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Abstract: In this paper, we introduce a learning approach for the controller structure in
coalitional model predictive control (MPC) schemes. In this context, the local control entities
can dynamically perform in a decentralized manner or assemble into groups of controllers that
coordinate their control actions, i.e., coalitions. Such control strategy aims at maximizing system
performance while reducing the coordination and computation burden. In this paper, we pose
a multi-armed bandit problem where the arms are a set of possible controller structures and
the player performs as a supervisory layer that can periodically change the composition of the
coalitions. The goal is to use real-time observations to progressively learn the controller structure
that best suits the needs of the system. A heuristic learning algorithm and illustrative results
are provided.
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1. INTRODUCTION

Distributed model predictive control (DMPC) has received
significant attention by the research community in the last
years (Christofides et al. (2013); Negenborn and Maestre
(2014)). The inherent properties of DMPC schemes, such
as its modularity and scalability, make it an attractive
control methodology to address the challenges presented
by large-scale networked systems, where the application of
the classical centralized MPC is limited. In this context,
the decision-making capacity is distributed among a set
of local controllers or agents which operate with a certain
degree of autonomy. Due to the dynamical couplings, the
optimality of the local control actions hinges on the rest
of the system behavior and other agents’ decisions, hence
coordination allows for increasing the global performance.
However, the benefits of greater coordination come at the
expense of a higher communication and computational
burden. Recently, controllers of variable structure have
gained importance for addressing these drawbacks, e.g.,
Jain et al. (2018), Zheng et al. (2018). Within this frame-
work, we focus on coalitional MPC (Fele et al. (2017)),
a novel strategy that allows transitions from dense to
sparse communication scenarios by fostering the formation
of coalitions of control entities, i.e., clusters of agents that
can share data and coordinate their actions, normally for
a control objective that comprises the individual goals of
the merged controllers.

Optimizing the coordination scenario needs for further
computation and requires the existence of a performance
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index able to predict the future suitability of each pos-
sibility. See Fele et al. (2014) for an example using an
upper bound on the cost-to-go. In this paper, we aim at
introducing online learning solutions for the adaptation of
the controller structure in coalitional MPC schemes. In
particular, we pose a multi-armed bandit problem (MAB)
(see Bubeck et al. (2012); Auer et al. (2002) among many
others), where the arms are a set of possible coordination
scenarios, and the player (or learner) acts as a supervisory
layer that should learn to optimize the controller structure.
In its simplest formulation, a MAB problem is modeled as
a sequential game where, each round, the player pulls one
arm from a finite decision set and subsequently received a
loss, which depends on the optimality of its choice. Just
the loss associated with the chosen arm is observed, while
the behavior of the others remains unknown. The learner’s
goal is minimizing its long-term loss while balancing explo-
ration, i.e., trying out different actions to gather informa-
tion, and exploitation, i.e., playing the arm believed to be
optimal. Within this class of learning problems, we focus
on contextual bandits (Slivkins (2014)). In this setting, the
player receives some relevant data in the form of a context
vector to make its decision. One of its main applications
is the selection of web’s content (e.g., Chu et al. (2011)),
where the context contains meaningful information such
as the users previous Internet queries.

The rest of the paper is organized as follows. Section II
introduces the system and states the control problem.
Section III focuses on the learning procedure for selecting
the communication topologies. Section IV describes the
control scheme and Section V illustrates the proposed
scheme through an academic example. Finally, conclusions
and further research are provided in Section VI.
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2. PROBLEM FORMULATION.

In this section, we present the model describing the sys-
tem dynamics, the communication infrastructure, and the
control problem we address throughout this work.

2.1 System dynamics.

Consider a class of linear systems that can be partitioned
into a set N = {1, 2, . . . , N} of coupled subsystems, whose
dynamics are modelled as follows

xi(k + 1) = Aiixi(k) +Biiui(k) + di(k),

di(k) =
∑
j∈Ni

[Aijxj(k) +Bijuj(k)] , (1)

where xi ∈ Rn and ui ∈ Rm are respectively the state
and input vector of subsystem i ∈ N , and di describes
the coupling among subsystem i and its set of neighbours,
defined as Ni = {j ∈ N \{i} | [Aij , Bij ] 6= 0} 1 . Matrices
Aij ∈ Rn×n and Bij ∈ Rn×m are, respectively, the state
transition and the input-to-state matrices for all i, j ∈ N .

