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Abstract: Aggregated dynamic equivalent models of active distribution networks (ADNs) are
commonly derived using the measurement-based approach. This method exploits acquired data
in order to estimate the model parameters using system identification techniques. However, most
of the approaches assume that the system maintains the same dynamics for different operating
conditions, even though the load mix and the distributed generation (DG) composition are
constantly changing. To this end, this paper presents a novel method, which can be used as
the first step of the system identification procedure, in order to take into account different
system dynamics in ADN modeling. To do so, three unsupervised learning methods for clustering
the various dynamic behaviors are introduced, yielding groups of measurements that represent
different dynamics. In this context, the proposed methods leverage four clustering algorithms
of different notion and complexity, namely k-means++, k-medoids, fuzzy c-means (FCM) and
hierarchical clustering. To assess the validity of the proposed approach, real measurements
acquired within a year in six real substations in Southern Germany are processed. The results
highlight the remarkable difference in system dynamics justifying the necessity of an initial
cluster analysis. Finally, the ratio of ”Within Cluster sum of squares” to ”Between Cluster
Variation” (WCBCR) is deployed to compare the effectiveness of the clustering algorithms.

Keywords: active distribution networks, unsupervised learning, clustering, dynamic models,
parameter identification, measurement-based approach, multisignal analysis

1. INTRODUCTION

In the last years, distribution networks have started chang-
ing drastically containing not only electrical loads but
also distributed generation (DG), storage devices, electric
vehicle charging infrastructure, and controlled loads. They
have a direct impact on system dynamics and thus, system
balance and stability need to be investigated further (Zali
and Milanović (2013)). To this end, significant research
effort was put into upgrading the existing dynamic distri-
bution network models, i.e. load models, which are crucial
for power system planning and control (Arif et al. (2017)).

Aggregated dynamic equivalent models are typically viewed
as a promising way to model active distribution networks
(ADNs) since they do not require a detailed representation
of the system and they can accurately capture the various
system dynamics. There are two major methods to ex-
tract aggregated models based on either system reduction
or measurement data. Measurement-based methods have
been considered as a more suitable solution for ADN
modeling due to their general applicability (Resende et al.
(2013)). As a general rule, those models have voltage
as input, active or reactive power as output and their

? The research presented in this paper has been supported by
TransnetBW GmbH (TSO) and Netze BW GmbH (DSO).

parameters are estimated based on data generated by a
simulation software or by real measurement units.

However, the majority of those methods mainly derive only
one single dynamic model assuming that the system has
the same dynamic behavior for all operating conditions
(Renmu et al. (2006), Bai et al. (2009), Zali and Milanović
(2013), Papadopoulos et al. (2014), and Kontis et al.
(2017)). In reality, the load mix and the DG composition
are constantly changing due to time and weather varia-
tions. To this end, Kontis et al. (2019) and Metallinos et al.
(2016) proposed two artificial intelligence methods to build
generic dynamic models. However, both methodologies re-
quire in-depth knowledge about the grid configuration, e.g.
load and generation mix, which in real-world applications
is hard to obtain. Therefore, it is essential to develop a
methodology which considers the various ADN dynamics
in a realistic fashion without relying on a concrete detailed
representation of the system.

To tackle the lack of detailed information of the compo-
nents, which affect the ADN dynamics, while proving a so-
lution that is valid for a wide range of operating conditions,
a novel unsupervised learning technique is introduced. The
proposed method encourages the development of several
models for a single ADN, able to reliably capture the
various dynamics. To do so, similar dynamic behaviors
are automatically grouped together into clusters. Three
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different strategies for clustering dynamic behavior are
proposed and compared. The first strategy exploits the
raw time domain (TD) data of input and output signals in
order to find common patterns within them and to group
them accordingly. The second strategy is an enhanced
version of the first one. Here, both TD and frequency
domain (FD) data of the measured signals are deployed.
In the third strategy, a first- or a second-order transfer
function is generated for each single measurement and then
a step input is applied to each model. In the next step, a
cluster analysis is performed based only on the calculated
step responses. Furthermore, for each one of the aforemen-
tioned strategies, four different clustering algorithms are
employed, namely k-means++, k-medoids, fuzzy c-means
(FCM) and hierarchical clustering.

