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Abstract: We study stability of linear systems with fast time-varying coefficients. The classical
averaging method guarantees the stability of such systems for small enough values of parameter
provided the corresponding averaged system is stable. However, it is difficult to find an upper
bound on the small parameter by using classical tools for asymptotic analysis. In this paper
we introduce an efficient constructive method for finding an upper bound on the value of the
small parameter that guarantees a desired exponential decay rate. We transform the system to
a model with time-delays of the length of the small parameter. The resulting time-delay system
is a perturbation of the averaged LTI system which is assumed to be exponentially stable. The
stability of the time-delay system guarantees the stability of the original one. We construct
an appropriate Lyapunov functional for finding sufficient stability conditions in the form of
linear matrix inequalities (LMIs). The upper bound on the small parameter that preserves the
exponential stability is found from LMIs. Two numerical examples (stabilization by vibrational
control and by time-dependent switching) illustrate the efficiency of the method.
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1. INTRODUCTION

Asymptotic methods for analysis and control of perturbed
systems depending on small parameters have led to impor-
tant qualitative results (Tikhonov, 1952; Kokotovic and
Khalil, 1986; Khalil, 2002; Vasilieva and Butuzov, 1973;
Bogoliubov and Mitropolsky, 1961; Moreau and Aeyels,
2000; Teel et al., 2003; Cheng et al., 2018). However, by
using these methods it is difficult to find an efficient bound
on the small parameter that preserves the stability. For
singularly perturbed systems, such a bound was presented
e.g. in Fridman (2002) by using direct Lyapunov method.

For the sampled-data systems with fast sampling, the
time-delay approach was initiated in the framework of
asymptotic methods (Mikheev et al., 1988) and aver-
aging (Fridman, 1992). Later the time-delay approach
to sampled-data control via direct Lyapunov-Krasovskii
method Fridman et al. (2004) led to efficient tools for
robust sampled-data and networked control (see e.g. Frid-
man (2014); Hetel and Fridman (2013); Liu et al. (2019)).

In this paper we consider linear systems with fast vary-
ing coefficients. Our objective is to propose a construc-
tive time-delay approach with a corresponding Lyapunov-
Krasovskii method to the averaging method for these sys-
tems. Differently from the classical results (see Chapter
10 of Khalil (2002)), where the system coefficients are
supposed to be at least continuous in time, we assume
them to be piecewise-continuous. This allows to apply our
results e.g. to fast switching systems. By taking average
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of the both sides of the system, we present the resulting
system as a perturbation of the averaged system, and
model it as a system with time-delays of the length of the
small parameter. If the transformed time-delayed system
is stable, then the original one is also stable. We assume
that the averaged LTI system is exponentially stable.

We suggest a direct Lyapunov-Krasovskii approach, and
formulate sufficient exponential stability conditions in the
form of LMIs. The upper bound on the small parameter
that guarantees a desired decay rate for the original system
can be found from LMIs. Two numerical examples (sta-
bilization by vibrational control and by time-dependent
switching) illustrate the efficiency of the method.

1.1 Necessary notations, definitions and statements

Throughout the paper Rn denotes the n-dimensional Eu-
clidean space with vector norm | · | and the induced matrix
norm | · |, Rn×m is the set of all n × m real matrices.
The superscript T stands for matrix transposition, and
the notation P > 0, for P ∈ Rn×n means that P is
symmetric and positive definite. The symmetric elements
of the symmetric matrix are denoted by ∗.
We will employ extended Jensen’s inequalities (Solomon
and Fridman, 2013):

Lemma 1.1. Denote

G =

∫ b

a

f(s)x(s)ds, Y =

∫ b

a

∫ t

t−θ
f(θ)x(s)dsdθ,

where a ≤ b, f : [a, b]→ R, x(s) ∈ Rn and the integration
concerned is well defined. Then for any n×n matrix R > 0
the following inequalities hold:
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GTRG ≤
∫ b

a

|f(θ)|dθ
∫ b

a

|f(s)|xT (s)Rx(s)ds,

(1.1)

YTRY ≤
∫ b

a

|f(θ)|θdθ
∫ b

a

∫ t

t−θ
|f(θ)|xT (s)Rx(s)dsdθ.