2.2 Network structure

Consider a communication network described by graph
G = (N ,L), where the nodes represent local agents and
the set of edges L contains communication links. Hereafter,
we consider that the state of these links can dynamically
switch between enabled and disabled. In particular, symbol
Λ denotes different communication topologies, i.e., com-
binations of enabled links. Note that if the cardinality
of L is |L|, then, we can derive a set T of 2|L| possible
communication topologies:

T = {Λ0,Λ1, · · · ,Λ2|L|−1}, (2)

where each Λi partitions the set of agents into a set N/Λi
of coalitions, i.e., group of agents connected by a path
of enabled links. The coalitions are denoted by C and we
assume the following:

Assumption 1. Inside each coalition C, the controllers
share data and coordinate their actions while operating
in a decentralized manner from the rest of the system, i.e.,
agents i ∈ C do not communicate with any agent j 6∈ C.

Dinamically, any coalition can be considered as a single
system modelled by

xC(k + 1) = ACCxC(k) +BCCuC(k) + dC(k),

dC(k) =
∑
D∈NC

[ACDxD(k) +BCDuD(k)] , (3)

where xC = [xi]i∈C and uC = [ui]i∈C are respectively the
aggregates of the states and inputs of the subsystems i ∈ C,
and matrices ACC and BCC map the current coalition state
and inputs to its successor state. Similarly, dC models the
effect of neighboring coalitions D ∈ NC , where matrices
ACD, BCD and set NC are defined analogously to the case
of single interacting subsystems. Note that if C = N (i.e.,
Λ = L), then dC = 0 because coupling is accounted for
in the overall system model. In this respect, we will use
xN and uN to refer to the global system state and input
respectively.
1 External disturbances are not considered for simplicity. It is
straight forward to extend the results of this paper to account for
them.

2.3 Control objective

The control objective considered in this work is two-fold:
optimizing the system performance and reducing coordina-
tion costs. Following an MPC approach, the global control
problem at each time instant can be posed as

min
Λ(k),uC(k)

Np−1∑
n=0

∑
C∈N/Λ(k+n)

`C(k + n) +

Np−1∑
n=0

c |Λ(k + n)|

s.t. xC(k + n+ 1) = ACCxC(k + n)+

BCCuC(k + n) + dC(k + n),

uC(k + n) ∈ UC ,
xC(k + n+ 1) ∈ XC ,
∀C ∈ N/Λ(k + n),

∀n = 0, ..., Np − 1.
(4)

where function `C(·) is the stage performance index of
coalition C ∈ N/Λ(·), c > 0 is the cost of enabling a link,
and |Λ(·)| denotes the cardinality of Λ(·). Optimization
variables Λ and uC are respectively the sequence of com-
munication topologies and the coalitions control actions
for a future time horizon of Np instants. Additionally, XC
and UC are respectively the state and input constraints
sets of coalition C. For simplicity, we assume that all
subsystems should be regulated towards the origin. Hence,
we can define the stage cost as

`C(k) = xT
C (k)QCxC(k) + uT

C (k)RCuC(k), (5)

Remark 1. Problem (4) constitutes a dynamic optimiza-
tion problem with mixed integer variables, which restricts
its applicability for real time control unless some simpli-
fications are introduced. Note that variable Λ determines
the composition of the coalitions and thus the definition
of functions `C(·), where variables uC come into play.

Previous works on coalitional MPC provide algorithms
that approximate the solution of Problem (4). Following
Fele et al. (2014), we use a double sample rate strategy
that decouples the optimization of Λ and uC . In particular,
decisions on the communication topology are just taken
periodically. Once a certain Λi is imposed, the coalitions
C ∈ N/Λi calculate their control inputs through the
following optimization problem:

min
uC(k)

Np−1∑
n=0

`C(k + n)

s.t. xC(k + n+ 1) = ACCxC(k + n) +BCCuC(k + n),

uC(k + n) ∈ UC ,
xC(k + n+ 1) ∈ XC ,
∀n = 0, ..., Np − 1.

