )||g(x̂)) subject to,

n∑
i=1

qi = N∗ (12)

The estimates x̂ and its pdf g(x̂) depend on the selected
sensor network q. In the formulation in (12), f(x̂ref ) is
the reference pdf of the estimates, which can be provided
by the end-user. In the current work, f(x̂ref ) is taken to
be the pdf of the estimates when all the variables are
measured (qi = 1, ∀i ∈ {1, . . . , n}) in the process. This
case (all variables measured) can be considered to be the
ideal case, and thus the optimal sensor network design is
the one which leads to the least distance of the designed
pdf from this reference pdf.

Note that the process model in (4) needs to be incorpo-
rated while estimating x using any estimation approach.
However, presence of this model leads to dependence be-
tween the estimates x̂. As a result, pdf f(x̂ref ) and g(x̂)
of the estimates of all variables become degenerate. In
particular, since the process model provides m linearly in-
dependent constraints between the n process variables, the
support of f(x̂ref ) and g(x̂) lies in an n−m dimensional
subspace of Rn. Thus, to avoid degeneracy, we propose
to use KLD of designed pdf of the estimates (x̂p) of the
primary variables from the corresponding reference pdf
of the estimates (x̂ref

p ) of the primary variables in the
sensor network design procedure. Thus, the proposed SND
formulation is:
Formulation II:

min
q
DKL(f(x̂ref

p )||g(x̂p)) subject to,

n∑
i=1

qi = N∗ (13)

where f(x̂ref
p ) is the reference pdf of the estimates of

primary variables when all variables are measured in the
process, while g(x̂p) is the pdf of the estimates of primary
variables xp obtained with the designed sensor network.
These pdfs will depend on the estimation procedure used
to estimate the primary variables given the measurements
in the process. This issue is discussed in the next subsec-
tion. It should be noted that the proposed sensor network
design formulation (Formulation II) is an integer non-
linear programming problem.

Remark 2. In this work, we have not considered hardware
redundancy (qi > 1). The ideas presented in this work can
be easily extended to the case when more than one sensor
can be placed on a variable.

3.1 Computation of Kullback-Leibler divergence

In the current work, maximum likelihood (ML) estimation
procedure is proposed to obtain the estimate x̂p, and pdfs
f(x̂ref

p ) and g(x̂p). For the case when the measurement
noises are Gaussian, this leads to analytical forms for the
reference (f(x̂ref

p )) and the designed (g(x̂p)) pdfs as well
as for the KLD of these pdfs. However, analytical forms
are not available in general for non-Gaussian cases. These
two scenarios are discussed below:
(I) Gaussian measurement noise case:
For the sake of simplicity, consider the uncorrelated Gaus-
sian measurement noise case, i.e., v ∼ N (0,Σv) with
Σv being a diagonal matrix. Consider the computation
of the reference pdf f(x̂ref

p ) which corresponds to the
measurement of all variables in the process. In this case,
the estimate (x̂ref

p ) of primary variables can be obtained
by solving the data reconciliation problem and is given as
(Chmielewski et al., 2002):

x̂ref
p = (AT [Σref

v ]−1A)−1AT [Σref
v ]−1y (14)

where [Σref
v ]−1 is given in (8d) with qi = 1,∀i ∈ {1, . . . , n}.

The covariance matrix of the estimate x̂p is:

Σx̂ref
p

= (AT [Σref
v ]−1A)−1 (15)

Further, the reference pdf f(x̂ref
p ) is Gaussian with mean

xp (the true values of the variables) and covariance matrix
Σx̂ref

p
(referred as Σf ), i.e., f(x̂ref

p ) = N (xp,Σf ). In a

similar manner, the designed pdf g(x̂p) can be obtained
to be g(x̂p) = N (xp,Σg), where Σg = Σx̂p is the
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1 2
x1 x2 x3

Fig. 1. An illustrative flow process

corresponding covariance matrix obtained in a manner
similar to (15) as:

