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Abstract: Sensor or actuator faults occurring on a Unmanned Aerial Vehicle (UAV) can
compromise the system integrity. Fault diagnosis methods is then becoming a required feature
for those systems. In this paper, the focus is on fault estimation for a fixed-wing UAVs in the
presence of simultaneous sensor faults. The altitude measurements of a UAV are commonly
obtained from the combination of two different types of sensors: a Global Navigation Satellite
System (GNSS) receiver and a barometer. Both sensors are subject to additive abrupt faults.
To deal with the multimodal nature of the faulty modes, a Jump-Markov Regularized Particle
Filter (JMRPF) is proposed in this paper to estimate the barometric altitude and GNSS altitude
measurement faults, including the case when both faults occur simultaneously. This method is
based on a regularization step that improves the robustness thanks to the approximation of
the conditional density by a kernel mixture. In addition, the new jump strategy estimates the
correct failure mode in 100% of the 100 simulations performed in this paper. This approach is
compared with an Interacting Multiple Model Kalman Filter (IMM-KF) and the results show
that the JMRPF outperforms the IMM-KF approach, particularly in the ambiguous case when
both sensors are simultaneously subject to additive abrupt faults.

Keywords: fixed-wing UAVs, fault estimation, Jump-Markov Regularized Particle Filter,
IMM-KF.

1. INTRODUCTION

Sensor faults have a direct impact on the Guidance Nav-
igation and Control (GNC) loop of a Unmanned Aerial
Vehicles (UAVs). If faulty information is used by the UAV
GNC loop this could compromise the mission of the UAV.
Thus Fault Detection, Isolation and Recovery (FDIR) is
essential in large UAVs because of their high reliability
requirements and increasingly essential to small UAV be-
cause of the lack of direct sensor redundancies to reduce
costs and the trend towards higher levels of autonomy.
Typical faults are described by Varga (2017) and can be
categorized into: time and shape related fault types. Time-
related faults can be persistent or intermittent. Shape-
related faults can be abrupt (sudden) and incipient (grad-
ual build-up).
Various fault detection approaches were presented in the
literature. Data-driven approaches (see Ding (2014)) re-
quire the use of a large dataset for statistical analysis.
However, when the amount of available data is small,
model-based approaches (see Ding (2008)) are preferred.
Model-based approaches use the knowledge of plant mod-
els to provide analytical redundancy. In the case of a
fixed-wing UAV, the laws governing the flight dynamics
are known (see Beard and McLain (2012); Cook (2012))
allowing the use of model-based approaches.

Several ways to reach the model-based framework were
developed. The general idea in this framework, for fault
detection, is to compute the error between the actual and
predicted measurements, called the residual. Predicted
measurements are frequently computed by a state esti-
mator, which may be a Kalman filter. Fault detection is
usually performed through statistical tests on residuals.
These tests aim to detect a significant change of the resid-
ual value. The simplest one consists of a direct comparison
of the residual value to a given threshold, but others are
based on an assumption about the residual distribution
(see Basseville et al. (1993)), such as the Student t-test, the
CUmulative SUM (CUSUM), a likelihood ratio test such
as the Generalize Likelihood Ratio Test (GLRT), or the
Sequential Probability Ratio Test (SPRT). The combined
fault detection and isolation is the basis of fault diagnosis.
Fault estimation represents the next level of complexity
in fault diagnosis and addresses the reconstruction of
fault signals from the available measurements (see Varga
(2017)). For fault estimation, a state estimator such as
the Kalman filter could be used, or a more sophisticated
method may consist of using a bank of Kalman type filters
and enclosing it in an Interacting Multiple Model (IMM)
architecture (see Zhang and Li (1998); Rago et al. (1998)),
which is a widely used state-of-the-art approach. Each
filter is associated with nominal or faulty dynamics. These
filters interact to provide a global likelihood. However, the
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IMM with Kalman Filters (IMM-KF) can diverge in a
multimodal case and has the limitations associated with
the use of Kalman filters (linear system, Gaussian noise,
…).
The measurement equation considered in this paper used
by the fault estimator algorithm has a redundant term
that is distinguishable by the sensor noise only. When an
additive fault occurs on one of this terms, a multimodality
appears on the associated estimated state. Monte-Carlo
and particle-based methods were introduced to tackle non-
linear and multimodal problems (see Arulampalam et al.
(2002)). Moreover, a faulty and a fault-free situation can
be considered as a discrete state of the system, like a
jump Markov system. Doucet et al. (2001); Tafazoli and
Sun (2006) have coupled the Jump Markov Linear System
(JMLS) with the particle filter. This approach is used in
this paper with a regularized particle filter (see Musso
et al. (2001)) to handle the multimodal fault estimation
problem better than linearized-Gaussian approaches (like
the IMM-KF). It is based on two improvements:
• A regularization step: the particles are drawn from

