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Abstract: The article considers the task of optimization of a digital control system for a linear
continuous periodic object. It is supposed that the system operates under the conditions of
uncertainty of an external stationary stochastic disturbance applied directly to the periodic
object. For the description of the system dynamics in continuous time the apparatus of the
parametric transfer function is used. As an optimization criterion the score of guaranteed
accuracy is used, which is an estimate of theH2-norm of the system on the class of perturbations.
The optimization is performed on the set of stabilizing causal controllers. An example is given.

INTRODUCTION

The problem of control of finite-dimensional continuous
linear periodic objects (FDLCP-objects) is one of the
actual problems in the modern automatic control theory.
A considerable number of studies is devoted to various
aspects of this problem (Richards (1983), Dugundji et al.
(1983), Wiesel et al. (1983), Du Val et al. (1984), Liu et al.
(1985), Allievi et al. (1996), Wereley (1991), Pandiyan
et al. (1999), Mollerstedt (2000), Hansen et al. (2012),
Karami et al. (2017) and literature cited there). Within
this problem, it is of great interest to study digital control
systems involving FDLCP objects, whereby these systems
belong to the class of sampled-data systems (SD-systems).

In this paper, the problem of guaranteeing the accuracy of
digital control of a FDLCP objects is considered. Hereby it
is assumed that the FDLCP object of interest is affected by
external stationary stochastic disturbances. It is assumed
that there is a parametric and/or structural uncertainty of
the spectral-correlation properties of the disturbance and
only its belonging to the class M, specified by generalized
properties, is known. In solving the problem, the accuracy
of the system function is not only guaranteed for a partic-
ular perturbation, but for the entire M class.

The general approach to solve the task of guaranteeing
the accuracy for continuous control systems with LTI
objects, based on the standard transfer function and the
frequency characteristic concept, was presented in Nebylov
et al. (2014). The use of the parametric transfer function
(PTF) concept described in Rosenwasser et al. (2000) and

1 This work was supported by the German Research Foundation
(DFG)

Rosenwasser et al. (2006) allowed to extend this approach
to a class of SD systems. Corresponding procedures for
guaranteeing the accuracy of SD systems with LTI objects
are described in Rosenwasser et al. (2005) and Rybinskii
et al. (2013). The task of guaranteeing the accuracy of
a SD control system containing an FDLCP object was
first considere in Rybinskii et al. (2018). Here a numerical
optimization of the estimation of the H2 norm of the
system was performed over all causal digital controllers.
The stability of the system was checked by additional com-
putations during the numerical minimization procedure.
In the practical application of this optimization approach,
problems occasionally arose because unstable solutions
were not excluded from the solution set from the outset.

It is shown here that this difficulty can be overcome
by combining the approach of Rybinskii et al. (2018)
with the approach of causal stabilization of a FDLCP
object considered in Lampe et al. (2007) and Rosenwasser
et al. (2018). Here a characteristic equation for the SD
control system with FDLCP object is constructed and
the set of all causally stabilizing digital controllers is
parameterized. The implementation of this approach and
its integration into the solution algorithm ensures that
only causal and stable controllers can enter the numerical
optimization process from the outset. A positive effect
besides the increased reliability of the algorithm is a
reduced numerical effort.

This paper describes the method of numerical optimization
of an SD control system for an FDLCP object according to
the criterion of guaranteed accuracy over the set of causal
and stabilizing controllers. The application of the method
is illustrated by a numerical example.
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1. SYSTEM DESCRIPTION

This paper discusses the SD-control system W with the
structure given in Fig. 1. The control object in the sys-
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Fig. 1. The FDLCP-object SD control systems structure

tem W is the SISO FDLCP-object P, whose dynamic is
described by the K-order differential equation

dKy(t)

dtK
+

K!

k=1

ak(t)
dK−ky(t)

dtK−k
= b1(t)g(t) + b2(t)u(t), (1)

where ak(t) = ak(t+ T ), (k = 1, . . . ,K), bi(t) = bi(t+ T ),
i = 1, 2 – continuous periodic functions and T the objects
period.

The FDLCP-object is controlled by a discrete controller
whose sampling period coincides with the period T of
the object. The controller includes an analog-to-digital
converter (ADC), a digital filter (DF) and digital-to-
analogue converter (DAC).