(6)

The first action of the optimal inputs sequences u∗C(k)
consitute the global input vector implemented at time k.
In this paper, the couplings among different coalitions are
neglected in the dynamic model used in (6), however, an
estimate of dC could be equally considered. Note that a
good choice of the controller structure will minimize the
inter-coalitions couplings and hence dC will be small.
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3. ONLINE LEARNING FOR COALITIONS
FORMATION

Hereon, we use the game-theoretic notions of player (or
learner) and arms to denote respectively the decision-
making entity and the set of possible topologies. The
problem of switchings between communication topologies
is modelled as a contextual multi-armed bandit problem,
where at each game-round t, the player should choose,
based on a given context, one communication topology
out of the 2|L| possibilities in (2). The learner receives as
context the system state at the time instant corresponding
to round t, hereon, xN ,t. Each decision reports a loss
that considers the suitability of the selected topology for
operating the system. The goal is to learn from previous
choices to improve current and future decisions.

3.1 Loss function

The loss function weights system performance and co-
ordination costs. Note that the sum of (5) for a certain
amount of steps can be expressed in terms of the current
system state and of the sequence of control actions, and let

us define JΛi(xN (k),uN (k)) =
∑N ′p−1

n=0

∑
C∈N/Λi `C(k+n),

where N ′p ≥ Np is the value of the prediction horizon
and uN (k) = [uC(k)]C∈N/Λi is the aggregation of the
coalitions’ sequences of inputs. The window of time N ′p
is set longer than the prediction horizon used by the local
controllers because decisions on the communication topol-
ogy remain unchaged for Ttop > Np time instants; also,
if the prediction horizon is too short, differences between
topologies benefits may go unnoticed.

Definition 1. The loss reported when choosing topology
Λi on round t is given by

LΛi,t = JΛi(xN ,t, [u
∗
C,t]C∈N/Λi) +N ′pc|Λi|. (7)

where [u∗C,t]C∈N/Λi is the optimal sequence of control ac-

tions resulting when solving Problem (6) for all coalitions
C ∈ N/Λi with prediction horizon N ′p.

Remark 2. Note that at each point xN of the state space,
the loss of any arm Λi takes a constant value, i.e., if
xN ,t = xN ,t′ , then, LΛi,t = LΛi,t′ (with t 6= t′).

3.2 Historical data

Let ΛI be the player’s decision on round t. Then, each
round, the player observes context vector xN ,t, his decision
ΛI , and the incurred loss LΛI ,t. Hence, previous observa-
tions can help to learn the optimal mapping from state
space X and the set of arms T (see Remark 2). To this
end, we consider the data history

Ht = {xN ,τ ,ΛIτ , LΛI ,τ}tτ=1, (8)

which is updated accordingly across game-rounds to bring
together the data observed up to current time.

3.3 Evaluation of the player’s performance

The learner performance is measured by regret, i.e., the
diffrence between the player cumulative loss and the loss
of playing the best action in hindsight, that is,

RT =

T∑
t=1

LΛI ,t −
T∑
t=1

min
Λj∈T

LΛj ,t (9)

where T represents the total number of played rounds.

3.4 Optimal arm selection policy

In this paper, the dependence between the arm’s benefits
and the system state is used to establish some rules to
guide the learning process and reduce the regret.

Firstly, based on context xN ,t, the player pre-selects a
subset of arms from set T that are more likely to minimize
the loss, say Tt. For example, if the system state is close
to the origin, we foster the choice of sparse controller
structures. On the contrary case, denser communication
scenarios are pre-selected.

Subsequently, the learner uses history Ht−1 to estimate,
when possible, the loss of the pre-selected arms. To this
end, it searches for previous observations in the surround-
ings of point xN ,t, which, for simplicity, will be defined
as the space enclosed by an hypersphere centered at xN ,t
with radius r, that is,

S(xN ,t, r) = {x ∈ X : ‖x− xN ,t‖ ≤ r}. (10)

Assumption 2. Given context xN ,t, the loss of topology
Λi can be approximated by a quadratic function on the
system state, i.e., L̂Λi = xT

N ,tMΛixN ,t +mΛixN ,t + qΛi +

N ′pc|Λi|, whereMΛi is a diagonal matrix,mΛi a vector, and
qΛi a scalar that are calculated using previous observations
in S(xN ,t, r).

Note that the accuracy of the estimation L̂Λi decreases
as the differences between the real context and the points
used to calculate the estimated loss increase. Hence, re-
ducing the searching radio r will improve the accuracy
of learning and minimize long-term regret, but it will
also reduce notably the learning rate, especially when the
contexts received are too dissimilar and/or the number of
arms is large. As a compromise, we consider two radius r1

and r2, with r1 < r2.

Assumption 3. Loss estimates based on observations within
set S(xN ,t, r1) are accurate enough to reliably identify the
optimal topology.

