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Abstract: This paper deals with estimating the stator flux of interior permanent magnet
synchronous machines (IPMSMs) for hybrid electric vehicles (EHV) applications. The magnetic
uncertainties due to the magnetic saturation are considered as new terms on the current-flux
model of the machine. Considering the new model, an appropriate observer based on extended
Kalman like algorithm is proposed to observe those terms. The observed terms are then used
on the flux estimator to take into account the effect of magnetic saturation. The observability
and the stability of the observer for the proposed system are studied. The simulation and
experimental results are presented to illustrate the capacities of the proposed method.
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1. INTRODUCTION

The electric vehicles and hybrid electric vehicles (EV/HEV)
are being more and more popular for car companies. Dif-
ferent types of electric motor have been investigated to be
used as the motor of traction of these vehicles. The interior
permanent magnet synchronous machines (IPMSMs) with
specific features such as simplicity, reliability and robust-
ness have been one of the best choices for this application.
In the last two decades, it has been tried to eliminate the
captures as much as possible for drive systems, particularly
position and torque sensors which are bulky and expen-
sive. Therefore, designing observers based on the model
of machine and/or based on the output signals have been
more and more paid attention. Adequate works have been
perofrmed in sensorless drives where the rotor position is
estimated. Recently, the torque estimation has been also
being an interest for drive manufactures.

Regarding the model of an IPMSM, the electromagnetic
torque can be properly estimated when the flux linkages
are available in presence of measured currents. Based on
the proposed methods in the literature, the flux of an
IPMSM can be estimated based on two model known as
voltage model and current model. The voltage model is
the definition of Farady law when the flux is obtain by the
integral of electromotive force (EMF) (Holtz, 2002). There
are some inconveniences for this type of estimation such
as the lack of observability at standstill and the creation
of an offset in the estimated flux due to unknown initial
condition of open-loop integrator (Holtz and Juntao Quan,
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2003). In order to solve the latter problem, some filters
have been proposed to be accompanied with the integrator
(Koteich, 2016; Feng et al., 2017). However, the observ-
ability problem is still the main challenge of this type of
estimation. The current model has been identified as the
relation between flux and currents of the machine. This
relationship is really nonlinear but can be simplified as a
linear model based on the magnetic parameters known as
inductances and permanent magnet flux. Any nonlinearity
in the model and also the variation of inductances due
to magnetic saturation even in the linear models induces
an error between the real flux and the estimated one. It
has been proposed in the literature to estimate the per-
manent magnet flux by an extended Kalman filter (Xiao
et al., 2010) and the inductances (Hamida et al., 2013;
Tinazzi and Zigliotto, 2015; Martinez et al., 2018; Wang
et al., 2019) by different types of signal- and model-based
observers to improve the performance of current model
flux estimator. In (Hamida et al., 2013), two nonlinear
interconnected observers was proposed to estimate sta-
tor resistance, linear inductance, load torque and rotor
speed based on the model of a surface PMSM without
considering the variation of magnetic saturation during
the motor operation. A torque estimator based on current-
flux model was presented in (Tinazzi and Zigliotto, 2015)
for high speed operation. The coupling-effect between d,
and q flux were taken into account and the approach was
experimentally verified at constant speed 1000 rpm. A
torque estimator was also proposed by (Martinez et al.,
2018) where the inductances of IPMSM, neglecting the
coupling-effect inductance, were estimated based on high
frequency injection method. The coupling-effect induc-
tance was taken into account in (Wang et al., 2019) to be
estimated by high frequency injection method. However,
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the effect of non-linearity due to the magnetic saturation
in the model of estimation is not taken into account.

In this paper, a flux/torque estimator based on current
model is proposed. The effect of magnetic saturation on
flux estimator including the coupling-effect is investigated
and taken into account to propose a new model for
IPMSM. Regarding the model which includes some terms
related to the magnetic uncertainties, an adaptive observer
known as extended Kalman like observer is designed for
the proposed model. The observer estimates the uncer-
tainty terms on the model by using measured currents.
The observability and stability analysis of the observer
for the proposed model are investigated and the results
are shown for a range of rotor speed including zero speed
crossing and zero speed standing.