a continuous density rather than a sampled distribu-
tion. This yields a better robustness and accuracy.

• A new jump strategy: the a priori distribution of the
fault accounts for the filter innovation, which makes
it possible to move the particles towards the correct
faulty mode.

Compared to conventional fault estimation methods, the
Jump-Markov Regularized Particle Filter (JMRPF) in-
troduced in this paper for fault estimation is more ro-
bust. Indeed in conventional estimation approaches such
as Kalman filter or particle filter, the process noise of
the fault estimate must be artificially inflated to detect
additive faults with a large magnitude without any guar-
antee of stability. While, the JMRPF approach allows the
estimator to fit the process noise with the knowledge of
the state dynamics. The jump process enables to reach
any magnitude of an abrupt fault. Therefore, this allows
to accurately estimate a fault of any magnitude. In this
paper, the JMRPF approach is applied to a fixed-wing
UAV with an ambiguous measurement equation (i.e., a
non injective measurement equation).
The paper is organized as follows. Section 2 describes the
problem. One of the issues addressed by this paper is to
detect when a fault occurs, which sensors are responsible;
and perform a fault estimation by reconstructing the faults
as an additive input signal. In Section 3, the Jump-Markov
Regularized Particle Filter approach is introduced for
fault estimation. Section 4 details the model used for the
simulation. In Section 5, the fault detection and estimation
algorithms are evaluated using a Monte-Carlo numerical
simulation analysis. Section 6 concludes the paper.

2. PROBLEM STATEMENT

In this paper, a model-based approach will be used to
detect and estimate UAV sensor faults and allow for a
probabilistic transitioning between a normal operation
mode and faulty sensor modes. Fast and accurate fault
estimation together with an accurate state estimation al-
gorithm will be necessary to avoid compromising the UAV

mission integrity. The case where different types of sensors
are used to observe the same state variable is considered
here. Here, the altitude of the aircraft is observed using
barometer and GNSS altitude measurements. The use of
multiple sensors to measure the same variable is what
makes the measurement equation ambiguous in a faulty
situation. Indeed, only the sensor noise parametrisation
makes it possible to differentiate between the observations.
Fig. 1 shows the situation where two sensors with different
noise standard deviations are used to estimate a state x.
The measurements y1 produced by the first sensor are
faulty whereas the measurement y2 from the second sensor
are fault-free. The state estimation of x is based on the
conditional density of p (x|Y1:k) after updating the pre-
dicted conditional density p (x|Y1:k−1), where Y1:k is all the
measurements of both sensor from time step 1 to k. In this
situation, basing our decision on the conditional density
p (x|Y1:k) highlights the fact that there is an ambiguous
choice to decide which mode of the conditional density
corresponds to the state estimate. In this paper, this is
called an ambiguous sensor fault.
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Fig. 1. State estimates of x with a fault-free and faulty
measurement estimate density

2.1 Jump-Markov linear system model

The discrete state space model of the Jump-Markov Linear
System (JMLS) based on Svensson et al. (2014) is given
by: 

mk+1 ∼ p (mk+1|mk)

xk+1 = Amk
xk +Bmk

uk + wk

yk = Cmk
xk +Dmk

uk + vk

(1a)
(1b)
(1c)

Where mk is a discrete mode of the system at time step
k. The probability to switch from a mode m(i) to m(j) is
denoted by πji = P

(
m

(j)
k+1|m

(i)
k

)
. The πji is an entry of

the Π matrix, where i is the row index and j the column
index. The vector x ∈ Rnx×1 is the state vector of the
system. Each state of the state vector is associated with a
Π matrix. The Amk