(1.2)

2. A TIME-DELAY APPROACH TO STABILITY BY
AVERAGING

Consider the fast varying system:

ẋ(t) = A(
t

ε
)x(t), t ≥ 0, (2.1)

where x(t) ∈ Rn, A : [0,∞) → Rn×n is piecewise-
continuous and ε > 0 is a small parameter. Similar to the
case of general averaging in Sect. 10.6 of Khalil (2002),
assume the following:

A1 There exist ε1 > 0 and t1 ≥ ε1 such that

1

ε

∫ t

t−ε
A(
s

ε
)ds = Aav + ∆A(t, ε), ∀t ≥ t1, ε ∈ (0, ε1],

|∆A(t, ε)| ≤ σ(ε),
(2.2)

with Hurwitz constant matrix Aav. Here σ is a strictly
increasing (of class K) scalar function with σ(0) = 0.

System (2.1) has almost periodic coefficients if it satifies
A1. Changing the variable s in (2.2) to θ = t−s

ε , we can
rewrite the first equation in (2.2) as∫ 1

0

A(
t

ε
− θ)dθ = Aav + ∆A(t, ε), ∀t ≥ t1, ε ∈ (0, ε1]

or, in terms of the fast time τ = t
ε ,∫ 1

0

A(τ − θ)dθ = Aav + ∆A(ετ, ε), ∀τ ≥ t1
ε1
. (2.3)

Remark 2.1. If A(τ) is 1-periodic, then in (2.3) we have
∆A = 0. If A(τ) is T -periodic with T > 0, scaling the
time t = T t̄ and denoting x̄(t̄) = x(T t̄) = x(t), we can
present (2.1) as

d

dt̄
x̄(t̄) = T ·A(

T t̄

ε
)x̄(t̄) (2.4)

with 1-periodic A(T τ̄), where τ̄ = t̄
ε . In general we can

consider almost periodic A (in the sense of (2.3) with non-
zero ∆A). For example, let A in (2.1) have the form

A(τ) = A1 cos(τ) +A2 sin2(3τ) +A3e
−τ , τ =

t

ε
with constant n × n-matrices A1, A2, A3 and with A2

Hurwitz. Then, scaling the time t = 2πt̄ and denoting
x̄(t̄) = x(t), we arrive at ˙̄x(t̄) = 2πA( 2πt̄

ε )x̄(t̄) with∫ 1

0

A(2π(τ − θ))dθ = 0.5A2 + ∆A,

where

∆A = A3

∫ 1

0

e−2π(τ−θ)dθ −→
τ→∞

0.

Additionally we assume the following:

A2 All entries akj(τ) of A(τ) are uniformly bounded for
τ ≥ 0 with the values from some finite intervals akj(τ) ∈
[amkj , a

M
kj ] for τ ≥ t1

ε1
.

Under A2, A can be presented as a convex combination
of the constant matrices Ai with the entries amkj or aMkj :

A(τ) =

N∑
i=1

fi(τ)Ai ∀τ ≥
t1
ε1

fi ≥ 0,

N∑
i=1

fi = 1, 1 ≤ N ≤ 2n
2

.

(2.5)

Note that fi 6≡ 0. For a constant akj , we have amkj = aMkj .
From A1 we have

N∑
i=1

Ai

∫ 1

0

fi (τ − θ) dθ = Aav + ∆A, ∀τ ≥ t1
ε1
.