2. MODEL OF IPMSM

2.1 Saturated Model of IPMSM

Model of an IPMSM in rotating synchronous reference
frame (dq) can be represented in (1)-(3) by taking into
account the saturation functions. It is supposed that the
magnet flux is constant and sufficiently aligned in d-axis.

dϕd

dt
= vd −Rsid + ωeϕq

dϕq

dt
= vq −Rsiq − ωeϕd − ωeφf

(1)


id =

ϕd

Ld0
+ 3k1ϕ

2
d + k2ϕ

2
q + 4k3ϕ

3
d + 2k4ϕdϕ

2
q︸ ︷︷ ︸

fsat−d

iq =
ϕq

Lq0
+ 2k2ϕdϕq + 2k4ϕ

2
dϕq + 4k5ϕ

3
q︸ ︷︷ ︸

fsat−q

(2)

Te = 1.5p(φf iq)︸ ︷︷ ︸
Tpm

+ 1.5p(ϕdiq − ϕqid)︸ ︷︷ ︸
Trel

(3)

where Rs, Ld0, Lq0, ωe, φf and p are stator resistance, lin-
ear d-axis stator inductance, linear q-axis stator induc-
tance, angular synchronous speed, permanent magnet flux
and number of pole pair, respectively. The terms fsat rep-
resent an example of magnetic saturation functions that
can be determined in the rotating synchronous reference
frame. The variables v, i, ϕ and T represent stator voltage,
stator current, stator flux generated by stator currents,
and electromagnetic torque, respectively. Electromagnetic
torque in (3) is divided into two terms known as perma-
nent magnet torque (Tpm) and reluctance torque (Trel).
Furthermore, the total flux linkage of an IPMSM in the
dq frame can be determined by (4).{

λd = φf + ϕd

λq = ϕq.
(4)

For an IPMSM, the stator fluxes generated by stator
currents, the electromagnetic torque and the total flux
vectors can be estimated by (2), (3) and (4), respectively,
in presence of measured currents. For a precise estima-
tion, the right values of the magnetic parameters in the
model including the permanent magnet flux (φf ), the lin-
ear inductances (Ld0, Lq0) and the saturation coefficients
( k1 to k5) are mandatory. Any uncertainties in these

parameters make an error between the real flux/torque and
the estimated ones. Furthermore, the proposed saturation
functions in (2) may change for different motors.

2.2 Proposed Model of IPMSM Considering Magnetic
Saturation Uncertainties

The aim of this model is to consider the uncertainties
on the linear inductances and the magnetic saturations
functions. For this, a set of new variables known as gd and
gq are introduced as (5).{

gd = fsat−d + (∆L−1
d0

)ϕd + ∆fsat−d

gq = fsat−q + (∆L−1
q0)ϕq + ∆fsat−q

(5)

with:∆L−1
d0 =

1

Ld0m
− 1

Ld0
,∆L−1

q0 =
1

Lq0m
− 1

Lq0

∆fsat−dq = fsat−(dq)m − fsat−(dq)

(6)

where, Ld0m, Lq0m, and fsat−(dq)m are the exact values
of the linear coefficients between fluxes and currents and
the real saturation function for the machine, respectively,
while ∆L−1

d0
, ∆L−1

q0 and ∆fsat−dq represent the devia-
tions between real and first analytical evaluation of those
parameters.

By taking into account the proposed variables gd and gq
in (1)-(2), and rewriting the equations based on current
stators as state variables, a new model which represents
the uncertainties due to magnetic saturation is obtained
as (7). Then, the stator fluxes generated by stator currents
and total flux vectors are obtained as (8) and (9), respec-
tively. The unknown variables gd and gq can be estimated
by an observer based on the model (7).

did

dt
= −

Rs

Ld0
id +

ωeLq0

Ld0
iq −

ωeLq0

Ld0
gq +

vd

Ld0
+

dgd

dt
diq

dt
= −

Rs

Lq0
iq −

ωeLd0

Lq0
id +

ωeLd0

Lq0
gd +

vq − ωeφf

Lq0
+

dgq

dt
.