Σx̂p = (ATΣv
−1A)−1 (16)

where Σv
−1 is as given in (8d) for the designed sensor

network. Thus, both the reference and the designed pdfs
are Gaussian with the same mean. Using (2), the KLD
objective in (13) can then be analytically obtained to be:

DKL(f(x̂ref
p )||g(x̂p)) =

1

2

[
tr
(
ΣfΣg

−1)+

ln

(
det(Σg)

det(Σf )

)
− (n−m)] (17)

The expression for KLD for Gaussian measurement noise
as given in (17) is derived for the uncorrelated measure-
ment noise case. When the measurement noises are Gaus-
sian but correlated, (17) continues to hold. The only mod-
ification is that the two-step data reconciliation procedure
discussed in Section 2.2 needs to be used to obtain the
covariance matrices Σf and Σg.

(II) Non-Gaussian measurement noise case:
For this case, analytical expressions for f(x̂ref

p ) and g(x̂p)
cannot be obtained in general. In this work, we have used
a Monte Carlo based simulation approach to obtain these
pdfs. In particular, a large number (N) of realizations
of ML estimates are obtained corresponding to different
measurement noise realizations. To obtain the pdfs from
this sample, a Gaussian sum representation with the
individual Gaussian pdfs centered at the N realizations of
the ML estimates is obtained. KLD is then computed by
numerically integrating the integral in (1), where reference
and designed pdfs are represented as sum of Gaussian pdfs.
Details are given in Appendix A.

3.2 Illustrative example for sensor network design

Consider a flow process (Fig. 1) with xi corresponding
to the mass flow rate of stream i, i = 1, 2, 3. For this
process, the process model constraint matrix C in (4) can

be written as: C =

[
1 −1 0
0 1 −1

]
. With choice of x1 as

the primary variable (xp), the Cs, Cp matrices (in (5)),

and the measurement matrix A (in (7)) are: Cp =

[
1
0

]
,

CS =

[
−1 0
1 −1

]
, A =

[
1
1
1

]
. Let the true value of x1 = 100

kg/s. Also consider that the measurement noises have
Gaussian mixture model (GMM) as:

v1 ∼ 0.6×N (2, 0.26872) + 0.4×N (−3, 0.46632)

v2 ∼ 0.7×N (3, 0.41692) + 0.3×N (−7, 0.48382)

v3 ∼ 0.8×N (1, 0.36232) + 0.2×N (−4, 0.11432)

The reference pdf f(x̂ref1 ) of the estimate of x1 corresponds
to the case when all the variables are measured and is ob-
tained using the procedure for non-Gaussian measurement

noise case discussed in Section 3.1. To illustrate, different
designed pdfs g(x̂1) corresponding to various sensor net-

works are also obtained. Fig. 2 depicts f(x̂ref1 ) and g(x̂1)
for various sensor networks. From this figure, it can be seen
that the designed pdfs are sum of Gaussian pdfs. Further,
Table 1 lists the corresponding KLD value (column 2). It
can be observed that {y3} and {y2, y3} are the optimal
sensor networks when N∗ = 1 and 2, respectively. Column
3 in Table 1 also lists the 95% confidence interval (CI)
on error in estimate of x1 obtained from g(x̂1) for various
sensor networks as depicted in Fig. 2. To compare, we also
compute the CI on the error for the case when the mea-
surement noise is assumed to be Gaussian. Towards this
end, the GMM of the measurement noise is approximated
as (Trailovic and Pao, 2002):

Given, vi ∼
∑
l

wl N (µl, σ
2
l ), ṽi ∼ N (µ̃, σ̃2) (18)

with µ̃ =
∑
l

wlµl, σ̃
2 =

∑
l

wl

(
σ2
l + µ2

l

)
− (µ̃)