We will further integrate (2.1) on [t − ε, t] for t ≥ t1.
Note that similar to Fridman and Shaikhet (2016), we can
present

1

ε

∫ t

t−ε
ẋ(s)ds =

x(t)− x(t− ε)
ε

=
d

dt
[x(t)−G], (2.6)

where

G
∆
=

1

ε

∫ t

t−ε
(s− t+ ε)ẋ(s)ds. (2.7)

Then, integrating (2.1) and taking into account (2.6) we
arrive at

d

dt
[x(t)−G] =

1

ε

∫ t

t−ε
A(
s

ε
)ds · x(t)

+
1

ε

∫ t

t−ε
A(
s

ε
)[x(s)− x(t)]ds, t ≥ t1.

For shortness we will omit arguments of ∆A. By changing
variable εθ = t− s in the last integral, we have

1

ε

∫ t

t−ε
A(
s

ε
)[x(s)− x(t)]ds

=

∫ 1

0

A(
t

ε
− θ)[x(t− εθ)− x(t)]dθ

= −
∫ 1

0

A(
t

ε
− θ)

∫ t

t−εθ
ẋ(s)dsdθ.

Finally, denoting

z(t) = x(t)−G (2.8)

and employing (2.2), we transform (2.1) to a time-delay
system for ε ∈ (0, ε∗] and t ≥ t1

ż(t) = (Aav + ∆A)x(t)−
∫ 1

0

A(
t

ε
− θ)

∫ t

t−εθ
ẋ(s)dsdθ.

(2.9)
System (2.9) is a kind of a neutral type system that
depends on the past values of ẋ. However, this is not
a neutral system in Hale’s form (Hale and Lunel, 1993)
because G depends on ẋ and not on x.

Summarizing, if x(t) is a solution to (2.1), then it satisfies
the time-delay system (2.9). Therefore, the stability of the
time-delay system guarantees the stability of the original
system. We will derive the stability conditions for the time-
delay system via direct Lyapunov-Krasovskii method.

Given ε∗ ∈ (0, ε1], denote by f∗i > 0 (i = 1, ..., N) the
following bound:∫ 1

0

ε|fi(
t

ε
− θ)|θdθ ≤ f∗i , t ≥ t1, ε ∈ (0, ε∗]. (2.10)
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Note that since fi ∈ [0, 1] and ε ∈ (0, ε∗], we can always

choose f∗i ≤ ε∗

2 .

Theorem 2.1. Let A1 and A2 hold. Given matrices Aav,
Ai (i = 1, . . . , N) and constants α > 0 and ε∗ ∈ (0, ε1],
let there exist n × n matrices P > 0, R > 0, Hi > 0
(i = 1, · · · , N) and a scalar λ > 0 that satisfy the following
LMIs:

Φ

√
ε∗ATi (R+

N∑
j=1

Hj)

0(N+2)n,n

∗ ∗ −R−
N∑
j=1

Hj

 < 0, i = 1, . . . , N. (2.11)

Here

Φ =

Φ11 Φ12 Φ13 P
∗ Φ22 Φ23 −P
∗ ∗ Φ33 0Nn,n
∗ ∗ ∗ −λIn

 (2.12)

with

Φ11 = PAav +ATavP + 2αP + λσ2In,
Φ12 = −ATavP − 2αP,

Φ22 = − 4

ε∗
e−2αε∗R+ 2αP,

Φ13 = −Φ23 = −P [A1, · · · , AN ],

Φ33 = −2e−2αε∗diag{ 1

f∗1
H1, · · · ,

1

f∗N
HN},

Φ14 = −Φ24 = P, Φ44 = −λIn.
Then system (2.1) is exponentially stable with a decay rate
α for all ε ∈ (0, ε∗], meaning that there exists M0 > 0 such
that for all ε ∈ (0, ε∗] the solutions of (2.1) initialized by
x(0) ∈ Rn satisfy the following inequality:

|x(t)|2 ≤M0e
−2αt|x(0)|2, ∀t ≥ 0. (2.13)

Moreover, if the LMIs (2.11) hold with α = 0, then system
(2.1) is exponentially stable with a small enough decay
rate α = α0 > 0 for all ε ∈ (0, ε∗].