(7)

{
ϕd = Ld0(id − gd)
ϕq = Lq0(iq − gq).

(8)

{
λd = φf + Ld0(id − gd)
λq = Lq0(iq − gq).

(9)

It should be noted that, the model can be also used
for reluctance synchronous reluctance motor (SynRM) by
considering permanent magnet flux (φf ) equal to zero.

3. STATOR FLUX OBSERVER

A new state variable system considering id, iq, gd and gq
as state variables and stator currents as output variables
are introduced in (10)-(12). The rotor speed is considered
as an input for the system. For an IPMSM drive for EHV
applications which is commanded by a reference torque
demanded by driver, the reference current in q-axis is not
sharply changed and the d-axis reference current is con-
stant. Any slowly changes in stator currents amplitude (dq
rerefrece currents), makes the slowly changes for magnetic
saturation functions in dq frame which are a function of
those currents. Thus, it is assumed that the variables gdq
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vary slowly and their first derivative can be set to zero.
Then the following system can be established.{

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t))

(10)

with:

x = (id, iq, gd, gq)T , u = (vd, vq, ωe)
T , y = (id, iq)T . (11)

f(x, u) =


− Rs

Ld0
id +

ωeLq0

Ld0
iq −

ωeLq0

Ld0
gq +

vd
Ld0

− Rs

Lq0
iq −

ωeLd0

Lq0
id +

ωeLd0

Lq0
gd +

vq − ωeφf
Lq0

0
0

(12)

3.1 Observability study

The locally weakly observability of the proposed sys-
tem (10)-(12), based on the rank criterion are investi-
gated in this part (Hermann and Krener, 1977). The local
observability of the system is satisfied if the regularly
observability matrix Oy(x) is full rank at x0. For a 4th-
order system, Oy(x) is given in (13).

Oy(x) =
∂

∂x


£0

fh(x)
£1

fh(x)
£2

fh(x)
£3

fh(x)

 =
∂

∂x



h(x)
∂h(x)

∂x
f(x)

∂£1
fh(x)

∂x
f(x)

∂£2
fh(x)

∂x
f(x)


(13)

where £k
fh(x) is the kth-order Lie derivative of the

function h with respect to the vector field f . After the
computation of Oy for the proposed system (10)-(12), it
is found that there are no linear combination between the
rows and the columns of the matrix for ωe 6= 0. Let us set
ωe = 0, then, the observability matrix is obtained as:

Oy(x) =


1 0 − Rs

Ld0
0

R2
s

L2
d0

0
−R3

s
L3

d0

0

0 1 0 − Rs

Lq0
0

R2
s

L2
q0

0
−R3

s
L3

q0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



T

(14)
Thus, obviously the observability of the proposed system
cannot be established at null speed operation even if the
higher derivatives of measures (currents) are used. As a
conclusion of the observability analysis, the locally weakly
observability of the system is guaranteed for nonzero
speeds.

3.2 Observer Design

Extended Kalman like observer for the proposed model:
Regarding the system presented in (10)-(12), an observer
is designed for the system based on Extended Kalman Like
algorithm with the rotor speed as an input for the matrix
A. The observer system is describes in (15).{

˙̂x = A(ωe)x̂+ v(ωe, vdq)−K(Cx̂− y)
ŷ = Cx̂

(15)

with:

A(ωe) =


− Rs

Ld0

ωeLq0

Ld0
0 −ωeLq0

Ld0

−ωeLd0

Lq0
− Rs

Lq0

ωeLd0

Lq0
0

0 0 0 0
0 0 0 0

 (16)

v =

(
vd
Ld0

vq − ωeφf
Ld0

0 0

)T

, C =

(
1 0 0 0
0 1 0 0

)
. (17)

For the observer system (15), the gain of the observer, is
defined as K = P−1CTR−1 where P is definite positive
solution of the Riccati equation described in (18)(Ghanes
et al., 2010).

dP

dt
= −ATP − PA− PQP + CTR−1C (18)

where the matrices R and Q are symmetric definite posi-
tive matrices that are weighting matrices to tune. They can
be defined as Q = diag(qi, qi, qg, qg) and R = diag(r, r),
respectively .

