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Abstract: Thermal monitoring is important not only to ensure the comfort of building
inhabitants but also to reduce energy consumption and greenhouse gas emissions. It can be,
however, a challenging task because of limited computational and sensing resources at hand.
This paper provides an efficient technique to estimate average (or mean operative) temperatures
of rooms in a building. The proposed average observer is of minimum order whose parameters
are chosen to minimize the asymptotic estimation error. The results show the effectiveness of
the approach in the estimation-based temperature regulation.
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1. INTRODUCTION

Residential and commercial buildings play a significant
part in global energy consumption and greenhouse gas
emissions. For instance, in France, they are one of the
largest sources of energy consumption, Lévy and Beläıd
(2018), and amount to 23% of the national greenhouse gas
emissions, Derbez et al. (2014). In mitigating the effects
of global warming, therefore, one of the forefronts is to
develop efficient techniques for thermal monitoring and
control of the buildings.

Model-based techniques are considered to be quite ef-
fective in thermal monitoring and control of buildings,
Oldewurtel et al. (2010) and Maasoumy et al. (2013). In
particular, resistor-capacitor (RC) network models offer
an exceptional balance between simplicity and accuracy,
Bueno et al. (2012) and Ramallo-González et al. (2013).
However, such models are not tractable because they scale
badly with the size of a building and require a tremen-
dous amount of computational and sensing equipment.
To deal with this issue, Deng et al. (2014) presented a
model reduction technique to reduce the dimension of the
building thermal model. It provides an aggregated thermal
representation of the building elements. Such a represen-
tation, although optimal for model reduction, may not be
favorable for monitoring. This is because the aggregated
parts, for instance, may consist of several walls in the
building that are not directly linked with each other.

In this paper, we provide a design of an average observer
that considers pre-specified aggregated thermal elements,
which are called clusters, and estimates their average tem-
peratures. Each cluster is meaningful and comprises the
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elements (or nodes) of a certain room, i.e., air, internal
mass, and inner envelope. The average temperatures rep-
resent the mean operative temperatures of rooms, which
is considered to be a good measure for thermal comfort;
Boduch and Fincher (2009). For each cluster, average de-
viation is assumed to be small due to the diffusive nature
of heat and the fact that the nodes in each cluster are
connected, thus allowing heat flow among themselves.

We consider the 4-room building setup of Deng et al.
(2014) and obtain an optimal estimate of average tem-
peratures of the rooms. That is, the design matrices of
the average observer are chosen such that the estimation
error is minimum. This is achieved by optimizing a sin-
gle parameter in a convex minimization problem, which
simplifies the problem to a great degree.

The rooms are heated by a simple on/off control policy
that takes the estimate of the average temperatures as
a feedback. The performance of the proposed observer is
satisfactory with the mean estimation error of about 2%
(approximately ±0.4 ◦C). Moreover, since the estimation
error is small, the on/off controller is able to regulate the
mean operative temperatures of rooms in the comfortable
range of 20-22 ◦C, Burroughs and Hansen (2004).

2. BUILDING THERMAL MODEL

There is a duality between heat transfer and electrical
phenomenon, Skadron et al. (2002), where the temper-
ature difference is analogous to voltage, heat flow to
current, thermal resistance to electrical resistance, and
thermal mass to electrical capacitance. Therefore, resistor-
capacitor (RC) network models are considered to be suit-
able for the heat conduction. Convection and radiation, on
the other hand, can be approximated by a resistor with a
nominal empirical resistance value; Mathews et al. (1994).
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2.1 Model and parameters

We use the model of Wang and Xu (2006a), where
the building envelope is represented by 3R2C shown
in Fig. 1(c) and the internal mass by 2R2C shown in
Fig. 1(b). The building envelope consists of the walls,
ceiling, and floor, and the internal mass consists of the
carpet, furniture, and people. The mean air temperature
of the room is denoted as xin in the figure. The heater
model is shown in Fig. 1(a), where qh is a known input
and xh is the temperature at the surface of a heater.

qh ch

rin

cin

xinxh

(a) Heater

xin xm2
xm4

rm1 rm3

cin cm2
cm4

(b) 2R2C – Internal mass

xout xea2 xea4 xin

rea1 rea3 rea5
cea2 cea4 cin

(c) 3R2C – Building envelope

Fig. 1. The elements of the building thermal model.