Normally, we set r2 as our searching radius, however, with
probability pr1 , it is reduced to r1. Hence, across game-
rounds, the player will be able to discard misleading loss
estimates. Hereon, all topologies in Tt whose loss can be
predicted with the information gathered up to round t
will be grouped in set To, where the subindex stands
for observed topologies. Likewise, we will use Tno in the
contrary case (non-observed topologies).

Additionally, considering the physical meaning of the
arms, the player can capture further information. Let L̂∗t
be the minimum of the loss estimates on round t, and Λ̂∗t
the corresponding topology. Then, if Tno 6= ∅, we use the
following rules to foster or hinder the choice of certain
topologies:

a) In case the player knows an estimation for the cen-

tralized topology, i.e., L̂Λcen
, it uses the perfomance

optimality in terms of system behaviour of this topol-
ogy. Then, all Λi for which

L̂Λcen
−N ′pc(|Λcen| − |Λi|) ≥ L̂∗t (11)

are discarded from Tno.
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b) In line with a), we consider a more heuristic criterion
that uses similarities between arms and that assumes
that as the system evolves to the origin, the needs for
communication decrease. In particular, the probabil-
ities of exploring arms that derive from Λ̂∗t , i.e., arms

Λj in set τΛ̂∗t
= {Λj : Λj ∈ Tno,Λj ⊂ Λ̂∗t }, are slightly

increased over other options in Tno.

Finally, the loss estimates and the hypothesis above are
used to build a probability distribution

pt = [pΛ0
, pΛ1

, ..., p2|L|−1]T, (12)

where each pΛi indicates the probability of playing arm Λi
on round t. Then, higher values of pΛi should be assigned
to those arms that are more likely to minimize losses on
the basis of the data observed up to round t.

Multi-class classification: .

Over time, the player will discover regions in state space
where some topology dominates the others with high
probability, i.e., sets of points in X where a certain arm
minimizes the incurred loss. Here, we consider multi-class
classification techniques (Mayoraz and Alpaydin (1999))
to build in real-time a model that properly associates any
context to one of the 2|L| classes, i.e., the communica-
tion topologies. In particular, this multiclass classification
problem is reduced to multiple binary classification prob-
lems that should distinguish regions where each topology
Λi is optimal. To build the classification models, we store
the states where some pΛi is notably greater than any
other pΛj (with Λj 6= Λi). The classification models are
only updated periodically to reduce the computational
burden. Hereafter, we will use the notation DΛi,t ⊆ X to
denote the sets where topology Λi is dominant according
the classification up to round t.

4. CONTROL SCHEME

In this section, the pseudocode of the coalitional control
scheme is provided (Algorithm 1). Also, the logic for
switching between topologies is described in Algorithm 2.
In this respect, with some small probability pclass a classi-
fied context is considered as non-classified to review at
some game-rounds the truthfulness of the classification
models.

Algorithm 1. Control scheme: Let Ttop be the number of
time steps beween game rounds. Consider also set K =
{tTtop | t ∈ N≥0} of time instants. Then, starting from
round t = 0 with communication topology Λ0 ∈ T , at
each sample time k:

1: if k ∈ K then
2: t = t+ 1
3: All agents share their state so that context xN ,t is

communicated to the decision entity, i.e., the player.
4: The player chooses a topology Λt according to

Algorithm 2.
5: end if
6: Within coalitions C ∈ N/Λt, the local controllers share

their state and jointly solve Problem 6.
7: The resulting control actions u∗C(k) are implemented

by all C ∈ N/Λt.
Algorithm 2. Topology Λt selection: Each round t, the
player follows the steps below:

1: Initialize Λt = ∅.
2: Check if xN ,t is classified within some set DΛi , and

with probability 1 − pclass, select the corresponding
topology, i.e., Λt ← Λi.

3: if Λt = ∅ then
4: Pre-select subset of topologies Tt.
5: Search Ht−1 for observations in set S(xN ,t, r2).
6: With probability pr1 , discard observations outside

S(xN ,t, r1).
7: Determine sets To and Tno.
8: For all Λi ∈ To, calculate loss estimations L̂Λi using

previous observations to compute parameters MΛi ,
mΛi and qΛi .

9: If L̂Λcen
is known, apply rule a) and update set Tno.