3.3 Stability Analysis

In order to prove the stability of the observer proposed
in (15)-(17), the practical stability (V. Lakshmikantham
and Martynyuk, 1990) is employed in this part. The ob-
server stability is analyzed under parameter uncertainties
linked to the deviation of stator resistance due to the
temperature variation. Therefore, the system (10)-(??)
is rewritten in the following form:{

˙̂x = A(ωe)x̂+ v(ωe, vdq) + ∆Ax
ŷ = Cx̂

(19)

where ∆A is uncertain terms of the matrix A(ωe) depend-
ing only on the stator resistance variation. It is given by:

∆A =


−∆Rs

Ld0
0 0 0

−0 −∆Rs

Lq0
0 0

0 0 0 0
0 0 0 0

 (20)

with ‖∆A‖ ≤ ρ, where ≤ ρ is a positive constant. Let us
now define the estimation error as:

e = x− x̂. (21)

The dynamic of the estimation error can be expressed as:

ė = (A−KC)e+ ∆Ax. (22)

Lemma 1. There is t0 ≥ 0 and real members ηmp
ax >

0, ηmp
in > 0, such that ηmp

in‖e‖2 ≤ V (t, e) ≤ ηmp ax‖e‖2.

Then, the following theorem about the observer conver-
gence can be rewritten.

Theorem 2. Consider the nonzero input ωe for the system
matrix A(ωe) in (16) such that the local observability is
fulfilled with respect to (14). Then, the system (15) is
an adaptive observer for the machine model (10) with
strongly practical stability of the estimation error dynam-
ics (22).

Proof. in order to prove the stability of the estimation
error, let us define the following Lyapunov function candi-
date:

V = eTPe. (23)
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Fig. 1. Determinant of matrix P in a function of ωe

Taking the time derivative for the function V and replac-
ing (18, 21, 22) to the derivative, it is obtained:

V̇ = −eTPQP−eTCR−1CT e+∆AxPe+eTP∆Ax. (24)

According to Lemma1 and the physical operation domain
of the IPMSM, there is positive l1 and l2 such that the
following inequalities hold:

‖P‖ ≤ l1, ‖x‖ ≤ l2. (25)

Substituting (25) into (24), the time derivative of V
satisfies the condition.

V̇ ≤ −eTPQPe− eTCR−1CT e+ l1l2ρe+ eT l1l2ρ. (26)

By taking into account µ = l1l2ρ and since V > eTPQPe+
eTCR−1CT e, (26) can be rewritten as:

V̇ ≤ −eTPQPe− eTCR−1CT e+ µ̃
√
V (27)

where

µ̃ =
µ√
ηmp

in
. (28)

By using the same procedure such as the strongly practical
stability proof (V. Lakshmikantham and Martynyuk,
1990), the strongly practical stability of the proposed
observer is proved.

Remark 1. As the gain of the observerK is proportional to
P−1, it is interesting to see the determinant of the matrix
P for a range of rotor speed. For the proposed system, a
numerically calculation of the determinant by numerically
solving of (18) is illustrated in Fig. 1 for an ωe range from
-314 rad/s to 314 rad/s.

It can be seen from the curve in Fig. 1 that the determinant
of matrix P goes to infinity for the very low and null speeds
which means that the gain of the observer K is null on
that time. In the other word, for null speeds, the term
K(y−Cx) in (15) goes to zero and the observer will be the
copy of the system. Thus the observer gain cannot effect
on the stability of the system and the estimated variables
gd and gq are obtained as:{

˙̂gd = 0→ ĝd = ĝd(t0)
˙̂gq = 0→ ĝq = ĝq(t0)

(29)

where t0 is the initial time for a discrete-time integrator
with sampling time Ts and in an interval [t0, t0 + Ts].
From (29), it can be remarked that if the observer is
already converged before standing in null speed, it keeps
the estimated variables gdq. For sure, any new magnetic
uncertainties in these moments creates a difference be-
tween estimated and real variables because of the observ-
ability problem in null speed. Nevertheless, there are no

explosions for the estimated variables during zero speed
as proven in following.