In Fig. 1(b), xm2 is the mean surface temperature of the
total mass and xm4 is the mean temperature of its core.
In Fig. 1(c), xea2 is the mean temperature of the outside of
envelope-a and xea4 is the mean temperature of the inside
of envelope-a, where a denotes a wall, ceiling, or floor.
By employing the Kirchoff’s current law, we find that the
temperature xi at node i is governed by

ci
dxi
dt

=
∑
j∈Ni

xj − xi
rij

+
∑
k

bikqk, (1)

where ci is the capacitance of node i, Ni is the set of i’s
neighboring nodes, rij is the resistance between i and j,
bik ∈ {0, 1} is a scalar, and qk is the heater input to i when
bik = 1. The outside temperature xout directly influences
the room’s temperature if it has a window; let rw be the
resistance that the window offers.

Table 1. Parameter values.

3R2C model rea
1

cea
2

rea
3

cea
4

rea
5

Ceiling 0.3 0.17 4 0.22 0.3
Floor 0.3 0.17 4 0.22 0.3
External walls 0.3 0.17 4 0.22 0.3
Internal walls 0.3 0.22 4 0.22 0.3

2R2C model rm1 cm2 rm3 cm4 -

Internal mass 0.16 0.5 3 0.5 -

The parameter values for the 3R2C and 2R2C models
are given in Table 1, where the resistance is measured
in m2KW−1 and the capacitance in MJm−2K−1. The
temperature is measured in K, which is converted to ◦C.
We use the parameter values for 3R2C as provided in De-
coninck and Roels (2016). The parameter values of 2R2C

model are hypothetical because they depend on the type
and quantity of internal mass of each room; Wang and Xu
(2006b) provide an algorithm to identify these parameters.
Furthermore, the resistance of a window rw = 3 and the
resistance from a heater to a room rin = 0.05, whereas the
capacitance of a room cin = 0.1 and of a heater ch = 0.5.

2.2 Building setup

We consider the 4-room building setup of Deng et al.
(2014) shown in Fig. 2(a), whose RC-network represen-
tation is given in Fig. 2(b). In Deng et al. (2014), the
internal mass of the rooms is neglected and the outside air
is considered as a state node with a very large capacitance.
Here, we consider internal mass and heaters in the rooms
that adds 12 additional nodes to the network of Deng
et al. (2014), which has 37 nodes. Also, we consider the
outside temperature xout as an input, and not a state,
since it influences the building temperature and not vice
versa. This subtracts one node from the network. Thus, we
have 48 nodes in the RC-network as shown in Fig. 3. An
arrow on some nodes represents an input at those nodes;
all the black arrows indicate the outside temperature xout
and each yellow arrow indicates a heater input qhp

, where
p = 1, 2, 3, 4. Notice that, in Fig. 2(b) and Fig. 3, there
is an edge from the inner floor node to the outer internal
mass node.

We assume that the four heater nodes are the measured
nodes, that is, the temperature evolution on the surface
of the heaters is measured by the sensors. The remaining
nodes in the system are called unmeasured nodes.

2.3 State-space representation

To provide the state-space representation, we index
the nodes as follows. Nodes corresponding to the out-
side of the building envelope are Vo = {1, 2, · · · , 12}.
Unmeasured nodes corresponding to the four rooms
are Vr1 = {13, 14, · · · , 20}, Vr2 = {21, 22, · · · , 28},
Vr3 = {29, 30, · · · , 36}, and Vr4 = {37, 38, · · · , 44}, respec-
tively. Measured nodes, which are the heaters’ surfaces,
are Vh = {45, 46, 47, 48}. Let i = 1, 2, · · · , 48. Then, the
temperature of node i at time t ≥ 0 is denoted as xi(t) ∈ R.
Thus, the state vector x = [ x1 · · · x48 ]> and the state-
space representation of the system is

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t),

(2)

where u = [ qh1
qh2

qh3
qh4

xout ]> is the input vector and
y = [ x45 x46 x47 x48 ]> is the output vector.