2
(19)

where ṽi is the Gaussian approximation of the GMM of

vi. With this Gaussian approximation, f(x̂ref1 ) and g(x̂1)
would also be Gaussian (Section 3.1). The resulting 95%
CI on errors in estimate of x1 are also reported in Table 1
(column 4). Comparing columns 3 and 4, it can be seen
that the confidence band on error in estimate of x1 is
tighter if noise is represented by its original pdf (GMM in
this case), instead of approximating it with a Gaussian pdf.
To further check the correctness of the confidence intervals
obtained with a Gaussian approximation, the area (confi-
dence level) under the sum of Gaussian pdfs g(x̂1) with
the limits obtained from the confidence intervals obtained
with Gaussian approximation is also computed. This area
is listed for various sensor networks in column 5 in Table 1.
It can be seen that the obtained confidence level is either
significantly lower or higher than the designed value of
95% thereby indicating the inadequacy of the Gaussian
approximation. This example thus illustrates the need of
explicitly incorporating the non-Gaussian nature of mea-
surement noises in the sensor network design procedure.

4. CASE STUDY

We now present an Ammonia process case study (Ali and
Narasimhan, 1993; Nabil and Narasimhan, 2012; Kotecha
et al., 2008). The process graph (Fig. 3) consists of 6
nodes (including 1 environmental node) and 8 streams
(variables x). Independent mass balances can be written
across any 5 nodes. Then the process model constraint
matrix C in (4) is written in (20). For this process, a
minimum of three measurements are required to satisfy the
observability criteria. Thus, considering primary variables
as: xp = {x1, x4, x6}, the measurement matrix A in (7) is
given in (20). The measurement noises are considered to
be Gaussian with randomly selected variances as: {0.2687,
0.4663, 0.4169, 0.4838, 0.3623, 0.1143, 0.4397, 0.4736}.
Optimal SND (solution of Formulation II) is now obtained
for N∗ ranging from 3-8 and listed in Table 2. For the sake
of comparison, we also list the optimal sensor network
design obtained with A-, D-, T-, and E- optimal design
approaches (Formulation I). All the optimization problems
(Formulations I and II) were solved by enumeration.
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Fig. 2. Probability density function for various sensor networks

C =


−1 0 0 0 0 1 0 1
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 −1 0 0 0
0 0 0 1 0 0 −1 −1

 ,A =



1 0 0
1 0 0
1 0 0
0 1 0
1 −1 0
0 0 1
−1 1 1
1 0 −1


(20)

From the results in Table 2, the following can be observed:
1) The various existing design approaches lead to different
optimal designs in general. Further, the optimal designs
obtained by these approaches are in general different from
the optimal designs obtained by the proposed KLD mini-
mization criteria.
2) As N∗ increases, the objective functions in all the design
approaches decrease. However, only for the proposed KLD
objective function, does the objective value decreases to 0
for the case when all the variables in the process are mea-
sured. This happens since for this case, the designed pdf
exactly matches the reference pdf. For other values of N∗,
the KLD value indicates the distance of the designed pdf
from the reference pdf. For the existing design approaches,

1

2 3

4

5

6

x1

x2

x3

x4

x5

x7

x6

x8

Fig. 3. Simplified Ammonia flowsheet

the objective function does not go to 0 even for the case
when all variables are measured. Hence, it may be difficult
for the end-user to interpret the objective function values
obtained by the existing design approaches vis-a-vis her
requirements.

5. CONCLUSIONS

In this work, we have considered the sensor network design
problem for data reconciliation in a steady state linear
process. In particular, we presented a novel sensor network
design formulation based on the information theoretic
concept of Kullback-Leibler divergence. The advantages
of this formulation are that it does not assume Gaussian

Table 1. KLD value and 95% CI on error in estimate of x1 for various sensor networks

Sensor network DKL GMM: [CI interval] (CI width) Gaussian: [CI interval] (CI width) Area under GMM assuming CI
interval from Gaussian case