, Bmk
, Cmk

and Dmk
denotes the usual

discrete state space matrices terms, for the mode mk. In
addition to this y ∈ Rny×1 is the output of the system
and u ∈ Rnu×1 is the input. The terms wk ∈ Rnx×1 and
vk ∈ Rny×1 denote the process and sensors noise. Because
those noise terms are zero mean, the covariance matrices
can be defined as E

[
wkw

>
k

]
= Qk and E

[
vkv

>
k

]
= Rk and

they are independent E
[
wkv

>
k

]
= 0.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

775



2.2 Jump-Markov linear system for sensor faults estimation

There are two JMLS modes for the fault estimation
application. A nominal mode m(0) and faulty mode m(1).
The transition probability between each mode is:

Π =

[
π00 π10

π01 π11

]
(2)

The probability π10 is the probability to switch from
nominal to faulty mode while the probability π01 is the
probability to switch from faulty to be nominal. The πii

entries are the probabilities that the system remain in the
same mode. Therefore, π00 = 1 − π10 and π10 = 1 − π11.
To apply this approach to fault estimation, an augmented
state space must be considered. Hence ,the extended state
vector is given by:

x =
[
z> f>]> (3)

Where z ∈ Rnz×1 is the original state vector and f ∈
Rnf×1 is the fault estimates. Only the f vector is associ-
ated to a JMLS. Thus, only the states contained in f are
associated with a mode m(·). The Markov chain diagram
of the JMLS applied to fault estimation is shown in Fig. 2.

m(1)m(0)

πs
10

πs
01

πs
11πs

00

Fig. 2. Markov chain of the JMLS applied to fault estima-
tion for the sth state of state vector f

The state-space matrices in nominal mode are:

Am(0) =

[
Az Azf

0nf ,nz
Af,m(0)

]
, Bm(0) =

[
Bz

0nf ,nu

]
(4a)

Cm(0) =
[
Cz 0ny,nf

]
, Dm(0) =

[
Dz

0nf ,nu

]
(4b)

Where Az, Bz, Cz and Dz are the regular matrices
associated to the z state vector. The matrix Azf represents
the dynamics of the coupling between the fault and the
state vector z. Finally Af,m(0) represents the dynamics of
the fault of the mode m(0). The state space matrices for
the mode m(1) are:

Am(1) =

[
Az Azf

0nf ,nz Af,m(1)

]
, Bm(1) =

[
Bz

0nf ,nu

]
(5a)

Cm(1) = [Cz Cf ] , Dm(1) =

[
Dz

0nf ,nu

]
(5b)

Where Af,m(1) represents the dynamics of the fault in
mode m(1). The matrix Af can however be the same in
mode m(0) and m(1). The unavoidable change is in the
matrix Cm(1) given the effect of f on the mode m(1)

measurement equation with Cf ∈ Rny×nf denoting the
output matrix of state f :

ym(1) = ym(0) + Cff (6)
where ym(0) is the measurement equation for the mode
m(0) and ym(1) for the mode m(1). Given that the fault
considered here occur on the sensors, the matrices B and

D remain unchanged between the mode m(0) and m(1). If
fault is considered on a sensor, the entry of Cf associated
to the fault estimate of the sensors on the state of f must
be set to 1 in order to get an equation measurement of
the sensor equal to the nominal equation plus the fault
estimate. However it is possible that only one sensor of the
f state vector is in mode m(1) and the others are in mode
m(0). So in this situation applying the state space of the
mode m(0) or m(1) will force all the states of f to be in the
mode m(0) or m(1). Then a combination of modes must be
considered to assign the states of f in different modes. But
being for the sth state of f in mode m(0) =⇒ fs = 0.
Therefore, always applying the state space of the mode
m(1) has no effect on fault estimate in mode m(0) and it is
the corresponding equations for the fault estimate in mode
m(1). Indeed if f = 0nf

then:{
xk+1,m(1) = xk+1,m(0)

ym(1) = ym(0)

(7a)
(7b)

Then on the following sections only the discrete state space
model m(1) is used.