Once each single measurement has been assigned to a
specific cluster, a different dynamic model can be derived
for every cluster based on a multisignal analysis technique
of its entries. The derived models can describe either the
active or the reactive power response of the system. Impor-
tantly, the proposed method can be effortlessly integrated
into most of the existing ADN modeling or load modeling
approaches in literature, as a pre-processing step in order
to take into account different dynamics and thus, enhance
their performance.

To assess the validity of the proposed method, measure-
ment units were installed at the lower voltage side of
transformers in six substations in Southern Germany. Each
transformer connects an ADN of 20 kV to a high voltage
grid of 110 kV. Each unit was triggered every time there
was a voltage change bigger than a user-defined threshold
and high resolution data of voltage, active, and reactive
power were recorded. In order to capture a wide range of
grid configurations as well as time and weather conditions,
the units acquired measurement data over a year.

The clustering results indicate that indeed an array of
different dynamics were detected within the examined
ADN due to diverse load and generation composition,
justifying the imperative need of an initial cluster analysis.

2. PROPOSED METHODOLOGY

The proposed methodology can be described by the
flowchart in Fig. 1. The method exploits the data recorded
at the point of common coupling (PCC) during a voltage
disturbance. Each measurement i yields three vectors con-
taining the rms values of voltage (Vi), active (Pi) and
reactive power (Qi). Moreover, it is crucial that the total
number of measurements M are obtained over a sufficient
period of time in order to capture the diverse dynamics
due to, e.g. time and seasonal variations.

2.1 Data pre-processing

Since the measurements are obtained at PCC and there
is DG within the examined ADN, it is clear that the
recorded active power does not reflect the total power con-
sumption. Furthermore, it is intended that the proposed
method works independently of the initial voltage, active
or reactive power conditions. To this end, a pre-processing
step is applied to the acquired data. In this phase, the
actual differences between the raw TD values (Vi(t), Pi(t),
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Fig. 1. Flowchart of the proposed methodology.

Qi(t)) and the initial pre-disturbance conditions (V0,i,P0,i,
Q0,i) of voltage, active and reactive power, respectively,
are calculated for each time step t using:

∆Xi(t) = Xi(t)−X0,i, X0,i =
1

N0
·

∑
tn∈[t0−1,t0)

Xi(tn) (1)

where t0 is the time of the disturbance and N0 is the num-
ber of samples recorded within 1 s before the disturbance.
Furthermore, depending on the context, the variable X
represents voltage, active and reactive power, Xi(t) and
X0,i indicate the TD and pre-disturbance values of the i-
th measurement, respectively, while ∆Xi(t) is the actual
difference between them. It is worth mentioning that the
initial values are estimated by averaging the recorded val-
ues right before the disturbance due to the measurement
noise and the continuous switching of the consumers.

Once the actual differences of voltage, active and reactive
power have been estimated, three different strategies are
deployed based on different feature selection in order
to find common patterns within the pre-processed data.
Therefore, the major difference between the strategies lies
in the features that are used by the clustering algorithm.

2.2 Time domain data

The first strategy leverages the pre-processed TD values of
voltage and active or reactive power. The choice of which
power will be used is determined by the user based on
the desired ADN modeling approach. To form the feature
matrix, the actual change in voltage and active or reactive
power are merged into a vector Fi = [∆Vi(t),∆Pi(t)]

>

or Fi = [∆Vi(t),∆Qi(t)]
> for every measurement i =

1, ...,M .