Proof : Choose

VP = zT (t)Pz(t), P > 0. (2.14)

Then
d

dt
VP = 2[x(t)−G]TP

[
(Aav + ∆A)x(t)

−
N∑
i=1

Ai

∫ 1

0

fi

(
t

ε
− θ
)∫ t

t−εθ
ẋ(s)dsdθ

]
.

(2.15)

To compensate G-term we will use as in Fridman and
Shaikhet (2016)

VG =
1

ε

∫ t

t−ε
e−2α(t−s)(s− t+ ε)2ẋT (s)Rẋ(s)ds, R > 0.

(2.16)
We have

d

dt
VG + 2αVG = εẋT (t)Rẋ(t)

−2

ε

∫ t

t−ε
e−2α(t−s)(s− t+ ε)ẋT (s)Rẋ(s)ds.

(2.17)

By Jensen’s inequality (1.1)

2GTRG ≤
∫ t

t−ε
(s− t+ ε)ẋT (s)Rẋ(s)ds.

Then
d

dt
VG + 2αVG ≤ εẋT (t)Rẋ(t)− 4

ε
e−2αεGTRG. (2.18)

To compensate the Yi-terms (distributed delay)

Yi =

∫ 1

0

fi

(
t

ε
− θ
)∫ t

t−εθ
ẋ(s)dsdθ (2.19)

in (2.15), we employ as in Solomon and Fridman (2013)

VH =

N∑
i=1

VHi ,

VHi = 2

∫ 1

0

∫ t

t−εθ
e−2α(t−s)(s− t+ εθ)ẋT (s)Hiẋ(s)dsdθ

(2.20)
with Hi > 0. Differentiating VHi , we have

d

dt
VHi + 2αVHi = εẋT (t)Hiẋ(t)

−2

∫ 1

0

∫ t

t−εθ
e−2α(t−s)ẋT (s)Hiẋ(s)dsdθ

≤ εẋT (t)Hiẋ(t)− 2e−2αε

∫ 1

0

∫ t

t−εθ
ẋT (s)Hiẋ(s)dsdθ.

Applying further Jensen’s inequality (1.2)

Y Ti HiYi ≤
∫ 1

0

ε|fi(
t

ε
− θ)|θdθ

×
∫ 1

0

|fi(
t

ε
− θ)|

∫ t

t−εθ
ẋT (s)Hiẋ(s)dsdθ

≤ f∗i
∫ 1

0

∫ t

t−εθ
ẋT (s)Hiẋ(s)dsdθ,

we arrive at
d

dt
VHi + 2αVHi ≤ εẋT (t)Hiẋ(t)− 2

f∗i
e−2αεY Ti HiYi.

(2.21)

Define a Lyapunov functional as

V = V (x(t), ẋt, ε) = VP + VG + VH , (2.22)

where ẋt = ẋ(t + θ), θ ∈ [−ε, 0]. By Jensen’s inequality
(1.1), for all ε ∈ (0, ε∗]

V ≥ Vp + VG ≥
[
x(t)

G(t)

]T [
P −P

∗ P + e
−2αε

R

] [
x(t)

G(t)

]
≥ c1|x(t)|2

(2.23)
with ε-independent c1 > 0. Thus, V is positive-definite.

To compensate ∆Ax in (2.15) we apply S-procedure: we

add to V̇ the left-hand part of

λ(σ2|x(t)|2 − |∆Ax|2) ≥ 0 (2.24)

with some λ > 0. Then from (2.14)-(2.24), we have

d

dt
V + 2αV ≤ d

dt
V + 2αV + λ(σ2|x(t)|2 − |∆Ax|2)