2.3 Optimal filtering equation for state estimation

An extended state estimator is needed for fault and state
estimation. The state estimator aims to approach the state
xk conditional density at each time-step, given the past
measurements Yk = [y1 y2 · · · yk]. However, an additional
issue to the classic state estimation problem is tackled
here, since the measurement model is potentially faulty
and is therefore unknown a priori. To tackle this issue,
the dimension of the estimated parameters is enlarged to
Ek =

[
x>
k m>

k

]> in order to estimate both the state xk

and the mode mk, at each time-step. The modes mk is a
vector associated to the state vector, the value of the mode
define if a state is faulty (m(1)) or not (m(0)). The state
conditional density for fault estimation is described by:

p (xk|Yk) =

M−1∑
J=0

p (xk, mk = J |Yk) (8)

where M is the number of modes, and J is the J th nx-uplet[
m(i), . . . , m(j)

]>
, ∀i, j ∈ N | [0; M − 1].

The optimal filtering for state estimation consists of two
steps: the prediction and the update.
The prediction step aims to predict the state vector
Ek|k−1. Based on the Chapman-Kolmogorov equation the
density is propagated as:

p (Ek|Yk−1) =

∫
p (Ek|Ek−1) p (Ek−1|Yk−1) dEk−1 (9)

Since mk is independent from xk−1 given mk−1, one has:
p (Ek|Ek−1) = p (xk|mk, xk−1) p (mk|mk−1) (10)

The jump aims to propagate the fault parameters using
the following transition density:

xk ∼ p (xk|mk, xk−1) (11)
The update step uses the measurements to update the
likelihood from the Bayes rule:

p (Ek|Yk) =
p (yk|Ek) p (Ek|Yk−1)

p (yk)
(12)
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3. JUMP-MARKOV REGULARIZED PARTICLE
FILTER

To perform the fault estimation, the estimator used in this
paper is the regularized particle filter. The particle filter
is based on the approximation of this state density by a
cloud of particles. The particle filter provides as output
the estimated state vector x̂k and its associated estimated
covariance matrix P̂k. The regularization in a particle filter
allows a better fit between the theoretical state density and
its discrete approximation (see Musso et al. (2001)). Each
particle represents a potential state of the system and can
be associated with a probability Kernel. The association of
a regularized particle filter with a JMLS method is in this
paper called a Jump-Markov Regularized Particle Filter
(JMRPF). The total number of particles is denoted Np.
The JMRPF consist of 4 steps: the prediction, the update,
the estimation, and the regularization-resampling.
The global algorithm is introduced in Algorithm 1. This
algorithm is composed of Algorithm 2, 3, 4 and 5.

Algorithm 1 Jump-Markov Regularized Particle Filter
k ← 0

... . Initialization
loop

k ← k + 1
for each i ∈ [1, Np] do

predict(xi
k|k−1, xi

k−1|k−1, mi
k, uk, yk)

end for
for each i ∈ [1, Np] do

update(w̃i
k, wi

k−1, xi
k|k−1, uk, yk)

end for
for each i ∈ [1, Np] do

wi
k ←

w̃i
k

Np∑
i=1

w̃i
k

. Normalize the likelihood

end for
estimate(x̂k|k, P̂k|k, wk, xk|k−1)
Neff ← 1

Np∑
i=1

wi
k
2

if Neff ≤ NpΓ then . if true then resample
x́k|k−1 ←multinomial(wk) . see (18)
for each i ∈ [1, Np] do

wi
k ← 1

Np
. Reset the likelihood

regularize(xi
k|k−1, x́i

k|k−1)
end for

end if
end loop

Prediction step: In the particle filter, the ith state vari-
able is then propagated using the following transition
density:

xi
k|k−1 ∼ p

(
xi
k|mi

k, x
i
k−1

)
(13)

Then, one obtains a predicted cloud of particles (E1
k|k−1,

E2
k|k−1, · · · , ENp

k|k−1) that makes it possible to approximate
p (Ek|Yk−1)

The jump is part of the prediction step. The particles are
drawn to jump. The draw is made according to a uniform
law and it is compared to the transition density πji. If a
particle is drawn for a jump its new mode is updated. The
jump occurs only on the f state vector and its equation is:

f̃ i,s
k|k−1 =


βi,s
k if U ≤ πs

10 and mi,s
k = m(0)

f i,s
k|k−1 if U < πs

11 and mi,s
k = m(1)

0 if U ≤ πs
01 and mi,s

k = m(1)

0 if U < πs
00 and mi,s

k = m(0)

(14)

Where U ∼ U (0, 1) and, βi,s
k is an additive fault drawn

according to a Gaussian distribution:
βi
k ∼ N

(
C>

f ỹik, C
>
f RkCf

)
(15)

with ỹik the innovation given by:

ỹik = yk −
(
Cm(1)xi

k|k−1 +Dm(1)uk

)
(16)

The upper-scripts notation i, s means ith particle and sth

state of state vector f with s ∈ [1, nf ]. The prediction step
is described in Algorithm 2.