2.3 Time and frequency domain data

The second strategy is similar to the first one but instead
of using only the TD data of the pre-processed signals,
it additionally exploits their FD values as derived by the
Fast Fourier Transform (FFT) with a sampling frequency
of 100 Hz and a signal duration of 2.5 s. Importantly, for
each measurement i, the frequency in which the FFT of the
examined signal has the maximum amplitude, is appended
to every feature vector Fi as:

Fi = [ ∆Vi(t),∆Pi(t),
f∆V,max, ..., f∆V,max, f∆P,max, ..., f∆P,max]>

(2)
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for active power, or in case of reactive power:

Fi = [ ∆Vi(t),∆Qi(t),
f∆V,max, ..., f∆V,max, f∆Q,max, ..., f∆Q,max]>

(3)

where f∆V,max, f∆P,max and f∆Q,max indicate the fre-
quencies, where the FFT of ∆Vi(t), ∆Pi(t) and ∆Qi(t)
get their maximum amplitude value, respectively. In order
to balance both TD and FD influence, the corresponding
frequency values are expanded within the feature vector,
so that they occupy the same amount of vector positions
as their TD signal. An alternative would be to deploy
the single-sided amplitude spectrum of the FFT, but the
highly noisy data of our application hinder the implemen-
tation of this approach in practice.

2.4 Step responses

The third strategy approaches the problem of finding
patterns within dynamic behavior in a different way, which
can be described by the following steps:

(1) A first- and a second-order transfer function, G1,i(s)
and G2,i(s), respectively, are estimated for each single
measurement i. The input signal is the change in
voltage, ∆Vi(t), and the output signal is the change
in power, ∆Pi(t) or ∆Qi(t). The order of the transfer
function was selected to be low in order to avoid over-
fitting while capturing the general dynamic response.
Finally, the transfer function parameters are esti-
mated using the CONtinuous-Time System IDentifi-
cation (CONTSID) technique (Garnier et al. (2003)).

(2) The two derived models, i.e. G1,i(s) and G2,i(s), are
compared for each measurement i. The one that yields
the best fit is selected. The best fit is determined in
terms of normalized mean square error between the
simulated response and the real output value.

(3) A unit step function is applied as an input to each
one of the selected transfer function models, yielding
the step responses ∆Yi(t). Importantly, ∆Yi(t) refers
either to an active power or reactive power step
response based on the desired ADN model.

(4) In this step, the TD values of ∆Yi(t) are deployed to
form each feature vector Fi = [∆Yi(t)]

>.

It is worth mentioning that the main motivation behind
this method is to decrease the noise influence during clus-
tering and reduce the total number of required features.

2.5 Merge and normalization

This step is common for all three strategies. In this phase,
each individual feature vector Fi is put into a set F =
[F1,F2, ...,FM ], which forms the feature matrix. Then,
each row of F is normalized and the new matrix is directed
as input to the clustering algorithm. Since clustering
raw dynamic responses has, to the best of the authors’
knowledge, not been presented in literature before, the
choice of an adequate clustering algorithm in not trivial.
Therefore, four clustering algorithms of different notion
and complexity are tested.

3. CLUSTERING ALGORITHMS

3.1 K-means++

K-means++ is one of the most commonly deployed clus-
tering algorithms, since it has shown remarkable results in
a wide range of engineering applications (Pham and Afify
(2007)). It basically partitions the data into K clusters
C = {C1, C2, ..., CK}. To do so, k-means++ tries to mini-
mize the ”Within Cluster Sum of Squares” (WCSS) in an
iterative manner (Arthur and Vassilvitskii (2007)). This
minimization can be written as:

arg min
C

K∑
k=1

∑
Fi∈Ck

‖Fi − ck‖2, (4)

where ck = 1
Nk

∑
Fi∈Ck

Fi indicates the centroid of Ck, as

estimated by averaging its Nk entries. In our application,
the maximum number of iterations was set to 1000, while
100 tries were executed using new initial cluster centroid
positions.

3.2 K-medoids

Contrary to k-means++ which uses the mean of cluster
entries as center (centroid), k-medoids employs the median
cluster member as center (medoid). This k-medoids feature
offers robustness to noise and outliers (Pham and Afify
(2007)). As a general rule, the partitioning around medoids
(PAM) algorithm is commonly used for small data sets in
order to solve the k-medoids problem. Its main principle is
similar to k-means++ algorithm but instead of estimating
a new cluster centroid in every iteration, PAM algorithm
checks each one of the cluster members as a potential
medoid based on their generated WCSS (Kaufman and
Rousseeuw (2009)). In our application, similar parameters
were deployed as in k-means++.