Lemma 3. In the observer (15) and for ωe = 0 , the
dynamic of error for idq state variables and for gdq state
variables are practically and Lyapunov stable, respectively.

Proof. for ωe = 0 , (22) becomes as:{
ė(1,2) = A0e(1,2) + ∆A0x(1,2)
ė(3,4) = 0

(30)

with: A0 =

−
Rs

Ld0
0

0 − Rs

Lq0

, ∆A0 =

−
∆Rs

Ld0
0

0 −∆Rs

Lq0


then, a new Lyapunov candidate function is defined for
ωe = 0, as following:

V0 = eT e. (31)

By taking the time derivative of 31, it is obtained:

V̇0 = ėT e+ eT ė =

{
2eT(1,2)A0e(1,2) + 2eT(1,2)∆A0x(1,2)
0

.

(32)

In (32), as the term 2eT(1,2)A0e(1,2) < 0, then V̇0 ≤
2eT(1,2)∆A0x(1,2) which proves the practical stability of idq
estimation error dynamics. Furthermore, the estimation
error dynamics of gdq are Lyapunov stable as their corre-
sponding derivative Lyapunov functions are equal to zero.

It should be remarked that the matrix Q in the observer
system has to be tuned in such a way to have zero gains
for the observer at very low speeds.

4. RESULTS

Table 1. IPMSM parameters

Symbol Quantity Values

Ld0 d-axis linear inductance 3.5 mH
Lq0 q-axis linear inductance 5 mH
φf permanent magnet flux 0.144 Wb
p number of pair poles 3
Tl nominal torque 9 Nm
Rs stator resistance 0.5 Ω

4.1 Simulation Results

An IPMSM based on the parameters shown in table 1
is simulated in Matlab/Simulink R©environment. The mag-
netic saturation functions (fsat−dq) are considered for the
model based on (2). The observer is also simulated in
the same environment with sampling time 10−4 regard-
ing (15)-(17). The value of Ld0 in the observer model is
considered 3 times bigger than that of the machine model
while the magnetic saturation functions are only consid-
ered for the simulated machine. The simulation results are
illustrated in Figs. 2-3. By using the observed variables gdq
on the modified flux estimators (8)-(9), the correct fluxes
and consequently the correct torque is obtained as shown
in Fig. 2 where Fig. 2(a) and Fig.2(b) describe the real
and estimated values for the total flux and electromagnetic
torque, respectively. It can be seen from the figures that
the estimated variables and the real ones are the same
even with unknown magnetic saturation functions and
wrong determination of linear inductances. In order to
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Fig. 2. Simulation results: (a) real and estimated flux link-
ages, (b) real and estimated electromagnetic torque
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Fig. 3. Simulation results: (a) real and estimated reluc-
tance torque without considering the observed terms
gdq, (b) real and estimated reluctance torque with
considering the observed terms gdq

show the effect of the magnetic saturation uncertainties of
the motor, the reluctance torque of the machine is shown
in Fig. 3, without (Fig. 3(a)) and with (Fig. 3(b)) the
observed correction terms gdq. It should be noted that it
is assumed that the permanent magnet flux is constant or
estimated by an observer. Thus, the differences between
the real torque and the estimated one is concerned with
the reluctance torque. The estimated reluctance torque is
not the same as the real one if the terms gdq are not applied
to the model (Fig. 3(a)) while they are the same with the
proposed observed terms (Fig. 3(b)).

