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Abstract: In this paper, we propose the use of a change detection strategy to perform
condition monitoring of mechanical components. The method looks for statistical changes in
the distribution of features extracted from raw measurements, such as Root Mean Square or
Crest Factor indicators. The proposed method works in a batch fashion, comparing data from
one experiment to another. When these distributions differ by a specified amount, a degradation
score is increased. The approach is tested on three experimental applications: (i) an Electro-
Mechanical Actuator (EMA) employed in flight applications, where the focus of the monitoring
is on the ballscrew transmission; (ii) a CNC workbench, where the focus is on the vertical
shaft bearing, (iii) an industrial EMA with focus on the ballscrew bearing. All components
have undergone a severe experimental degradation process, that ultimately led to their failure.
Results show how the proposed method is able to assess component degradation prior to their
failure.
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1. INTRODUCTION

Condition monitoring and predictive maintenance are
some of the new applications enabled by the industry 4.0
paradigm, see Lamnabhi-Lagarrigue et al. (2017). Classical
fault diagnosis schemes have been studied in control with
a model-based focus, Varga (2017). However, data-driven
methods, while more computationally demanding and less
interpretable, are easier to understand and deploy, espe-
cially with many variables to manage, see Ding (2014).

Amongst the data-driven approaches, statistical change
detection methods have been recently employed in con-
dition monitoring with simulated Kammammettu and Li
(2019) and experimental data Mazzoleni et al. (2018a,b).
The aim is to identify when the statistical features of the
data are changing, by estimating two data distributions:
one before and one after a certain time instant. Change-
point detection methods are usually classified into real-
time, Garnett et al. (2009), and retrospective detection,
Yamanishi and Takeuchi (2002), with the first methodolo-
gies giving immediate response and the second ones ensur-
ing greater accuracy. In particular, authors in Mazzoleni
et al. (2018b) proposed a condition monitoring approach
based on batch change detection that relies on the RuLSIF
technique of Liu et al. (2013), whose aim is to estimate the
ratio of the two distributions, rather than estimating the
single ones.

In this work, we test the condition monitoring approach
based on the batch change detection on three experimental
setups: (i) monitoring of the ballscrew transmission of an
ElectroMechanical Actuator (EMA) for flight applications;

(ii) monitoring of a rolling bearing in a workbench center;
(iii) monitoring of a rolling bearing in an industrial EMA.

The first activity is carried out in the Reliable Elec-
tromechanical actuator for PRImary SurfacE with health
monitoring (REPRISE) H2020 project. A description of
the project and results on the first experimental campaign
are reported in Mazzoleni et al. (2019); Mazzoleni et al.
(2017b); Previdi et al. (2018) where the batch monitoring
approach was introduced. To validate the method, a second
test campaign has been conducted on a new EMA (similar
to the one used during the first test phase) until its failure.
Monitoring mechanical components in a EMA using data-
driven methods is not a new problem, see e.g. Chirico and
Kolodziej (2014); Tsai et al. (2014); Mazzoleni et al. (2014,
2017a). However, apart from previous work of the authors,
as far as we are aware, change detection methods have
never been applied for this purpose.

The second activity regards the monitoring of a rolling
bearing, used in the transmission of the vertical shaft of a
workcenter machine. Bearing diagnostics is a well-known
problem: however, much of the research has devoted its
attention to detect and isolate local faults (e.g. inner/outer
race faults), for which common tested approaches are
available, see Randall and Antoni (2011). In our case, we
are instead interested in bearing degradation, for which it
is not possible to predict if a local fault will emerge. For
this reason, it is interesting to evaluate how the proposed
approach performs on this task.

A similar problem is faced in the third activity, where
the focus is on the monitoring of a rolling bearing in an
industrial EMA with ballscrew transmission.
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Summarizing, the contributions of this work are: (i) vali-
date the monitoring approach, proposed in Mazzoleni et al.
(2018b) by the authors, on a second new experimental
campaign performed on the REPRISE flight EMA; (ii)
evaluate the approach on different experimental settings,
based on the monitoring of industrial rolling bearings.

2. STATISTICAL CHANGE DETECTION

The proposed monitoring algorithm is based on a density-
ratio estimation method known as Relative unconstrained
Least-Squares Importance Fitting (RuLSIF) Kanamori
et al. (2009); Liu et al. (2013). The aim of the method is
to estimate the ratio of two densities. The estimate is then
used to assess how the two densities differ, using a suitable
divergence. In our setting, the two densities represent
kernel estimates of the time series data distribution, before
and after a certain time instant.