Algorithm 2 Detail of the function predict from Algo-
rithm 1

function predict(xi
k|k−1, xi

k−1|k−1, mi
k, uk, yk)

ηik ∼ N (0, Qk)
xi
k|k−1 ← Am(1)xi

k−1|k−1 +Bm(1)uk + ηik
for each s ∈ [1, nf ] do . Jump step

U ∼ U (0, 1)
if mi,s

k = m(0) then . f i,s
k in mode m(0)

if U ≤ π10 then . Transition m(0), m(1)

ỹik ← yk −
(
Cm(1)xi

k|k−1 +Dm(1)uk

)
βi
k ∼ N

(
C>

f ỹik, C
>
f RkCf

)
f̃ i,s
k|k−1 ← βi,s

k

mi,s
k ← m(1)

else . Transition m(0), m(0)

f̃ i,s
k|k−1 ← 0

end if
else if mi,s

k = m(1) then . f i,s
k in mode m(1)

if U ≤ π01 then . Transition m(1), m(0)

f̃ i,s
k|k−1 ← 0

mi,s
k ← m(0)

end if
end if

end for
end function

Update step: In the particle filter, each particle Ei
k−1

is assigned to a weight wi
k that is proportional to its

likelihood:
w̃i

k ∝ p
(
yk|mi

k, x
i
k|k−1

)
(17a)

(17b)
However after updating the likelihood of each particle, its
weight must be normalized. The Algorithm 3 describes
the update step. In this algorithm it is assumed that the
likelihood is a Gaussian distribution.
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Algorithm 3 Detail of the function Update from Algo-
rithm 1

function update(w̃i
k, wi

k−1, xi
k|k−1, uk, yk)

ỹik ← yk −
(
Cm(1)xi

k|k−1 +Dm(1)uk

)
. Innovation

w̃i
k ← wi

k−1Λ
i
k, Λi

k = N
[
ỹik; 0; Rk

]
end function

Estimation step: This step aims to compute a global esti-
mate x̂k|k with its associated covariance matrix P̂k|k based
on the likelihood of the particle. This step is described in
Algorithm 4.

Algorithm 4 Detail of the function estimate from
Algorithm 1

function estimate(x̂k|k, P̂k|k, wk, xk|k−1)

x̂k|k ←
Np∑
i=1

wi
kx

i
k|k−1

P̂k|k ←
Np∑
i=1

wi
k

(
xi
k|k−1 − x̂k|k

)(
xi
k|k−1 − x̂k|k

)>

end function

Regularization-resampling step: This is the last step. It
consists of two stages, the resampling and the regulariza-
tion of the selected particles. Its purpose is to remove the
particles with a low likelihood by duplicating the particles
with a high likelihood and regularizing the duplicated
particles.
Resampling step: The selection of the particles is per-

formed according to a multinomial law with wk as
parameter. Then the probability to choose a particle
is:

P
(
x́i
k|k−1 = xj

k|k−1

)
= wj

k (18)

This corresponds to the function multinomial(wk)
in Algorithm 1.

Regularization step: For the regularization of the previ-
ously selected and duplicated particles, the particles
are randomly moved according to a regularization
kernel K (x). The regularization is given by:

xi
k|k−1 = x́i

k|k−1 + hDεik (19)
where h ∈ R+∗ is the bandwidth factor in the re-
scaled kernel density K (·) and with Pk = DD>

and ε ∼ K (x). The kernel density is a symmetric
probability density function such that:∫

xK (x) dx = 0,

∫
‖x‖2K (x) dx <∞ (20)

The optimal kernel K (·) and bandwidth factor h are
those which minimize the Mean Integrated Square
Error (MISE) between the hypothetical posterior
density and the corresponding regularized empirical
representation, defined as:

MISE (p̂) = E
[∫

(p̂ (xk|Yk)− p (xk|Yk))
2
dxk

]
(21)

where p̂ (xk|Yk) is the particle filter approximation
of the state conditional density given by (8). In
the case where all particles weight have the same
weight, during the resampling step, a suitable choice

of the kernel is the bounded Epanechnikov kernel
(see Silverman (2018)).