The ADC transforms the continuous signal y(t) to a
discrete sequence ξk

ξk = y(kT ), k = 0, 1, 2, . . . . (2)

The algorithm forming the control sequence ψk, realized
in DF, is given by the difference equation

α0ψk + α1ψk−1 + . . .+ αRψk−R =
= β0ξk + β1ξk−1 + . . .+ βRξk−R,

(3)

where R > 0 is integer, called the order of the controller
and αr, βr (r = 0, . . . , R) are real constants. Using the
backward operator ζ = e−sT corresponding to a one-step
backward shift, it is possible to specify for (3) the discrete
transfer function (TF)

Wd(ζ) =
β(ζ)

α(ζ)
=

"R
r=0 βrζ

r

"R
r=0 αrζr

, (4)

here called controller TF. In (4) α(ζ), β(ζ) are assumed as
coprime polynomials and the causality condition, which in
current case has the form

α(0) = α0 ∕= 0, (5)

is fulfilled.

The control signal u(t) is formed by the DAC, whose work
is described by the equation

u(t) = h(t− kT )ψk, kT < t < (k + 1)T, (6)

where the modulation function h(t) is a function of limited
variation on the interval 0 < t < T .

Let the considered system W be asymptotically stable.
In addition, the external disturbance g(t) acting on the

the system W will be considered as stochastic stationary
centered. For this case, the output signal of y(t) in steady
state will be stochastic non-stationary periodic (Lampe
et al. (2009, 2012)).

2. THE TASK STATEMENT

Let be Z the vector of design parameters of the system,
formed in some way, which unambiguously defines TF (4)
und let be Z the set of allowed values of this vector Z so
that all controllers corresponding to vectors Z ∈ Z are
at least stabilizing (providing asymptotic stability of the
system W) and causal. For a given spectral density Sg(s)
of the disturbance g(t), the mean variance of the output
signal y(t) can be used as an indicator for the functional
accuracy of the system W in steady state mode (Lampe
et al. (2007, 2009, 2012, 2016); Rosenwasser et al. (2018)).
This variance depends on vector Z and can be calculated
by the expression

d̄y(Z) =

=
1

2Tπi

T#

0

i∞#

−i∞

Wy(s, t, Z)Sg(s)Wy(−s, t, Z)dsdt.
(7)

In (7) Wy(s, t, Z) is the PTF of the considered SD system
from input g(t) to output y(t).

In the following it is assumed that the spectral density of
Sg(s) is unknown, but it is known that disturbance g(t)
belongs to a certain class M. A model of such a class
can be specified according to Nebylov et al. (2014) by the
combination of N + 1 numbers

dn =
1

π

∞#

0

S̃g(ν)ν
2ndν,

n = 0, . . . . , N,

S̃g(ν) = Sg(s)
$$$
s=iν

,
(8)

which have the meaning of the mean variance of the
disturbance and its N derivatives.

We now assume that as an indicator of the accuracy of
the system operating on the class M an estimate of the
guaranteed accuracy is chosen - the number

D̄y(Z) ≥ d̄y(Z), ∀g(t) ∈ M. (9)

The way it is calculated is described below.

So the objective considered in this paper is as follows: Let
for the system W the equation (1) of the dynamics of the
FDLCP-object P be given. Also let the disturbanc class
of M be given by the numbers {dn}.
In addition, the greatest admissible order Rmax of the
controller und the modulation function h(t) are specified.

It is necessary

(1) to create a vector Z of the systems design parameters
that unambiguously defines the controller TF Wd(ζ)
(4) and to construct the set Z so that each controller
corresponding to a vector Z ∈ Z will be causal and
stabilizing, and its order does not exceed the number
Rmax;

(2) to create the calculation method for the guaranteed
accuracy estimation D̄y(Z) by (9);
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(3) to choose the vector Z = Zgar from the set Z for
which corresponding controller provides the minimal
estimation value (9) on the class M

D̄y(Zgar) = min
Z

D̄y(Z). (10)

If the estimation D̄y(Zgar) will not exceed the maxi-
mum permissible value of the average signal variance
of y(t), the operation of system W will be guaranteed
successful for any disturbance in the class of M.