The RuLSIF algorithm was originally designed for on-
line change detection, i.e. assess the distribution proper-
ties continuously as new data arrive. In the following,
we briefly review: (i) the standard on-line approach; (ii)
the batch approach proposed in Mazzoleni et al. (2018b).
Although both approaches can be employed for condition
monitoring, the batch variant presents some advantages:
(i) it permits to have a different number of observations
in the compared experiments; (ii) it has one less hyper-
parameter to tune; (iii) it allows for better detection, by
comparing current data with a “reference” data set.

2.1 On-line approach

Problem statement Let y(t) ∈ Rd×1 be a d-dimensional
time-series sample at time t. Let

z(t) ≡
[
y(t)>, y(t+ 1)>, · · · , y(t+ k − 1)>

]> ∈ Rd·k×1

be a subsequence of time-series of length k, at time t. The
dk-th dimensional vectorY(t) defines a single data sample.
Let

Y(t) ≡ [z(t), z(t+ 1), · · · , z(t+ n− 1)] ∈ Rd·k×n,
be the matrix composed by n of the dk-th dimensional
samples z(t). Consider two consecutive segments Y(t) and
Y(t + n). The change-detection problem is then solved
by computing a certain dissimilarity measure between the
data sets Y(t) and Y(t+ n). The higher the dissimilarity
measure is, the more likely the two distributions differ.

Dissimilarity measure The considered dissimilarity mea-
sure is the α-relative Pearson divergence measure, intro-
duced in Liu et al. (2013). For 0 ≤ α < 1, we have:

PEα (p‖ p̃) ≡
1

2

∫
p̃α(x) ·

(
p(x)

p̃α(x)
− 1

)2

dx, (1)

where x denotes the generic dk-th dimensional random
variable, p̃α(x) = αp(x) + (1− α) p̃(x) is the α-mixture
density and p(x), p̃(x) are the probability density func-
tions of the data in Y(t) and Y(t + n), respectively. The
α-relative density-ratio is then defined as:

rα(x) =
p(x)

p̃α(x)
=

p(x)

αp(x) + (1− α) p̃(x)
, (2)

which it is bounded above by 1/α for α > 0. Equation
(1) is not a metric, since it is not symmetric and the

triangular inequality does not hold. To cope with the first
problem, authors in Liu et al. (2013) proposed to use the
symmetrical divergence:

π ≡ PEα (p‖ p̃) + PEα (p̃‖p) , (3)
where each term is estimated separately.

Learning algorithm The main observation of the RuLSIF
change detection method is that it is easier to estimate
the ratio of two densities with respect to estimating the
individual ones, see Liu et al. (2013). Let {zi}ni=1 and
{z̃j}nj=1 be sets of samples drawn from p(x) and p̃(x),
respectively. The α-relative density-ratio (2) is modeled
as:

g (x;θ) ≡
n∑
l=1

θl · k (x, zl) , (4)

where θ = [θ1, . . . , θn]
> ∈ Rn×1 are unknown parameters,

k (· , ·) is a kernel basis function with hyperparameters vec-
tor η, and zl refers to the l-th data sample in Y(t) (which
we assume it was drawn from p(x)). The parameters vector
θ is estimated as in Liu et al. (2013):

θ̂ = arg min
θ∈Rn

[
1

2
θ>Ĥθ − ĥ>θ +

λ

2
θ>θ

]
, (5)

where Ĥ ∈ Rn×n, ĥ ∈ Rn×1 and λ ∈ R>0 controls the
regularization strength. The element in position (l,m) of
Ĥ is given by: Ĥ(l,m) = α

n

∑n
i=1 k(zl, zi) · k(zi, zm) +

1−α
n

∑n
j=1 k(zl, z̃j) · k(z̃j , zm). The element in position l

of ĥ is given by: ĥ(l) = 1
n

∑n
i=1 k(zi, zl).

The solution in (5) can be found by minimizing the

following cost: J(θ) = 1
2

∫
p′α(X)

(
rα(X)− g(X;θ)

)2
dX.

Computing the divergence Substituting the estimator
(4) in (1) leads to the following approximation of the α-
relative divergence: P̂Eα = 1

2n

∑n
i=1 g

(
zi; θ̂

)
− 1

2 . The
final divergence score, as reported by (3), is:

π̂ ≡ P̂Eα(p‖ p̃) + P̂Eα(p̃‖p). (6)

2.2 Batch approach

As stated previously, in Mazzoleni et al. (2018b) we
proposed to use the RuLSIF method in a batch mode. The
batch variant applies the RuLSIF algorithm by directly
comparing two batches of data at a time, with the aim of
evaluating how much these two data sets differ.