10: Construct probability vector pt as

pΛi,t =
1

|Tno|+ 1
, ∀Λi ∈ Λ̂∗t ∪ Tno, (13)

and pΛi,t = 0 for the rest of arms.
11: Apply rule b). That is, pt ← (1− γ)pt + γv, where

v is the uniform distribution among topologies Λj ∈
τΛ̂t , and γ ∈ [0, 1] is a weighting factor.

12: Draw Λt ∼ pt.
13: end if
14: Update history Ht and store context if max pt > p.
15: With period Tclass ≥ Ttop, update the models for

classification.

5. ACADEMIC EXAMPLE

In this section, we apply the coalitional scheme to a
modified version of the system proposed in Farina and
Scattolini (2012). It consists on five trucks, i.e., N =
{1, 2, 3, 4, 5}, coupled via springs and dumpers as shown
in Fig. 1. The dynamic of each truck is modelled by:[

ṡi
v̇i

]
= Aii

[
si
vi

]
+Biiui +

∑
j∈Ni

Aij

[
sj
vj

]
(14)

where

Aii =

[
0 1

− 1

mi

∑
j∈Ni kij −

1

mi

∑
j∈Ni hij

]
,

Aij =

[
0 1

1

mi

∑
j∈Ni kij

1

mi

∑
j∈Ni hij

]
and Bii =

[
0
50

]
,

(15)

for all i ∈ N . The state xi of each subsystem is formed
by the displacement si from the equilibrium point and by
the instantanueous velocity vi. Additionally, the agents

𝑚1 𝑚2 𝑚3 𝑚4

𝑠1 𝑠2 𝑠3 𝑠4

𝑢1 𝑢2 𝑢3 𝑢4

𝑘12 𝑘23 𝑘34

ℎ12 ℎ23 ℎ34

𝑚5

𝑠5

𝑢5

𝑘45

ℎ45

1 2 3 4
𝐼 𝐼𝐼 𝐼𝐼𝐼 𝐼𝑉

5

Fig. 1. Five trucks system and its communication network.

can apply a longitudinal force Fi = 50ui, where ui is
the control action. The parameters that characterize the
system are given in Table 1. The continuous-time dynamics
are discretized using zero-order hold and a sampling time
of 0.1s. The goal is regulating the five trucks towards
the origin while minimizing communication costs. In this
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Table 1. Masses, spring stiffnesses, damping factors and
further parameters used in the simulation.

Masses [kg]

m1 3
m2 4
m3 2
m4 3
m5 4

Spring stiffnesses
[N/m]

k12 1.2
k23 2.4
k34 2.1
k45 2

Dumping factors
[N/(m·s)]

h12 0.5
h23 0.6
h34 0.5
h45 0.4

Further parameters

Np 1 s r1 0.05 Ttop 1 s pr1 0.2 pclass 0.2
N ′

p 2 s r2 0.2 Tclass 7 s p 0.8 γ 0.1

respect, the stage performance function `C is defined
by weighting matrices QC = diag (Qi)∀i∈C and RC =
diag (Ri)∀i∈C , where Qi = I2 and Ri = 100, for all i ∈ N ,
and the cost per enabled link c has been set at 0.01. The
five agents are connected by a network of four bidirectional
links, i.e., L = {I, II, III, IV } (see Fig. 1 and Table 2).

The control scheme described in Section III has been
implemented using the parameters specified in Table 1
considering the following constraints: |si| ≤ 4 and |ui| ≤ 2.
For simplicity, to illustrate the learner performance, the
system’s behavior has been repeatedly simulated from a set
of initial states distributed within the constraints set. For
the classifier design and for the neighbours points search
in R10, we have used Matlab Machine Learning Toolbox
and, in particular, Support Vector Machine solutions
(Scholkopf and Smola (2001)) and function rangesearch.
In this respect, we have first applied the density based
clustering algorithm (Ester et al. (1996)) to discard out-
liers that may lead to a misleading classification.

In this example, to preselect the set of topologies in sets
Tt, we consider as criterion the infinity norm of xN ,t.
Specifically, if ‖xN ,t‖∞ ≥ 3, then we pre-select those
topologies with 3 or 4 enabled links; if 1.5 ≤ ‖xN ,t‖∞ < 3,
also those with 2 enabled links come into play; if 0.5 ≤
‖xN ,t‖∞ < 1.5, we consider topologies with 2, 1 or 0
enabled links; and if ‖xN ,t‖∞ ≤ 0.5, just topologies with
1 or 0 enabled links can be chosen.