K (x) =

{
nx+2
2cnx

(
1− ‖x‖2

)
if ‖x‖ < 1

0 else (22)

where cnx
is the volume of the unit hypersphere in

Rnx .
The algorithm of the regularization is described in

Algorithm 5.

Algorithm 5 Detail of the function regularize from
Algorithm 1

function regularize(xi
k|k−1, x́i

k|k−1)
ε ∼ K (x) . see (22)
xi
k|k−1 ← x́i

k|k−1 + hDεik
end function

However this regularization-resampling step is not per-
formed at each time step. A criterion is defined to know if
a resampling step is needed. The criterion that is used in
this paper is the efficiency Neff .

Neff =
1

Np∑
i=1

wi
k
2

(23)

If Neff

Np
is lower than user-defined threshold Γ ∈ (0; 1) then

the resampling step is performed.
Finally, after performing all above mentioned steps, the
approached conditional density is given by:

p (xk,mk|Yk) ≈
Np∑
i=1

wi
kKh

(
xk − xi

k

)
δmi

k
(mk) (24)

where:
Kh (x) =

1

hnx
K

(
1

h
x

)
(25)

4. LINEAR LONGITUDINAL UAV WITH
NAVIGATION AND CONTROL

The system considered in this paper is a linearized lon-
gitudinal model of a fixed wing UAV. The state vector
representing deviation with respect to the trim point is
z = [pd u w θ q]

> and z ∈ R5×1 The state pd is a
position in the direction of the vector kv shown in Fig. 3
representing altitude loos, u is the velocity in direction of
the vector ib shown in Fig. 3, w in direction of the vector
kb axis shown in Fig. 3, θ is the pitch and q to the pitch
rate.
The states are partly measured with 5 sensors. The state
pd is directly measured with a GNSS receiver and a
barometer, the state u with a pitot tube and the state
θ and q with an IMU. The sensors noise is defined by the
Rk matrix introduced in the JMLS.
If the fault estimation is performed on the GNSS and
barometer measurements only 1 , then state vector f =

[fg fb]
> and f ∈ R2×1, where fg refers to the GNSS

1 Similar problem such as speed measurements from pitot tube
(airspeed) and GPS (ground speed) could be addressed.
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Earth center
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θ
Center of mass

Fig. 3. Fixed wing UAV side view with reference axes for
the longitudinal model

altitude fault estimate, fb to the barometer altitude fault
estimate.
The UAV is controlled by a full-state feedback with inte-
grator effect. The block diagram of the control of the UAV
is shown in Fig. 4. The Ci gain matrix allows to select the

+
+

+−
Ki

s
−−

Navigation
filterKz

Ci

Ch

−pcd

uc

θc

δ zk+1 = Azxk +Bzuk

yk = Czxk + vk
yk

ẑ

Fig. 4. Block diagram of the control of the UAV

states used for the integrator effect, here θ and u. The Ch

gain matrix allows to select the states used for the altitude
regulation, here pd. The gain Kz is the gain of the full-state
feedback and Ki is the integral gain. The reference output
is −pcd, uc and θc where θc is the desired pitch command
defined by −pcd the desired altitude and uc is the speed
command. The navigation filter return the state estimate
ẑ of the z state vector.
Because the model is linearized, an input of 0 refers
to the trim condition. The UAV control input vector is
δ = [δe δt]

> where δe is the elevator deflection and δt is
the throttle.

5. SIMULATION RESULTS

To characterize the performances of the JMRPF, numer-
ical simulations were performed with a JMRPF imple-
mented on MATLAB©. The simulation results are com-
pared with an IMM-KF. Even though the system under
consideration is linear, there are multi-modalities due to
multiple sensor faults modelled in a probabilistic way.