We denote the first dataset with n1 observation and
probability density function p as Y1 ∈ Rd·k×n1 , and the
second data set with probability density function p̃ as
Y2 ∈ Rd·k×n2 . The parameter k maintains its previous
role. The computation discussed previously remains the
same, with the proper dimensions taken into account.
In both continuous and batch variant, we indicate the
appropriate set of hyperparameters of the method (kernel
function k hyperparameters vector η, the regularization
strength λ, k and n) with the vector ψ.

The approach for computing a condition monitoring indi-
cator is as in Mazzoleni et al. (2018b) and summarized in
Algorithm 1. Let Yτ ∈ Rd·k×n be the data of the test τ ,
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and suppose for simplicity that all tests have n observa-
tions. First, in the set-up phase, compute the divergence
π̂1 between two healthy tests, i.e. Y0 and Y1. Then, set a
threshold ξ that is higher than π̂1 but lower than 2α (the
maximum value of (6)). The subsequent tests are com-
pared with the last experiment τ = τ∗ that exceeded the
threshold ξ. We call this Last-Change policy (see Mazzoleni
et al. (2018b) for a comparison of different policies). Each
time ξ is violated, a damage counter ζτ is incremented.
The damage counter ζτ is taken as a monotonic indicator
of system degradation.

Algorithm 1 Condition monitoring algorithm based on
batch change detection
Input: Yτ∗ ,Yτ , hyperparameters ψ = [α, λ, k,η>]>

Output: Damage indicator ζτ
Training or set-up phase (for τ ≤ 1):

1: compute the divergence π̂1 between Y0 and Y1

2: set a threshold ξ s.t. π̂1 < ξ < 2α;

Test phase (for τ > 1):
3: ζτ ← 0; τ∗ ← 1
4: compute the divergence π̂τ between Yτ∗ and Yτ

5: if π̂τ > ξ then
τ∗ ← τ ; ζτ ← ζτ−1 + 1

6: end if

3. INDUSTRIAL CASE STUDIES

3.1 Flight electro-mechanical actuator monitoring

ECU

EMA

Fig. 1. EMA with its Electronic Control Unit (ECU).

The focus of the REPRISE project is on primary flight
surfaces control EMAs for small aircraft. The considered
EMA is a BrushLess DC (BLDC) motor with a ballscrew
transmission. Part of the work is devoted to developing
condition monitoring algorithms for the mechanical part
of the EMA (in particular the ballscrew). A test bench
has been developed to stress the EMA until failure. A
schematic of the used flight EMA is shown in Figure 1.

A large experimental campaign was performed in different
conditions of load and lubrication of the ballscrew. Two
types of tests were conducted: (i) endurance tests; (ii)
monitoring test. During endurance tests, the EMA has to
overcome 800N of load (which is higher than ballscrew
specification). Monitoring tests were performed at 300N,
and data such as the motor phase currents were measured.
In both test types, the EMA was commanded by sinusoidal
position profiles, see Mazzoleni et al. (2019). One of the
main possible causes of ballscrew degradation is the lack of

lubricant. For this reason (and also to accelerate the EMA
damaging) we tested the EMA in three different operating
conditions: (i) standard level of lubricant; (ii) about half
lubricant removed; (iii) lubricant completely removed.

A total of two acquisition phases were performed: (i)
the first one from April 2018 to October 2018; (ii) the
second one from February 2019 to May 2019. A thorough
description of the performed tests and results on the first
acquisition phase is presented in Mazzoleni et al. (2019);
Mazzoleni et al. (2017b). In this paper, we extend previous
results based on acquisition phase 1 data (see Mazzoleni
et al. (2018a,b); Previdi et al. (2018), validating the use
of Algorithm 1 on the data from acquisition phase 2, that
was specifically performed for this purpose. A review of the
performed tests is reported in Figure 2. As can be seen,
both phases ended with a complete failure of the EMA. In
particular, the 2nd phase ended with a jamming of the
nut-screw assembly.

In both monitoring and endurance tests of the two
acquisition phases, we performed tests at 5mm and
10mm of sinusoidal position profile amplitude, within
each one of these frequency values of the input (in Hz):
{0.1, 0.3, 0.5, 0.8, 0.9, 1, 1.5, 2, 2.5, 4}, for a total of 100 pe-
riods for each frequency.

Fig. 2. Number of screw revolutions for different loads and
operating conditions, in the two acquisition phases.