The system’s structure is represented by a (bidirected)
graph G = (V, E ,W) shown in Fig. 3, where

V = Vo ∪ Vr1 ∪ Vr2 ∪ Vr3 ∪ Vr4 ∪ Vh
is the set of nodes, E ⊂ V × V is the set of edges, and

W =

{
1

cirij
: (i, j) ∈ E

}
is the set of edge weights. The graph is bidirected because
the edge weight for (i, j) ∈ E is (cirij)

−1, whereas the edge
weight for (j, i) ∈ E is (cjrij)

−1. Thus, the off-diagonal
entries of the state matrix A, for i 6= j, are given as

[A]ij =

{
(cirij)

−1, if (i, j) ∈ E ,
0, otherwise;
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(a) Building envelope reproduced from Deng et al. (2014)
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(b) RC-network representation of the building
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Fig. 2. RC network model of the building setup in (a).
In (b), the colored rectangular blocks correspond to
ceiling (blue), floor (brown), outer walls (light gray),
inner walls (dark gray), and internal mass (red). The
windows are represented by resistors in parallel to the
3R2C models of walls.

and the diagonal entries are given as

[A]ii =


−(rii)

−1 −
∑
j 6=i

[A]ij , if i ∈ So,

−
∑
j 6=i

[A]ij , if i ∈ V \ So;

where So = Vo ∪ {13, 21, 37} is the set of nodes directly
influenced by the outside temperature xout. Here, ci is the
capacitance of the node i and rij is the resistance between
node i and j; also, rii = rea1 , if i ∈ Vo, and rii = rw, if
i ∈ {13, 21, 37}.
The output matrix C = [ 04×44 I4 ] and the input matrix

[B]ip =

(cirii)
−1, if i ∈ So and p = 5,

1, if (i, p) = {(13, 1), (21, 2), (29, 3), (37, 4)},
0, otherwise.

3. PROBLEM DEFINITION

The goal is to estimate temperature evolution of some
thermal elements, which can be useful in temperature
regulation of a building. We remark that the system
Σ is not observable because the observability matrix

01 02

03 04

05 06

07 08

09 10

11 12

13 21

29 37

14 15 2223

30 31 3839

16

19

20
24
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28

32
35
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43

44

17 25

33 41

18 26

34 42

45 46

47 48

Fig. 3. System’s graph with 48 nodes and 52×2 edges,
where the green nodes represent the rooms, the red
nodes represent the internal mass, the blue nodes
represent the ceiling, the brown nodes represent the
floor, the gray nodes represent the walls, and the
yellow nodes represent the heaters. The four yellow
arrows represent inputs from the four heaters, whereas
all the black arrows represent the input xout. The
temperature at the heater nodes is measured. The
clusters of unmeasured nodes corresponding to each
room are encircled by a dashed line.

O = [C> (CA)> · · · (CA47)> ]> has a rank deficiency,
i.e., rankO = 40 < 48. The system is unobservable due to
the graph structure in Fig. 3, and not due to the specific
parameters. This implies that the full state reconstruction
of Σ is impossible.

Placing additional sensors to make the system observable
is not only uneconomical but also computationally ex-
pensive, because the full state reconstruction requires an
observer of order equal to the system’s dimension, which
could be very large if the building is large. Also, knowledge
of the full state may be unnecessary for the tempera-
ture regulation. In general practice, the temperature of
the room is regulated by doing a feedback from the air
temperature measurements of the rooms. However, the air
temperature is not a valid measure for assessing thermal
comfort of the room.

In this paper, we consider each room along with the nodes
that represent its internal mass and inner envelope. This
forms clusters of nodes Vr1 ,Vr2 ,Vr3 ,Vr4 that are encircled
by a dashed line in Fig. 3. Our aim is to estimate the
average temperature of each cluster, known as the mean
operative temperature of the room, which is considered
to be a good measure of thermal comfort, Boduch and
Fincher (2009).

Let x = [ x>1 x>2 ]>, where x1 = [ x1 · · · x44 ]> and

x2 = [ x45 · · · x48 ]> are the states of the unmeasured and
the measured nodes, respectively. With such a partition,
we have the following partition of the systems matrices:

A =

[
A11 A12

A21 A22

]
, B =

[
B1

B2

]
, C = [ 04×44 I4 ] .
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The average states (mean operative temperatures) corre-
sponding to Vr1 ,Vr2 ,Vr3 ,Vr4 clusters are

xav1 =
1

8

20∑
i=13

xi, xav2 =
1

8

28∑
i=21

xi,

xav3 =
1

8

36∑
i=29

xi, xav4 =
1

8

44∑
i=37

xi.