3.3 Fuzzy c-means (FCM)

FCM is based on the general idea that each data entry
can partially belong to more than one cluster using a
degree of membership (Bezdek (2013)). In an iterative
manner, FCM partitions the data into clusters and assigns
the adequate degrees of membership by minimizing the
objective function:

Jm =

M∑
i=1

K∑
k=1

µm
ik‖Fi − ck‖2 (5)

where µik indicates the degree of membership of Fi in the
k-th cluster, whereas m denotes the fuzzy partition matrix
exponent for controlling the degree of fuzzy overlap. In
our application, m was set to 2 and since each cluster’s
members will be used for parameter estimation, each entry
is assigned to the cluster with the maximum membership.

3.4 Hierarchical clustering

The agglomerative hierarchical clustering is the only al-
gorithm among those proposed which employs a bottom-
up approach. It starts with the hypothesis that each data
entry belongs to its own cluster. Then, it estimates the
similarity or dissimilarity, e.g. euclidean distance, for each
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data entry with the rest of the data set, forming an N×N
symmetrical matrix. Once the similarity matrix has been
formed, the pair of entries with the highest similarity are
merged together into a new cluster. A new (N−1)×(N−1)
similarity matrix is created and again the most similar
pairs are merged together until a hierarchical tree is de-
veloped (Ward Jr (1963)). The process is repeated until the
specified number of clusters is reached. In our application,
the euclidean distance was deployed as a similarity metric.

3.5 Optimal number of clusters

In order to determine the optimal number of clusters, the
knee-point criterion of WCBCR is deployed (Tsekouras
et al. (2007)), at which a further increase in the total
number of clusters does not produce a significant decrease
in WCBCR. In the numerator, WCBCR expresses the sum
of the distances of all data entries to their center while
the sum of distances between cluster centers forms the
denominator:

WCBCR =

K∑
k=1

Mk∑
i=1

d2(ck,Fi)

K∑
1≤k1≤k2

d2(ck1
, ck2

)

(6)

where Mk denotes the total number of entries assigned to
cluster Ck and d(•, •) denotes the euclidean distance.

4. CASE STUDY USING REAL MEASUREMENTS

The aim of this section is to highlight the existence of
different dynamics within an ADN, which cannot be ne-
glected during the modeling procedure. In this context,
high resolution data were recorded from August 2017 to
July 2018 in six real substations in Southern Germany. The
measurement units were triggered every time there was a
voltage drop greater than 1% of the previous measured
value. Within that period of time, around 1200 measure-
ments were acquired at each substation. Due to limited
space, the clustering results of one representative substa-
tion are presented. Nevertheless, the rest of substations
showed behavior similar to the one illustrated below.

4.1 Clustering algorithms’ comparison

As a first step of the proposed unsupervised learning tech-
nique, the different clustering algorithms are compared in
terms of WCBCR. To do so, WCBCR is estimated for
different numbers of clusters, ranging from 3 to 15, and the
results are depicted in Fig. 2, for each one of the proposed
strategies. Voltage and active power data were deployed.

For all three strategies, k-means++, k-medoids and hier-
archical clustering (blue curves) enjoy a relatively small
WCBCR without any significant difference between them.
In contrast, FCM algorithm (red curves) yields extremely
big WCBCR for all three strategies. This result can be
justified by the fact that each data entry was assigned
to the cluster with the maximum membership value, even
though it belongs to more than one cluster with different
degree of membership. In addition, similar clustering per-
formance was observed in case of voltage-reactive power
combination, with k-means++, k-medoids and hierarchi-
cal clustering outperforming FCM; while there was no
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Fig. 2. WCBCR for different strategies and clustering
algorithms.

notable deviation between their WCBCR. It should be also
mentioned that WCBCR is not suitable for the comparison
between the three proposed strategies, since different fea-
tures are used. Therefore, qualitative results are presented
in the next paragraph.

4.2 Clustering results

To compare the three different strategies, k-means++
was randomly picked as a clustering algorithm and the
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Fig. 3. Clusters with same dynamic behavior, as generated
by the ”Time domain” method (TD).
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knee-point criterion of WCBCR was employed in order to
determine the optimal number of clusters.