3. PTF OF THE SYSTEM W

The presented solution method is based on the use of the
PTF and the parametric amplitude frequency response
(PAFR) of the system W. The general approach for con-
structing the PTF for SD-systems containing an FDLCP
control object is described in Lampe et al. (2009, 2012,
2016). To apply this approach to the study of the system
under consideration W we introduce the notation

v(t) =

%
y(t)

dy(t)

dt
. . .

dyK−1(t)

dt

&′
(11)

as the K × 1 state vector of the object P, the apostro-
phe denotes the transposing operation. This allows us to
describe the dynamics of object P by the state equation

v(t)

dt
= A(t)v(t) +B1(t)g(t) +B2(t)u(t) (12)

and the output equation

y(t) = C(t)v(t). (13)

In (12) and (13)

A(t) =

'

()

0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

−aK(t) −aK−1(t) . . . −a1(t)

*

+, = A(t+ T ) (14)

is a K ×K periodic matrix,

B1(t) =

-
0
. . .
b1(t)

.
= B1(t+ T )

B2(t) =

-
0
. . .
b2(t)

.
= B2(t+ T )

(15)

are K × 1 periodic column matrices and

C(t) = [ 1 . . . 0 ] = C (16)

is a 1×K row matrix.

Using the matrixes A(t), B1(t), B2(t), C(t) the PTF
Wy(s, t, Z) can be built in the form

Wy(s, t, Z) = CWv(s, t, Z), (17)

(Lampe et al. (2016, 2009)) where the PTF Wv(s, t, Z) is
defined by the expression

Wv(s, t, Z) = e−stH(t) [V0(s)+

+

t#

0

H−1(ν)B1(ν)e
sνdν+

+ψ0(s)

t#

0

H−1(ν)B2(ν)h(ν)dν

*

, ,

(18)

in which

V0(s) = e−sT Ṽ o(s)Mσ(s, T ),

ψ0(s) = e−sT ψ̃o(s)Mσ(s, T ).
(19)

In turn

Ṽ o(s) =
/
E − e−sTM − e−sTMDW̃d(s)C(0)

0−1

,

ψ̃o(s) = Wd(s)C(0)Ṽ o(s),

D =

T#

0

H−1(ν)B2(ν)h(ν)dν

σ(s, T ) =

T#

0

H−1(ν)B1(ν)e
sνdν.

(20)

In (20) appears the function

W̃d(s) =
β(ζ)

α(ζ)

$$$$
ζ=e−sT

(21)

and the monodromy matrix for FDLCP-object P
M = H(T ). (22)

In turn, H(t) appearing in (22) is the fundamental
Cauchy’s matrix of the FDLCP-object P, which can be
found by integrating the differential equation

dH(t)

dt
= A(t)H(t) (23)

with the initial condition H(0) = E. Here and in (20) E
is the unit matrix of appropriate dimension.

As matrices A(t), B1(t), B2(t) and C(t) have the form
(14)-(16), the PTF Wy(s, t, Z) is scalar. The PAFR
Ay(ν, t, Z) of the system W can be calculated by the
formula

Ay(ν, t, Z) = |Wy(s, t, Z)||s=iν , (24)

where ν is the frequency. It is obvious, that owing to
periodicity of the system W (and PTF Wy(s, t, Z)) for the
PAFR the relation Ay(ν, t, Z) = Ay(ν, t+ T, Z) is valid.

In the following the function Āy(ν, Z), found as the average
PAFR over time

Āy(ν, Z) =
1

T

T#

0

Ay(ν, t, Z)dt, (25)

will be used.

4. CONSTRUCTING THE SET Z

Below we will assume that the set of Z is formed by
vectors of type Z, each of which defines a causal stabilizing
regulator of the type (4) and the order of which is R ≤
Rmax, where Rmax is given. This set Z can be constructed
using the results in Lampe et al. (2007, 2016). In these
works the general algorithm of construction the set of all
causal stabilizing controllers for SD-control systems for
FDLCP objects of type (12), (13) is formulated. It is shown
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that the task of causal stabilization can be reduced to the
solution of the determinant polynomial equation (DPE)

det

-
E − ζM O −ζMD
−C(0) E O

O −β(ζ) α(ζ)

.
∼ ∆(ζ), (26)

where O are zero matrices of corresponding dimension,
the D matrix is determined by (20) and ∆(ζ) is a stable
polynom (without roots inside and on the unit circle).
For properties of DPE (26) and ways of solution refer to
Rosenwasser et al. (2006); Lampe et al. (2007, 2016). It
is shown in Lampe et al. (2007) that if the pair [M,D] is
completely controllable and the pair [M,C] is completely
observable, DPE (26) is equivalent to the equation

det

%
d(ζ) −ζm(ζ)
−β(ζ) α(ζ)