In addition, we also consider Vo cluster of outer envelope
nodes, whose average state is xav0 = 1

12

∑12
i=1 xi. Here, we

assume the average to be average mean, however, it can
be generalized to any weighted average. The dynamics of
the averages are given by the projected system

Σ̊ :

 ż(t) = Ez(t) + Fσ(t) +Gu(t)
y(t) = Hz(t)

0 = Q>σ(t),
(3)

where z = [ xav0 xav1 · · · xav4 x>2 ]> and

E =

[
ΛQ>A11Q ΛQ>A12

A21Q A22

]
, F =

[
ΛQ>A11

A21

]
,

H = [ 04×5 I4 ] , G =

[
ΛQ>B1

B2

]
.

Here, Q = diag[ 112,18,18,18,18 ], and Λ = (Q>Q)−1.

Note that σ = [ σ>0 σ>1 σ>2 σ>3 σ>4 ]> is the vector of
deviations of the states of each cluster from its average
state, i.e., σ := Jx with J = [ I44 −QΛQ> 044×4 ].

Problem statement. Given a building thermal model Σ
with temperature measurements y(t) at measured nodes,
estimate the mean operative temperatures xav1 (t), xav2 (t),
xav3 (t), xav4 (t) of the rooms.

4. MULTI-CLUSTER AVERAGE ESTIMATION

In this section, we first provide the multi-cluster average
observer whose design matrices depend on an arbitrary
matrix V . We find the explicit solution V ∗ such that the
effect of average deviation of clusters on the estimation is
minimized. Finally, we formulate the minimization prob-
lem in terms of the asymptotic estimation error. The deci-
sion variable of the problem is α > 0 such that V = αV ∗

minimizes the asymptotic estimation error.

4.1 Multi-cluster average observer

We provide the design of a multi-cluster average observer,
which is the extension of a single cluster average observer
given in Niazi et al. (2020). The difficulty in dealing with
multiple clusters arises due to the coupling between the
clusters. The observer, which is of minimum order and is
similar to Darouach (2000), is given by:

Ωav :

{
ẇ(t) = Mw(t) +Ky(t) +NGu(t)

ẑav(t) = w(t) + Ly(t),
(4)

where w(t), ẑav(t) ∈ R5 and the matrices M,K,N,L are
of appropriate dimensions. Let the estimation error be

ζ := zav − ẑav,

where zav = [ xav0 xav1 · · · xav4 ]> is the vector of average
states of clusters and ẑav = [ x̂av0 x̂av1 · · · x̂av4 ]> is the

vector of estimated average states. From (3) and (4), we
obtain

ζ̇(t) = (E11 − LE21)ζ(t) + (E11 − LE21)(w(t) + Ly(t))

−Mw(t) + (E12 −K − LE22)y(t)

+(F1 − LF2)σ(t) + (G1 − LG2 −NG)u(t),

where E11 = ΛQ>A11Q, E12 = ΛQ>A12, E21 = A21Q,
E22 = A22, F1 = ΛQ>A11, F2 = A21, G1 = ΛQ>B1, and
G2 = B2. From this equation, we see that it is critical to
minimize the influence of σ on the estimation error ζ. Since
Q>σ ≡ 0 by definition, therefore we choose L according to
F1−LF2 = V Q>, for some V defined subsequently. Thus,

L = −(V Q> − ΛQ>A11)A+
21

N = [ I5 −L ]
M = NFQ
K = ΛQ>A12 +ML− LA22,

(5)

where V ∈ R5×5 is such that M = ΛQ>A11Q + (V Q> −
ΛQ>A11)A+

21A21Q is Hurwitz. Here, A+
21 is the Moore-

Penrose inverse of A21. Given a matrix V , the solution L
in (5) is the minimizing solution to

∣∣∣∣∣∣F1 − LF2 − V Q>
∣∣∣∣∣∣,

see Campbell and Meyer (2009), where |||·||| is a matrix
norm induced by Euclidean norm. With (5), it directly
follows that

ζ̇(t) = Mζ(t) +NFσ(t). (6)

4.2 Influence of average deviation

The estimation error ζ doesn’t converge to zero due to the
influence of the average deviation vector σ in the error
dynamics (6). We would like to minimize this influence,
i.e., min ‖NFσ(t)‖, where ‖ · ‖ is the Euclidean norm and
N is given in (5) that depends on the choice of V .