Both ”Time domain” and ”Step responses” methods can
distinguish different dynamic behaviors and group them
into clusters. However, in case of oscillatory input or
output, more than one cluster representing the same
dynamics were developed as shown for example in Fig.
3 and 4. The magenta curves indicate the entries that
were assigned to cluster TD1 (Fig. 3) and cluster SR4
(Fig. 4), while the green curves denote the entries of
cluster TD3 (Fig. 3) and SR5 (Fig. 4), using the ”Time
domain” and ”Step responses” strategy, respectively. Since
both approaches are exclusively based on TD features,
redundant clusters are developed for oscillatory responses
due to small phase shifts of the corresponding signals.
Therefore, in the event of oscillations in our system, it
is likely that the two aforementioned approaches will yield
redundant clusters.

This issue is tackled using the ”Time and frequency do-
main” method, as shown in Fig. 5. The whole dataset of
voltage and active power measurements was grouped into
six distinguishable clusters. The left graphs present the
voltage change and the right ones the active power re-
sponse. The colored curves indicate the individual record-
ings, whereas the black curves denote the average of each
cluster’s measurements. It is worth mentioning that al-
though strong noise is present in the active power re-
sponse due to the continuous switching of the consumers,
the proposed method can accurately capture the signals’
dynamics, as is clearly highlighted by the average cluster
responses.

Importantly, cluster 1 and 4 illustrate the partial active
power recovery after a voltage change, due to the induction
machines’ presence within the system (Karlsson and Hill
(1994)). Although both clusters look similar, they differ
mainly in the power’s new steady state, as shown by the
average cluster responses, with cluster 1 entries being char-
acterized by a bigger active power recovery. Furthermore,
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Fig. 5. Clustering results in terms of ∆V and ∆P using ”Time and frequency domain” method (TF).
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the entries of cluster 2 expose a dynamic behavior, where
active power rises even though voltage drops. Besides that,
high frequency oscillations occur for a few time steps after
the voltage change, which possibly originate from complex
control strategies of DG. Cluster 3 and 6 contain only one
entry with a significantly bigger active power change than
the rest of the measurements. In particular, the active
power change of cluster 3 reaches an actual difference of
0.35 p.u., before and after the disturbance. Finally, all
oscillations with similar amplitudes and frequencies were
correctly assigned to cluster 5, independent of the phase
shift between them.

It is now clear that the ”Time and frequency domain”
method can accurately distinguish and group different
dynamic behaviors within an ADN. Furthermore, the
results confirmed the existence of considerably different
dynamics that should not be assumed to be similar. To
this end, the need for multiple models describing the same
ADN is imperative. It should be mentioned that similar
results were acquired for voltage and reactive power data
using the ”Time and frequency domain” method. However,
the reactive power signals do not contain significant noise
coming from the switching of the consumers and thus, the
clustering results are much more clear.

Most importantly, the proposed methodology can be de-
ployed to identify outliers, e.g. internal faults within the
examined ADN, which should be discarded from the pa-
rameter estimation procedure.

5. CONCLUSION

This paper presents a novel unsupervised learning method-
ology for clustering different dynamic behavior in the
context of ADN modeling. Importantly, no knowledge of
load and generation mix is required and the clustering is
performed exclusively based on the measurements them-
selves. Furthermore, the proposed method can be easily
integrated as a pre-processing step into most of the existing
ADN modeling approaches. Therefore, different dynamic
models can be accurately generated representing the same
ADN under various operating conditions, since each mea-
surement is mapped to a different cluster.

Importantly, the combination of TD and FD features has
been proved to work most effectively, since it avoids gener-
ating redundant clusters with the same dynamics. Further-
more, k-means++, k-medoids and hierarchical clustering
produced almost identical response in terms of WCBCR
and they can be successfully deployed on clustering dy-
namic behavior. On the contrary, FCM showed poor clus-
tering performance and it is not suggested in the proposed
methodology.

In future work, artificial intelligence algorithms will be
implemented to link the derived clusters with the various
weather and seasonal conditions. In this context, the
system operator will be able to analyse the influence
of those parameters to the grid dynamics and prevent
undesired scenarios.
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