Hereon, we will use the term cycle to denote a sequence
of simulations from the set of initial points, and game-
round will refer to each time the player makes a choice.
In Fig. 2, we show the evolution of the learning regret
together with the percentage of optimal decisions on the
communication topology. It can be seen how previous
observations help to learn which are the more suitable
communication topologies to operate the system. At the
beginning, the lack of information motivates arbitrary
decisions and hence high regret and low level of optimal
choices are observed. In particular, the percentage of
optimal decisions remains below 30%, while it is notably
increased in the future and ends around 80% after 20
cycles. As the system is always regulated to the origin,
the player quickly gathers information in this area and
hence learns faster the topology to be used. The latter is

Table 2. Network topologies for the five trucks system.

Λ0 ∅ Λ4 {IV } Λ8 {II, III} Λ12 {I, II, IV }
Λ1 {I} Λ5 {I, II} Λ9 {II, IV } Λ13 {I, III, IV }
Λ2 {II} Λ6 {I, III} Λ10 {III, IV } Λ14 {II, III, IV }
Λ3 {III} Λ7 {I, IV } Λ11 {I, II, III} Λ15 L

Fig. 2. Learning regret and percentage of optimal commu-
nication topology choices with respect to the whole
number of game-rounds per cycle.

the main cause of having a relatively high percentage of
optimal choices just after a few cycles. However, learning
the optimal topology in the rest of the state space is more
challenging. Note that the regret is varying for the same
error percentage, as some topologies may be closer to be
optimal than others. Fig. 3 illustrates the loss of optimality
of the coalitional controller. To evaluate the performance,
we use the average cumulative cost, i.e., the sum of the
stage cost (5) for all time steps averaged over the number
of initial states. In particular, in Fig. 3, we show the
difference in cost between the coalitional controller and
centralized MPC evaluated for each cycle. The figure
illustrates the benefits of choosing suitable topologies
on the system behavior. In particular, the cost for the
centralized MPC controller is 560.6, while a complete
decentralized structure leads to 582.2. Likewise, it is 560.9
for the coalitional controller with the optimal topology
trajectory, however, the learning procedure entails higher
losses especially at the beginning, when it reaches a
maximum of 571.7. As example, in Fig. 4 we show the
system state temporal evolution from a certain initial state
and in Fig. 5 we show the sequences of topology that
were chosen at two different cycles. Note that the state
trajectory depends on the topologies selection and, hence,
the optimal arms sequence may vary despite starting at
the same state.

Finally, Fig. 6 illustrates the contexts classification. As the
system evolves in the ten-dimensional space, we have se-
lected a plane to allow for a bidimensional representation.
To obtain this figure, we have trained the classifier with
states points at the corresponding plane, that is, forcing
the rest of the states to be zero.

Fig. 3. Loss of performance of the coalitonal controller with
respect to centralized MPC
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Fig. 4. Effect of the coordination scenario on the sys-
tem state. The solid lines show the behaviour of the
coalitional controller with the sequence of topologies
shown in Fig. 5(a)(top). The centralized and decen-
tralized behaviour are shown respectively in dashed
and dotted lines.

(a) Cycle 3 (b) Cycle 15

Fig. 5. Selected (top) and optimal (bottom) communi-
cation topologies for two simulations from the same
initial state at different cycles.
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Fig. 6. Regions in the plane [s1, v1] where different Λ
dominates according to the classification of contexts.

6. CONCLUSIONS

In this paper, we deal with a multi-agent network where
the communication structure among the set of control
entities varies over time, aiming at maximizing the benefits
provided by their mode of interaction. The switchings
between topologies are based on a learning procedure
where previous observations and current system state are
used to estimate the performance of each coordination
scenario. The problem is modeled as a sequential decision-
game where the coalitions’ composition can be period-
ically changed by a learning entity. We have proposed
a heuristic algorithm for the topology adjustment where
different hypothesis are introduced to improve the speed
of convergence. In this respect, we have shown that the
players’ performance and, thus, the system optimality,
increase over time. In particular, the system has been

simulated periodically from a set of initial points and it
is illustrated how the learner’s regret notably decreases
along with trials.

Further research will study stability issues on the proposed
controller and explore other online-learning solutions to
improve our results. Finally, we plan to investigate how
these ideas can be applied from a bottom-up approach,
that is, considering the links as decision-making entities
that can enable/disable themselves.
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