&
∼ ∆(ζ), (27)

where d(ζ) and m(ζ) are polynomials in the given case.
The polynomial d(ζ) could be found using

d(ζ) = det(E − ζM), (28)

and polynomial m(ζ) follows from representation

WP(ζ) =
ζm(ζ)

d(ζ)
, (29)

where

WP(ζ) = ζC(E − ζM)−1MD (30)

is the discrete model of the continous FDLCP-object P
given by (12), (13). Thus, the problem of constructing the
set Z is reduced to the question of parameterizing the
solution set of the scalar polynomial equation

d(ζ)α(ζ) + ζm(ζ)β(ζ) = ∆(ζ). (31)

The polynomials m(ζ) and α(ζ) are coprime under the
assumptions made, therefore the equation (31) for any
polynomial ∆(ζ) is solvable. The whole set of polynomials
α(ζ), β(ζ), which is the solution to the equation (31), can
be parameterized in the form

α(ζ) = α0(ζ) + ξ(ζ)ζm(ζ), β(ζ) = β0(ζ)− ξ(ζ)d(ζ), (32)

where ξ(ζ) is null or any other polynomial, and α0(ζ),
β0(ζ) is a particular solution of (31). As a particular
solution the minimal solution of equation (31) can be
chosen. If the polynomial ∆(ζ) was chosen such that

deg ∆(ζ) < deg m(ζ) + 1 + deg d(ζ), (33)

the equation (31) has only the minimal solution and for
this minimal solution applies

deg α0 ≤ R0, deg β0 ≤ deg d(ζ)− 1, (34)

where the designation

R0 = deg m(ζ) (35)

is used. Then the following cases are possible:

(1) Let Rmax = R0. In this case the set Z is defined by
the set of polynomials ∆(ζ) satisfying (34).
This set unambiguously corresponds to the minimal

solution α0(ζ), β0(ζ), satisfying (33). According to
terminology in Rybinskii et al. (2014) this set is

called the reference controller set and the number R0

the reference order. The monic polynomial ∆(ζ) can
be specified by the roots ζj (j = 1, . . . , Nζ) where
Nζ = deg m(ζ)deg d(ζ)-1). For the vector Z in this
case we have

Z = {ζj}, j = 1, . . . , Nζ , (36)

and the set Z can be given by the relation

Z : |ζj | > 1, ∀j = 1, . . . , Nζ . (37)

(2) Let Rmax > R0. In this case, the set Z corresponds
to the set of polynomial pairs α(ζ), β(ζ), satisfying
(32) with

deg ξ(ζ) < Rmax − deg d(ζ). (38)

Since the polynomial ξ(ζ) can be specified by the

coefficients ξ̃i (i = 1, . . . , Nξ), where Nξ = Rmax −
deg d(ζ), for vector Z in this case we have

Z = {ζj , ξ̃i}, j = 1, . . . , Nζ , i = 1, . . . , Nξ, (39)

and the set Z can be given by

Z :

1
|ζj | > 1, ∀j = 1, . . . , Nζ ,

ξ̃i ∈ R, ∀j = 1, . . . , Niξ
(40)

where R is the set of real numbers.
(3) If Rmax < R0, the solution of the problem is possible

only with a special polynomial selection of ∆(ζ). The
ways of such a choice are described in Rybinskii et al.
(2014).

During the numerical optimization, it is necessary to
choose a vector Z ∈ Z that the guaranteed accuracy
estimation on class M reaches the minimal value. It is
shown in Rybinskii et al. (2018) that it is possible to use
number D̄y as such estimation. This number is calculated
as follows: Let the disturbances class M be given by the
combination of N + 1 numbers (8). I addition, let the
function Āy(ν, Z) be constructed for the system W with a
fixed vector Z, the function Āy(ν, Z) is built and function
Cy(ν, Z) is found. This function has the form

Cy(ν, Z) =

N!

n=0

cn(Z)ν2n (41)

and conditions

Cy(ν, Z) ≈ Āy(ν, Z), Cy(ν, Z) ≥ Āy(ν, Z). (42)

are satisfied. Then the guaranteed quality estimation for
system W can be calculated by the formula

D̄y =

N!

n=0

cn(Z)dn. (43)

Numerous practical experiments have shown that for the
numerical optimization of the guaranteed accuracy estima-
tion D̄y on the set Z the application of genetic algorithms
is very effective.