5.1 Numerical parameters of the UAV

A linearized longitudinal UAV model is used. The trim
conditions of the linearization are: flight path angle set to
0 rad; straight flight; Altitude set to 500m; Velocity set to
60m s−1. The sampling time period used for the simulation

analysis is 0.01 s. The simulation parameters used for the
UAV dynamics are the following (rounded up to 10−3):

Az =


1 0 0.010 −0.600 0
0 0.988 −0.001 −0.097 0.028
0 −0.006 0.948 0.005 0.581
0 0 0 1.000 0.010
0 −0.001 −0.012 0 0.985



Bz =


0.002 0
0.001 0.885
0.016 −0.003
−0.005 0
−0.963 0


(26)

The sensors considered for the simulation have an additive
white Gaussian noise, the discretized output measure-
ments and sensor error covariance noise matrices are given
by:

Cz =


−1 0 0 0 0
−1 0 0 0 0
0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

 , Dz = 0ny,nu

Rk =


52 0 0 0 0
0 12 0 0 0
0 0 12 0 0
0 0 0 0.022 0
0 0 0 0 0.0022


(27)

The fault estimate is performed on the ambiguous mea-
surements equation on the GNSS and the barometer. Then
the corresponding output matrix of the fault estimate is:

Cf =

[
1 0 0 0 0
0 1 0 0 0

]>
(28)

and the fault estimate state vector is f = [fg fb].
The numerical parameters of the control are the following:

Cx =

[
0 0 0 1 0
0 1 0 0 0

]
, Ki =

[
0 22.361
−1 0

]
Kz =

[
0 0 0.012 −4.846 −0.281
0 0.998 0 0 0

]
Ch = [1 0 0 0 0]

(29)

5.2 Simulation parameters of the JMRPF

The JMRPF parameters are:
Azf = 0nz,nf

, Af,m(0) = Af,m(1) = 0nz,nf
(30)

The standard deviation vector used to compute the covari-
ance matrix P0 = diag (σ0)

2 is equal to:
σ0 = [10 2 2 0.1 0.01 25 5]

> (31)

The standard deviation vector used to compute the covari-
ance matrix Qk = diag (σQ)

2 is equal to:
σQ = [1 1 1 0.02 0.002 0.08 0.08]

> (32)

For all the parameters of the f state vector the Π matrix 2

used is the same and defined as:

Π =

[
0.99 0.01
0.01 0.99

]
(33)

2 The observed results are sensitive to the values of the probabilities,
especially for the JMRPF. Moreover, it is not easy to specify.
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For the resampling step:
Γ = 0.015, h = 0.3894 (34)

The matrix R′
k is the one used in the filter. Here R′

k =
αRk, with α > 1.
The total number of particles Np is set to 1000.

5.3 Simulation parameters of the IMM-KF

The IMM-KF (see Zhang and Li (1998)) is based on two
Kalman filters. The first Kalman filter is the fault-free
model. The second Kalman filter performs the state and
fault estimation using the same measurements equation
and fault model of the JMRPF. The matrices P0 and R′

k
are the same as those used by the JMRPF. The matrix Qk

has been changed on the IMM-KF for the fault estimates
states to get a better result. The standard deviation σQ

used for the IMM-KF is:
σQ = [1 1 1 0.02 0.002 5 1]

> (35)
The transition probability between the IMM-KF models
is equal to the matrix Π defined in (33)

5.4 Flight scenario and results

The desired output is set to 0 (relative to the trim point)
for desired altitude and velocity. For the flight scenario,
two additive intermittent abrupt faults are considered.
The first fault occurs on the GNSS altitude at 30 s with
a magnitude of 50m, the fault is deactivated at 50 s. The
second fault occurs on the barometer altitude at 40 s with a
magnitude of 30m, the fault is deactivated at 60 s. No fault
occurs on the other sensors. The IMM-KF and JMRPF are
both applied to this scenario. The JMRPF is initialized in
faulty mode m(1) while the IMM-KF is initialized with a
more favourable condition which consist of a weight of 0.5
on both of its models.
The navigation filter of the Fig. 4 is performed by the
JMRPF or by the IMM.
The RMSE results of this scenario is shown in Fig. 5.
Those results are based on 100 simulations with new
measurements and initial states at each simulation. The
same measurements were used for the IMM-KF and the
JMRPF simulations.
On Fig. 5, a peak occurs at each time a fault is activated
or deactivated. this can be explained by the fact that when
the fault occurred the fault estimate has not predicted its
occurrence and at this time step the gap is near the fault
magnitude between the fault estimate and the real fault
value.
Fault-free situation: The results of Fig. 5 show that in a

fault-free situation after converging or after recover-
ing from faulty situation both RMSE are near 0.