3.2 Bearing monitoring in high-precision workcenters

The second case study is related to the assessment of
bearings degradation in high-precision workcenters. In par-
ticular, the focus is on the upper bearing of the vertical-
shaft (Y direction) of a 5-axis CNC machine, see Figure
3. An endurance campaign was performed to bring the
bearing to fail. The test lasted from 17 June 2019 to 27
June 2019, when the bearing underwent a complete failure.
The tests consisted in vertical up/down movements of the
vertical shaft, following a trapezoidal speed profile, span-
ning the full length of the shaft screw (≈ 1300mm). The
tests were performed initially at 10m/min of maximum
speed, with poor lubricant inside the bearing. Since the 24
June 2019, we fully removed the lubricant and performed
tests at 30m/min of maximum speed, to accelerate the
deterioration. During the tests, we measured the following
variables for 3 s every 40min: (i) quadrature current of
the motor; (ii) motor encoder; (iii) bearing temperature;
(iv) bearing vibrations. The vibrations were acquired at
12800Hz by a tri-axial accelerometer, see Figure 4.
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3.3 Bearing monitoring in industrial EMAs

This mechatronics application regards the degradation of
bearings in industrial actuators. The employed EMA is a
three-phase Brushless AC motor (BLAC) with ballscrew
transmission. The considered bearing directly supports
the screw, see Figure 5. The EMA underwent two en-
durance sessions with 1185N load generated by a linear
pneumatic motor, using trapezoidal position profiles with
150mm amplitude, 250mm/s speed and 2000mm/s2 ac-
celeration. The endurance sessions lasted about 3 hours
each. The motor traveled a total of 4.1 km with 819.000
screw revolutions. During the third endurance session, the
bearing reached a failure. Prior to stressing the EMA,
two monitoring acquisitions were performed, consisting of
three forward/backward movements (with same settings as
during endurance sessions). The monitoring acquisitions
were performed after the first and the second endurance
session. Measured data includes EMA position and phase
currents (sampled at 10 kHz), see Figure 6.

4. CONDITION MONITORING VIA BATCH
CHANGE POINT DETECTION

4.1 Flight electro-mechanical actuator monitoring

In order to employ the proposed method, it is necessary
to define which data distributions are compared. The
features composing y(t) are computed in the following way.
Consider a fixed frequency of the sinusoidal input profile.
First, computed the Root Mean Square (RMS) and the
Crest Factor (CF) of the three phase currents, in each
period of the input. Then, for each input period, take the
average of the computed RMS and CF in that period.
Thus, we have that y(t) ∈ R2×1. An example of measured
data is reported in Figure 7.

Results of Algorithm 1 on phase 1 monitoring data, using
k = 1, α = 0.5, and a Gaussian kernel k (z1, z2) =
exp

(
−‖z1 − z1‖22/δ

)
are reported in Mazzoleni et al.

(2018b, 2019) while the continuous version of Section 2.1
was presented in Mazzoleni et al. (2018a). With k = 1,
we have that z(t) = y(t). This means that the data

Vertical axe (b), hidden behind

Y

Z

X

(a) The workcenter, frontal view.

Motor

Motor encoder

Belt

Upper
bearing

Optical
row

Nut

Ballscrew

bearing
Lower

Y

Z

X

Accelerometer

(b) Vertical shaft scheme.

Fig. 3. Schematic of the workcenter with upper bearing
highlighted.

(a) Considered bearing. (b) Accelerometer.

Fig. 4. Bearing and accelerometer on bearing housing.

Fig. 5. Schematic of the experimental setup for the bearing
monitoring of an industrial EMA.

Fig. 6. Measurements from the industrial AC actuator.
(Left) Test position and phase currents. (Right) Zoom
on the motor phase currents. Dashed vertical lines
represent a complete turn of the motor.

Fig. 7. Measurements from flight EMA. Vertical dashed
lines indicate a period of data used to compute the
RMS and CF. Frequency: 0.5Hz. Amplitude: 10mm.
Load: 300N.

y(t) are considered as independent samples: the rationale
derives from the fact that each feature is computed from
current data from a different and independent period of
the input profile. Y(t) is composed by the number of
sinusoidal position periods. The chosen test input profile
is a sinusoid at 1Hz frequency and 10mm amplitude. A
total of 100 periods are considered. The hyperparameters
δ and λ were tuned by a cross-validation procedure (see
Liu et al. (2013)), repeated for each data sets comparison.
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The threshold was set to ξ = 2 · π̂1 = 0.81, such that
0 < ξ < 2α = 1.