Because of the diffusive nature of heat and the connectivity
of clusters, we remark that ‖σ(t)‖ is not only bounded for
all t ≥ 0, but also it is small. Therefore, it makes sense to
provide an optimal design of multi-cluster average observer
Ωav. Consider the design matrices L,N as in (5), which
depend on the matrix V , then we have the following:

Proposition 1. The solution to the minimization problem

min
V
‖NV Fσ(t)‖ (7)

is V ∗ = ΛQ>A11QΛ, where NV = N as given in (5).

Proof. If there exists a matrix V such that NV F = V Q>,
then NV Fσ = 0. Therefore, V must be chosen such that∣∣∣∣∣∣NV F − V Q>∣∣∣∣∣∣ is minimized. Thus, (7) is equivalent to

min
V

∣∣∣∣∣∣NV F − V Q>∣∣∣∣∣∣.
Note thatNV F−V Q> = F1−LV F2−V Q>, where LV = L
as in (5). Expanding the right hand side of this equation
gives

(ΛQ>A11 − V Q>)(I −A+
21A21).

From this expression, we see that V = ΛQ>A11QΛ is the
optimal solution to (7). 2

The solution V ∗ in Proposition 1 minimizes the exoge-
nous signal NFσ in (6). However, it is not the optimal
solution in terms of the estimation of average tempera-
tures of clusters. This is due to (i) it may not minimize
lim supt→∞ ‖ζ(t)‖, which also depends on M , and (ii) it
may not ensure that M = NFQ is Hurwitz.
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4.3 Error minimization

The asymptotic estimation error is lim supt→∞ ‖ζ(t)‖,
which we aim to minimize. We choose V = αV ∗, where
α ∈ R is the decision variable of the minimization problem
and V ∗ is given in Proposition 1. The constraint to this
minimization problem is to choose α such that

M = ΛQ>A11

(
I − (I − αQΛQ>)A+

21A21

)
Q, (8)

from (5), is Hurwitz. By expanding the right hand side,
we see that one part

ΛQ>A11(I + αQΛQ>)A+
21A21Q

is Hurwitz if α ≥ 0, because it is a Metzler ma-
trix with dominant diagonal values. The other part
−ΛQ>A11A

+
21A21Q is not Hurwitz by the same argument.

Combining this with the fact that V 6= 0, we choose the
domain α > 0 that must be explored to make M Hurwitz.

Suppose M is Hurwitz, then, from the solution trajectory
of (6), we have

lim sup
t→∞

‖ζ(t)‖ = lim sup
t→∞

∥∥∥∥∫ t

0

exp(Mτ)NFσ(t− τ)dτ
∥∥∥∥

= lim sup
t→∞

∥∥∥∥∫ t

0

exp(Mτ)(NF − V Q>)σ(t− τ)dτ
∥∥∥∥

≤ lim sup
t→∞

∥∥∥∥∥
∫ t

0

exp(Mτ)(NF − V Q>)dτ · 1 sup
0≤θ≤t

‖σ(θ)‖

∥∥∥∥∥ ,
where 1 is the vector of ones with appropriate dimen-
sion. The term sup0≤θ≤t ‖σ(θ)‖ cannot be minimized
since it depends on the dynamics of the system Σ.
Therefore, we postulate the cost functional to minimize
lim supt→∞ ‖ζ(t)‖ as follows:

min
α>0

∣∣∣∣∣∣∣∣∣∣∣∣∫ ∞
0

exp(Mατ)(NαF − αV ∗Q>)dτ

∣∣∣∣∣∣∣∣∣∣∣∣
s.t. Mα is Hurwitz,

(9)

where Mα = M is in (8), V ∗ is given in Proposition 1, and

Nα =
[
I5 (αV ∗Q> − ΛQ>A11)A+

21

]
.

10 11 12 13 14 15 16 17
4.2

4.4
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4.8
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C
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st

Fig. 4. Cost functional in (9) versus α. The minimum is
achieved at α = 14 for the building setup of Fig. 2.