{y1} 0.6053 [−5.72, 0.472] (6.1920) [−4.8528, 4.8528] (9.7057) 0.7514
{y2} 0.7328 [−10.68, 0.755] (11.4350) [−9.0228, 9.0228] (18.0456) 0.7068
{y3} 0.4921 [−5.135, 0.68] (5.8150) [−3.9724, 3.9724] (7.9448) 0.8003
{y1, y2} 0.0772 [−0.53, 0.535] (1.0650) [−4.2739, 4.2739] (8.5478) 1
{y1, y3} 0.1060 [−5.14, 0.46] (5.60) [−3.0739, 3.0739] (6.1477) 0.9197
{y2, y3} 0.0464 [−0.52, 0.52] (1.040) [−3.6356, 3.6356] (7.2713) 1
{y1, y2, y3} 0 [−0.395, 0.395] (0.79) [−2.9097, 2.9097] (5.8193) 1
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Table 2. Comparative SND results for Ammo-
nia process

N∗ DKL Aop Dop Top Eop

3
{y1, y5, y6}

(0.45881)
{y1, y4, y6}

(0.86680)
{y1, y5, y6}

(0.01113)
{y6, y7, y8}
(−19.79471)

{y1, y4, y6}a
(−2.06697)

4
{y1, y4, y6,

y7}
(0.23291)

{y1, y4, y5,
y6}

(0.59208)

{y1, y4, y5,
y6}

(0.00483)

{y5, y6, y7,
y8}

(−25.31500)

{y1, y4, y5,
y6}

(−2.77297)

5
{y1, y4, y5,
y6, y8}

(0.11774)

{y1, y3, y4,
y5, y6}

(0.50318)

{y1, y4, y5,
y6, y7}

(0.00266)

{y1, y5, y6,
y7, y8}

(−29.03662)

{y1, y3, y4,
y5, y6}

(−3.42948)

6
{y1, y3, y4,
y5, y6, y7}
(0.05452)

{y1, y3, y4,
y5, y6, y7}
(0.44385)

{y1, y4, y5,
y6, y7, y8}
(0.00170)

{y1, y3, y5,
y6, y7, y8}

(−31.43527)

{y1, y2, y3,
y4, y5, y6}
(−3.77613)

7

{y1, y3, y4,
y5, y6, y7,

y8}
(0.01049)

{y1, y3, y4,
y5, y6, y7,

y8}
(0.39011)

{y1, y3, y4,
y5, y6, y7,

y8}
(0.00125)

{y1, y2, y3,
y5, y6, y7,

y8}
(−33.57982)

{y1, y3, y4,
y5, y6,
y7, y8}

(−4.27694)

8

{y1, y2, y3,
y4, y5, y6,
y7, y8}

(0)

{y1, y2, y3,
y4, y5, y6,
y7, y8}

(0.35945)

{y1, y2, y3,
y4, y5, y6,
y7, y8}

(0.00101)

{y1, y2, y3,
y4, y5, y6,
y7, y8}

(−35.64679)

{y1, y2, y3,
y4, y5, y6,
y7, y8}

(−4.72331)

a The E-optimal design approach for N∗ = 3 yields three
different optimal sensor networks.

The other two sensor networks are {y2, y4, y6} and {y3, y4, y6}.

measurement noises and can directly incorporate non-
Gaussian nature of the measurement noises. Additionally,
it enables the end-user to set a target for the sensor net-
work design performance by specifying a reference proba-
bility density function of the estimates. The significance of
the proposed KLD based sensor network design approach
was illustrated using a small example and a literature
case study. Development of efficient optimization methods
to solve larger problems with hundreds of variables is
currently under investigation.

REFERENCES

Ali, Y. and Narasimhan, S. (1993). Sensor network design
for maximizing reliability of linear processes. AIChE
Journal, 39(5), 820–828.

Balaji, B.S., Bhatt, N., and Narasimhan, S. (2018). Op-
timal selection of reference components and measure-
ments in reaction systems. Industrial & Engineering
Chemistry Research, 57(44), 15096–15104.

Chmielewski, D.J., Palmer, T., and Manousiouthakis, V.
(2002). On the theory of optimal sensor placement.
AIChE Journal, 48(5), 1001–1012.

Hershey, J.R. and Olsen, P.A. (2007). Approximating
the Kullback Leibler divergence between Gaussian mix-
ture models. In 2007 IEEE International Conference
on Acoustics, Speech and Signal Processing-ICASSP’07,
volume 4, IV–317. IEEE.