GNSS faulty & barometer fault-free: In Fig. 5 the IMM-
KF is good at estimating the fault of the GNSS. But
the activation of the fault has affected the fault esti-
mate of the fault-free sensor for the IMM-KF while
the RMSE of the JMRPF for the fault-free sensor
remains unchanged. In this situation the RMSE of
the JMRPF for the barometer is approximatively 44
times lower than the RMSE of the IMM-KF and
around 1.6 times lower for the GNSS.
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(a) RMSE GNSS fault estimate.
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Fig. 5. (a) RMSE of the GNSS additive estimated fault. (b)
RMSE of barometer additive estimated fault. RMSE
are based on 100 simulations.

GNSS faulty & barometer faulty: When both faults are
active, the RMSE of JMRPF on the GNSS remains
largely unchanged. With the IMM-KF when the sec-
ond fault is activated, the RMSE of both sensors
faults estimates is getting significantly worse. In this
situation the RMSE of JMRPF is approximatively 4
times lower than the on of the IMM-KF RMSE for
the GNSS and 7 times lower for the barometer.

GNSS fault-free & barometer faulty: The deactivation of
one of two faults does not significantly improve the
IMM-KF RMSE of the barometer. The RMSE of the
JMRPF also remain unchanged for the barometer.
However the RMSE of the JMRPF for the GNSS
returns to its fault-free value when the fault of the
GNSS is deactivated while the RMSE of the IMM-
KF for the GNSS is hold to its faulty value. In this
situation the RMSE of JMRPF is approximatively 33
times lower than the IMM-KF RMSE for the GNSS
and 5.7 times for the barometer.

Based on this RMSE simulation, a mean RMSE for fault
estimate state has been computed on each simulation
results and sorted. The median simulation results is shown
in Fig. 6. The results of Fig. 6 show that the JMRPF
seems to not have difficulties to estimate the fault when
both faults are activated. On the other hand, the IMM-
KF fault estimate of the fault-free sensor is impacted
when a fault is active. Moreover, the fault estimate of the
barometer estimate only approximately half of the fault.
This is believed to be due to the fact that the KF is not
suitable for the multimodality that results from using two
sensors to estimate one state, while the PF works in the
multimodal case.
The impact of the fault estimate on the altitude state pd
of this simulation is shown in Fig. 7.
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Fig. 6. GNSS (a) and barometer (b) additive fault es-
timates Median simulation according to the RMSE
results.
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Fig. 7. Altitude of the UAV with the IMM-KF and JMRPF
algorithm when a fault occurs on the altitude sensors.
Median simulation according to the RMSE results.

Fig. 7 shows that poor quality of the barometer fault
estimate of the IMM-KF. With the JMRPF, the error
on the barometric altitude estimate is not negligible but
significantly lower. This significant change of the UAV
altitude can lead to a critical situation for the UAV and
mission integrity. The impact of the GNSS fault estimation
error is less significant, because the GNSS measurements
are noisier than the barometer measurements and, as a
consequence, the filter has less confidence in the GNSS
measurements compared to the barometer measurements
for the estimation of pd.

6. CONCLUSION

Even though the IMM-KF is well known to be a highly
efficient fault estimator, it shows its limitations in the
ambiguous case of simultaneous fault measurements on the
same output. This was illustrated in this paper with two al-
titude measurements from barometric altitude sensor and
a GNSS receiver. This limitation is due to the multimodal

nature of such ambiguous simultaneous faults and may
lead to some critical behaviour of the flight control. To
address this problem, the JMRPF introduced in this pa-
per can efficiently estimate simultaneous additive abrupt
faults assuming knowledge of the likely faults’ dynamics.
The application of JMRPF algorithm to a UAV shows
that even with intermittent faulty measurements from
both altitude sensors, accurate estimation of UAV states
is possible.
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