The problem (9) can be solved by a simple greedy algo-
rithm, which can be summarized as follows:

(i) Increase α until Mα is Hurwitz.
(ii) Repeat iteration: At each iteration, with a small step

ε > 0, increase α← α+ ε and compute the cost (9).
(iii) Stop iteration when a (local) minimum is reached.

For the building setup of this paper, the cost functional in
(9) is convex and the solution is found to be α∗ = 14, as
shown in Fig. 4.
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Fig. 5. Average temperature estimation of the rooms in a
building.

5. RESULTS AND DISCUSSION

We implement the multi-cluster average observer Ωav for
the building setup of Section 2. The initial conditions
x(0) ∈ R48 of Σ are chosen randomly in the interval
(10, 20). The output y(t) of the system consists of the
temperature measurements at the heaters’ surfaces. The
input u = [ u>h xout ]>, where u>h = [ qh1

qh2
qh3

qh4 ] is
the input of the heaters and xout is the known outside
temperature. We suppose xout(t) = 5 sin(π/12 t− π).

A simple on/off control policy is used for the heaters
by taking a feedback of the estimates of rooms’ mean
operative temperatures from Ωav. That is, the heater j
turns on with qhj

(t, x̂avj ) = 50 when x̂avj (t) ≤ 20, and it
turns off with qhj (t, x̂avj ) = 0 when x̂avj (t) ≥ 22, where
j = 1, 2, 3, 4. Inside the interval 20 < x̂avj (t) < 22, the
control input qhj (t, x̂avj ) retains its value. That is, suppose
x̂avj (t1) ≤ 20, then, for t > t1, the heater turns on
with qhj (t, x̂avj ) = 50. When the heater is on, the mean
operative temperature of room j starts to rise, and so does
its estimate, i.e., 20 < x̂avj (t) < 22. The heater will stay
on until x̂avj (t) = 22, where it will be turned off. It will
remain off, and the mean operative temperature falls and
so does its estimate, until x̂avj (t) touches its lower limit of
20 ◦C, where the heater will be turned on again.

We compute V = αΛQ>A11QΛ, where α = 14,

V =


−24.59 0.64 0.64 0.64 0.64

0.50 −45.72 0.25 0.25 0
0.50 0.25 −45.72 0 0.25
0.50 0.25 0 −44.99 0.25
0.50 0 0.25 0.25 −45.72

,
then we compute L,N,M,K from (5). The plots of average
temperatures of the rooms and their estimated trajectories
are shown in Fig. 5. With a simple on/off control policy
and an average observer, notice that average (or mean
operative) temperatures of the rooms remain inside the
thermal comfort range 20-22 ◦C. This comfort range is
nominal but it can be adjusted according to weather,
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Fig. 6. Percentage estimation error for different α’s.

building type, etc. In Fig. 5, notice that the average
temperature of Room-3 reaches inside this range quickly
because it doesn’t have a window, therefore, it has a
smaller influence of the outside temperature.

Let zav1 = [ xav1 xav2 xav3 xav4 ]> and ẑav1 = [ x̂av1 x̂av2 x̂av3 x̂av4 ]>.
Then, the percentage estimation error e%(t) is defined as

e%(t) =
‖zav1 (t)− ẑav1 (t)‖
‖zav1 (t)‖

.

The performance of Ωav is quite satisfactory as shown in
Fig. 6. For the optimal value α = 14, the mean percentage
error is 2.08%, i.e., around 0.4 ◦C for the range 20-22 ◦C,
and the maximum percentage error is 4.9%, i.e., around
1 ◦C for the range 20-22 ◦C.

In conclusion, we presented an observer that estimates the
mean operative temperatures of rooms in a building with
minimum error. The dimension of the proposed observer
equals the number of rooms (or clusters) plus one, where
the extra ‘one’ is due to the cluster of nodes representing
outer envelope of the building. The problem of error
minimization is simplified to a great degree by formulating
it with respect to a single parameter α, whose optimal
value is found by a greedy algorithm. We employed a
simple on/off control policy based on the average observer
to regulate the mean operative temperatures of rooms.
Such on/off policy for regulation saves around 25.32%
of the energy, which means that the heaters on average
remain off 25.32% of the day. The goal of this paper was
estimation, the development of a better control technique
to further minimize the energy consumption is deferred for
the future work.
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