4.2 Experimental Results

An experimental setup composed of an IPMSM rated at
3 kW supplied by a three-phase voltage source inverter is
arranged for the experimental tests. A photograph of the
test bench is shown in Fig. 4. A similar experimental test
as simulation one is considered. The measured currents
and torque are considered to be compared with those of
estimated since there are no possibility of measuring the
real magnetic saturation functions and fluxes. Obviously,
there are no saturation functions fsat−dq on the machine
model considered in the observer while it is expected to
have them in real machine. Fig. 5 shows the measured and
estimated currents (Fig. 5(a)) and torque (Fig. 5(b)) where
their estimations are converged to the measured ones. It
should be noted that the permanent magnet is precisely
calculated and does not change during the test to do
not effect on the estimation process. Thus, any deviation
between the measured torque and the real one is concerned

Fig. 4. Test bench
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Fig. 5. Experimental results: (a) measured and estimated
currents, (b) measured and estimated electromagnetic
torque with considering the observed terms gdq
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Fig. 6. Experimental results: measured and estimated elec-
tromagnetic torque without considering the observed
terms gdq

with the inductance changes due to the magnetic satura-
tion.One more time the test is repeated by considering
the terms gdq equal to zero for (8)-(9). In this condition,
it is assumed that the nominal inductances are precisely
calculated and the classical current-flux model (without
gdq terms) is used for the flux estimation. The torque
results are shown in Fig. 6. It can be seen that there is a
difference between the measured torque and the estimated
one especially for higher currents despite the precisely
determination of linear inductances. By comparing the
results shown in Fig. 5(b) and Fig. 6, it is concluded that
the observer is well estimating the terms gdq which are
concerned with the wrong calculation of linear inductance
and/or the magnetic saturation functions. These terms
can be considered in (8)-(9) to correct the errors due to
magnetic uncertainties in flux and torque estimators.
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Fig. 7. Experimental results: (a) speed profile, (b) mea-
sured and estimated electromagnetic torque

In order to see the stability of the observer at zero speed
crossing or at zero speed standing, a variable speed exper-
imental test is prepared. A variable speed profile shown in
Fig. 7(a) is considered for the motor during the observation
process. The results for estimated torque are shown in Fig.
7(b) where they are compared with the measured ones.
From 0 s to 10 s, the terms gdq are observing but are not
considering for the flux and torque estimators (3),(8)-(9).
As expected, a gap is observed between the measured and
estimated torque for the interval. At time 10 s, the the
observed terms are added to the estimators while the speed
profile is repeated. It can be seen that the gap is disap-
peared because of the correction terms gdq. It means that
the proposed observer is well estimating the fluxes even
in variable speed conditions. In point of view of stability,
it should be remarked that there are no explosion for the
estimated fluxes and consequently the estimated torque at
zero speed crossing and even during zero speed standing.
As theoretically proved, the observer goes to be the copy of
the system for zero speeds. It is also remarked that if the
observer has already captured the correct values of gdq
corresponding the magnetic uncertainties, they are kept
as the system during zero speed standing or at zero speed
crossing. As illustrated in Fig. 7(b), the correction terms
gdq are added at time 10 s but there are no changes for
the estimated torque because of the null speed condition.
It means that there are no dynamic for the terms gdq at
zero speed as proved in Remark1. At the second interval
(10 to 20 s) and by the same reason, the terms gdq, that
have already collected the uncertainties, are kept during
zero crossing at time 16 s. Thus, the estimated torque is
the same as the measured one even during the zero speed
crossing without any explosion on that time.

5. CONCLUSION

A flux/torque estimator considering the magnetic satura-
tion uncertainties is proposed based on a modified current-
flux model of an IPMSM applied in EHV systems. It
is proposed to consider two new terms on the model of
an IPMSM which defines the influence of wrong deter-
mination of linear inductances and the variation of mag-
netic saturation on flux estimation. An adaptive extended
Kalman like observer is designed to observe those terms
to be used in flux/torque estimator. It is shown that the
gain of the observer regarding the proposed model goes
to zero at zero speed which cannot effect on the stability
of the system at zero speed crossing as well as zero speed
standing. Furthermore, as the uncertainties are considered

in the proposed model, they are well observed at zero
speed if the observer has already kept them and also if
there are no new uncertainties during zero speed operation.
The simulation and experimental results are proved the
effectiveness of the proposed method.
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