≤ ξTΦξ + ε∗ẋT (t)(R+

N∑
i=1

Hi)ẋ(t),

(2.25)
where

ξT = [xT (t), GT , Y T1 , · · · , Y TN , xT (t)∆AT ] (2.26)

and Φ is given by (2.12). Substituting into (2.25) ẋ =∑N
i=1 fiAix and applying Schur complements, we conclude

that if
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
Φ

√
ε∗

N∑
i=1

fiA
T
i (R+

N∑
j=1

Hj)

0(N+2)n,n

∗ ∗ −R−
N∑
j=1

Hj

 < 0 (2.27)

we have d
dtV + 2αV ≤ 0, ∀t ≥ t1, implying

c1|x(t)|2 ≤ V (xt) ≤ e−2α(t−t1)V (t1), t ≥ t1. (2.28)

LMIs (2.11) imply (2.27) since (2.27) is affine in
∑N
i=1 fiA

T
i .

For all ε ∈ (0, ε∗], V defined by (2.22) is upper bounded
as

V (t1) ≤ c2
[
|x(t1)|2 +

∫ t1

t1−ε
|ẋ(s)|2ds

]
with ε-independent c2 > 0. For t ∈ [0, t1], x(t) satisfies
(2.1), where under A2 we have |A( tε )| ≤ a for some a > 0

and all t ≥ 0, ε ∈ (0, ε∗]. Hence, d
dt |x(t)|2 ≤ 2a|x(t)|2 for

t ∈ [0, t1] yielding |x(t)| ≤ eat|x(0)| and |ẋ(t)| ≤ a|x(t)| ≤
aeat|x(0)| for t ∈ [0, t1]. Therefore, V (t1) can be further
upper bounded as

V (t1) ≤ c2
[
e2at1 |x(0)|2 +

∫ t1

t1−ε
a2|x(s)|2ds

]
≤ c2

[
e2at1 |x(0)|2 + ε1a

2e2at1 |x(0)|2
]

≤ c3e−2αt1 |x(0)|2

(2.29)

for some ε-independent c3 > 0. Then (2.13) follows from
(2.28) and (2.29).

The feasibility of the strict LMIs (2.11) with α = 0 implies
the feasibility with the same decision variables and with a
small enough positive α = α0, and thus guarantees a small
enough decay rate. 2

Example 2.1. (Khalil (2002), Example 10.10): vibrational
control. Consider the suspended pendulum with the sus-
pension point that is subject to vertical vibrations of small
amplitude and high frequency. The linearized at the upper
equilibrium position model is given by

ẋ(t) =

 cos
t

ε
1

γ2 − cos2 t

ε
−γβ − cos

t

ε

x(t) (2.30)

with γ > 0, β > 0. Note that we linearized f given above
(10.32) on p. 410 of Khalil (2002) at x1 = π, x2 = 0
to derive (2.30). Similar to Remark 2.1, we change the
time variable t = 2πt̄ and define x̄(t̄) = x(2πt̄) = x(t),
therefore,

˙̄x(t̄) = 2π

 cos
2πt̄

ε
1

γ2 − cos2 2πt̄

ε
−γβ − cos

2πt̄

ε

 x̄(t̄) (2.31)

Then we obtain

Aav = 2π

[
0 1

γ2 − 0.5 −γβ

]
.

It follows from Theorem 10.4 of Khalil (2002) that for
γ2 < 0.5 and small enough ε, (2.30) is exponentially stable.
We choose γ = 0.2 and β = 1.

Since A in (2.31) is ε-periodic, we have ∆A = 0 and
σ = 0. Note that cos ∈ [−1, 1] and cos2 ∈ [0, 1].

Therefore, (2.30) can be presented as a system with
polytopic type uncertainty, where A1, . . . , A4 correspond
to the four vertices:

A1 = 2π

[
−1 1
γ2 −γβ + 1

]
, A2 = 2π

[
−1 1

γ2 − 1 −γβ + 1

]
,

A3 = 2π

[
1 1
γ2 −γβ − 1

]
, A4 = 2π

[
1 1

γ2 − 1 −γβ − 1

]
.