Joshi, S. and Boyd, S. (2008). Sensor selection via convex
optimization. IEEE Transactions on Signal Processing,
57(2), 451–462.

Jusoh, R.M. and Ampountolas, K. (2019). Optimal selec-
tion of traffic sensors: An information-theoretic frame-
work. In 2019 American Control Conference (ACC),
3297–3302. IEEE.

Kotecha, P.R., Bhushan, M., and Gudi, R.D. (2008). De-
sign of robust, reliable sensor networks using constraint
programming. Computers & Chemical Engineering,
32(9), 2030–2049.

Krause, A., Singh, A., and Guestrin, C. (2008). Near-
optimal sensor placements in gaussian processes: The-
ory, efficient algorithms and empirical studies. Journal
of Machine Learning Research, 9(Feb), 235–284.

Kretsovalis, A. and Mah, R.S. (1987). Effect of redundancy
on estimation accuracy in process data reconciliation.
Chemical Engineering Science, 42(9), 2115–2121.

Nabil, M. and Narasimhan, S. (2012). Sensor network de-
sign for optimal process operation based on data recon-
ciliation. Industrial & Engineering Chemistry Research,
51(19), 6789–6797.

Narasimhan, S. and Jordache, C. (1999). Data reconcil-
iation and gross error detection: An intelligent use of
process data. Elsevier.

Trailovic, L. and Pao, L.Y. (2002). Variance estimation
and ranking of Gaussian mixture distributions in target
tracking applications. In Proceedings of the 41st IEEE
Conference on Decision and Control, 2002., volume 2,
2195–2201. IEEE.

Appendix A. KLD COMPUTATION FOR
NON-GAUSSIAN MEASUREMENT NOISE

When the measurement noises vi, i = 1, 2, . . . , n are in-
dependent random variable, the likelihood function of xp

can be written as: L(xp|ρ) =
∏

i∈M fyi
(ρi|xp), where ρi

is the realized value of the ith measurement yi, and set
M = {j : qj = 1} contains the indices of measured
variables. Using (7), we get: L(xp|ρ) =

∏
i∈M fvi(ρi −

[A(i)]Txp), where [A(i)]T is the ith row of matrix A. The
maximum likelihood estimate x̂p is obtained by maximiz-
ing the likelihood function as:

x̂p = arg max
xp

L(xp|ρ) (A.1)

For non-Gaussian measurement noises v, (A.1) does not
have an analytical solution in general, and numerical pro-
cedures have to be used. In the current work, the pdf of
x̂p is obtained by performing Monte Carlo simulations. In
this approach, for a given xp (the true value of variables in
the process), large number (N) of independent and iden-

tically distributed samples ρ
(k)
i from fyi

(ρi|xp),∀i ∈ M
are obtained, where k = 1, 2, . . . , N indicates the sample
number. For each of these realizations, (A.1) is solved to
obtain the corresponding realization of the maximum like-

lihood estimator x̂
(k)
p . The pdf for the maximum likelihood

estimator can then be obtained by using a kernel density
estimation procedure with a Gaussian kernel. This overall
procedure is used to obtain the reference pdf (f(x̂ref

p )) as

well. Once the pdfs f(x̂ref
p ) and g(x̂p) are obtained, KLD

in (1) is computed by numerical integration.

For the example presented in Section 3.2, Gaussian mix-
ture models for measurement noises were considered with
xp = 100. N = 2× 106 realizations were considered in the
Monte Carlo based approach. For a given realization, grid
search was used to solve (A.1) to obtain the corresponding
realization of the maximum likelihood estimator. The pdf
of the estimator was obtained in MATLAB version 2018a
using its inbuilt ksdensity function with the bandwidth
parameter chosen to be the optimal for Gaussian densities.
KLD in (1) was computed by numerically integrating the
integral in the range [80,120] using trapezoidal rule with
40,000 equal width intervals in this range.
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