5. NUMERICAL EXAMPLE

As an example let’s consider the optimization by the
guaranteed accuracy criterium for the system W with the
object P of second order, for which
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a1(t) =
2 cosωt+ 4(sinωt+ 2)

sinωt+ 2
;

a2(t) =
4 cosωt− 4 sinωt+ 7(sinωt+ 2)

sinωt+ 2
;

b1(t) =
1

sinωt+ 2
; b2(t) = 2.15 = const = b2,

(44)

with the period T = 0.1 sec, ω = 2π
T . For the DAC a zero

order hold was assumed, for which h(t) = 1.

For the given object the vector v(t) (11) and matrices (14)-
(16) have a form

v(t) =

%
y(t)

dy(t)

dt

&′
, (45)

A(t) =

%
0 1

−a2(t) −a1(t)

&
,

B1(t) =

%
0

b1(t)

&
, B2(t) =

%
0
b2

&
, C = [ 1 0 ] .

(46)

The Cauchy’s matrix H(t) for this object and the mon-
odromy matrix M (22) will have dimension 2 × 2, the
matrix of D (20) will have dimension 2× 1.

Further let’s use the notations

H(t) =

%
h11(t) h12(t)
h21(t) h22(t)

&
,

G(t) = H−1(t) =

%
g11(t) g12(t)
g21(t) g22(t)

&
,

(47)

Then

M =

%
h11(T ) h12(T )
h21(T ) h22(T )

&
, D = b2

T#

0

%
g12(t)
g22(t)

&
dt, (48)

and from relations (29), (30) it is possible to get

m(ζ) = [ 1 0 ] adj(E − ζM)MD,
d(ζ) = det(E − ζM)

(49)

and it is obvious, that deg m(ζ) = 1 and deg d(ζ) = 2.
Therefore according to (35) for the controllers reference
order we have R0 =1. Let the object P work under the
condition of an external stationary centered disturbance
g(t), belonging to the class M , given by the combination
of the numbers (8)

d0 = 0.3162 d1 = 1.5705, (50)

which are the variance of disturbance and the variance
of their first derivative. Different spectral densities for
disturbances in class M are shown in Fig. 2.

Following the technique stated above, let’s perform the
following synthesis of the digital controller of reference
order R0 for the given object P.

In this case by (33) we will get deg ∆(ζ) = 3, therefore
the optimized parameter vector Z, formed with use (36),
takes the form

Z = [ ζ1 ζ2 ζ3 ] , (51)

where numbers ζk, (k = 1, . . . , 3) are chosen during the
optimization procedure according to (40). The controller

Fig. 2. Different spectral density realizations in class M

Fig. 3. Simulation results for SD-system W for different
disturbances inside the class M

TF (polynomials α0(ζ), β0(ζ)), corresponding to the vec-
tor (51) can be found as the minimal solution of the

polynomial equation (31) in which ∆(ζ) =
23

k=1(ζ − ζk).

As a result of numerical optimization using the genetic
algorithm, the vector

Zgar = [ 1.406 1.740 1.469 ] , (52)

was found. The causal controllers TF, corresponding to
vector (52) is

Wd(ζ) =
5.043ζ − 105.3

ζ1.231
. (53)

The controller for the system W with TF (53) provides
for any disturbance within class M a standard deviation
of the output signal not greater than σ̄gar =

3
D̄y ≤ 0.043.

This fact is illustrated in Fig. 3, where simulation examples
for systems W with controller (53) under the conditions of
disturbances from class M are shown. In the same figure
the borders, determined by the standard deviation σ̄gar are
given. It is obvious, that the output signal does not exceed
the borders. Controller (53) is the guaranteed accuracy
controller for the system W on disturbance class M (50).
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CONCLUSION

The optimization technique by the criterion of the guar-
anteed accuracy on the set of discrete causal stabilizing
controllers for SISO continuous linear periodic object SD
control system is considered. The concept of parametric
transfer function is the cornerstone for this technique. To
construct the set of stabilizing controllers the apparatus
of determinant polynomial equations is used. Moreover, to
solve the causality problem, an approach based on the use
of the backward shift operator ζ was used. An estimate
of the worst mean variance of the system output for an
acting disturbance within a given class is used as optimiza-
tion criterium. The efficiency of the proposed technique is
illustrated by a numerical example.
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