(2.32)
By verifying the feasibility of LMIs (2.11) in the four
vertices, where for simplicity we take α = 0 and f∗1 =
... = f∗4 = 0.5, we find an upper bound ε∗ = 0.0031
that preserves the stability of (2.30) for all ε ∈ (0, ε∗].
Numerical simulations under an arbitrary initial condition
show that the system (2.30) is stable for a bigger upper
bound ε∗ = 0.4755, which may illustrate the conservatism
of the proposed method.

Example 2.2. (Hetel and Fridman, 2013): stabilization by
fast switching. Consider a switched system

ẋ(t) =


A1x(t), t ∈ [kε, kε+ βε),

A2x(t), t ∈ [kε+ βε, (k + 1)ε),

(2.33)

where ε > 0, k = 0, 1, ... and β ∈ (0, 1), with unstable
modes

A1 =

[
0.1 0.3
0.6 −0.2

]
, A2 =

[
−0.13 −0.16
−0.33 0.03

]
. (2.34)

Then (2.33) can be presented as (2.1) with

A(τ) = f1(τ)A1 + f2(τ)A2, τ =
t

ε
∈ [k, k+ 1), k = 0, 1, ...

where f1(τ) = χ[k,k+β)(τ) is the indicator function of
[k, k+ β), f2(τ) = 1− f1(τ). Choose β = 0.4 that leads to
Hurwitz

Aav = βA1 + (1− β)A2.

Here A(τ) is periodic implying ∆A = 0 and σ = 0.

The bounds (2.10) in this example can be found as follows:∫ 1

0

εf1(
t

ε
− θ)θdθ =

∫ β

0

εθdθ ≤ 0.5ε∗β2 ∆
= f∗1 ,∫ 1

0

εf2(
t

ε
− θ)θdθ =

∫ 1

β

εθdθ ≤ 0.5ε∗(1− β2)
∆
= f∗2 .

By verifying the feasibility of LMIs (2.11) with α = 0
in the two vertices, we find an upper bound ε∗ = 0.1871
that preserves the stability of (2.33) for all ε ∈ (0, ε∗].
Compared with ε∗ = 0.1871 that is obtained in the theory,
numerical simulations show that the system (2.33) with
β = 0.4 is stable for a much bigger upper bound ε∗ = 37.8.

Remark 2.2. The presented approach can be applied to
persistently excited systems:

˙̄x(t̄) = −εp(t̄)pT (t̄)x̄(t̄), t̄ ≥ 0, (2.35)

where x̄(t̄) ∈ Rn, p : [0,∞) → Rn is measurable and
ε > 0 is a small parameter. Here, similar to Pogromsky
and Matveev (2017), it is assumed that function p has the
following properties:

Boundedness: there exists a constant M such that for
almost all τ ≥ 0

p(τ)pT (τ) ≤M2In.

Persistency of excitation: there is a constant ρ > 0 such
that
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∫ 1

0

p(τ − θ)pT (τ − θ)dθ ≥ ρIn, ∀τ ≥ 1.

The system (2.35) has been studied in Pogromsky and
Matveev (2017); Zhang et al. (2019), where sufficient con-
ditions are provided to guarantee the stability. In Pogrom-
sky and Matveev (2017), a bound on the decay rate has
been derived by introducing a novel non-quadratic Lya-
punov functional. Time-varying Lyapunov functions for
PE were considered in Efimov and Fradkov (2015); Verrelli
and Tomei (2019). Note that our time-delay approach to
averaging should lead to a time-independent quadratic
Lyapunov functional and simple conditions in terms of
LMIs.

3. CONCLUSION

The presented time-delay approach to the averaging al-
lows, for the first time, to derive efficient constructive
conditions on the upper bound of the small parameter
that preserves the stability. This method provides a di-
rect Lyapunov approach to linear fast-varying systems.
It can be extended to input-to-state stability, to linear
fast-varying systems with state-delay and to persistently
excited systems.
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