The algorithm tuned on the 1st phase data is validated
on the 2nd phase data, with the same hyperparameters
and threshold and with the same type of test profile
(i.e. sinusoidal input with 1Hz frequency and 10,mm
amplitude) as in phase 1. Results are reported in Figure 8.
The last two experiments underwent mechanical jamming
of the screw-nut assembly. For this reason, the algorithm
is not able to find enough periods of the measured position
profile, given by the LVDT sensor inside the EMA. In
these cases, we set the RMS and CF features to 1.5 and
0.5 times their average value during the first experiment,
respectively. Figure 8 depicts a zoom of the measured EMA
position: it is clear how there are times where the EMA
is locked in a fixed position, due to the jamming of the
screw-nut assembly. Results show how the algorithm was
able to detect a degradation on 08 April 2019, about 20
days before the actuator started to jam.

Fig. 8. Results of the proposed monitoring scheme on
REPRISE phase 2 data. Damaged screw circuits and
measured position due to the jam are highlighted.

4.2 Bearing monitoring in high-precision workcenters

In order to apply Algorithm 1 to the data of Section 3.3, we
employed the Y-axis data of the accelerometer in Figure
4b, since it is the axis which is orthogonal to the bearing
rotation. In particular, we considered the constant speed
vibration data during raising motion of the Y vertical shaft
of the machine (see Figure 3b). For each raising movement
(from bottom to top of the machine) we computed the
RMS and CF of specified vibration data, for a total of
921 features y(t) ∈ R2×1. The choice of using the raising
movement, with respect to the descending one, is related
to the fact that, during raising direction, the structure is
more stressed (the gravity does not help the motion), and
therefore fault conditions are easier to assess. Here, we
considered the tests on 27 June 2019. At the end of the
day, the bearing reached a failure. An example of measured
data is reported in Figure 9.

The data sets for Algorithm 1 are created as follows. As
in Section 3.1, we consider k = 1, since each RMS and CF
indicators are computed independently from each constant
speed period of vibration data. Then, we subdivided the
921 features in 8 blocks, each having 115 features (we
removed some features in the last block). Each block lasts

Fig. 9. Measurements from the workcenter. (Top) Bearing
vibration data of Y accelerometer axis; (middle) linear
vertical position; (bottom-left) temperature; (bottom-
right) zoom of vibration data. Vertical dashed lines
represent constant speed periods.

Fig. 10. Results of the proposed monitoring scheme on the
workcenter bearing vibration data.

about 15min. Then, each of these data blocks is considered
as a single experiment Yτ .

Results of the method, with same kernel as in Section 4.1,
are shown in Figure 10, where ξ = 2 · π̂1. In the middle of
bearing degradation, spikes on acceleration appear (the CF
increases), while the RMS slowly increases. At the end of
the day, the RMS has a huge increase that led to bearing
failure. The method was able to detect the degradation
about 45min before the failure.

4.3 Bearing monitoring in industrial EMAs

As in Section 4.1, we employ the average RMS and average
CF features computed from the three phase currents.
Each feature is computed for each complete mechanical
turn of the BLAC motor, during forwards movements. In
total, there are about 70 features y(t) ∈ R2×1 for each
monitoring session. Again, we set k = 1. Thus, there are 4
experiments Yτ used to fed Algorithm 1.

Results of the method, with the same kernel as in Section
4.1, are shown in Figure 11, where ξ = 2 · π̂1. Here, the
degradation trend is clearly visible from the features. The
method was able to assess an anomaly about 16 hours of
uninterrupted working before the failure.
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Fig. 11. Results of the proposed monitoring scheme on the
bearing monitoring on the industrial EMA.

5. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we presented a condition monitoring ap-
proach based on a statistical change detection method ap-
plied to three practical case studies from the mechatronics
industry. The aim was to monitor mechanical components:
a ballscrew transmission and two rolling bearings. The
approach works in a batch fashion, comparing two exper-
iments at a time, and producing a health indicator each
time the distribution of features extracted from measured
data of the two experiments differs by a certain amount.
Results showed how the approach is able to detect degra-
dation of the components prior to their failure. Future re-
search is devoted to validate the method in other settings.

ACKNOWLEDGEMENTS

The flight EMA project has received funding from the the Clean
Sky 2 Joint Undertaking under the European Union’s Horizon
2020 research and innovation programme under grant agreement No
717112 (project acronym: REPRISE).

The workcenter project has received funding from the Italian Min-
istry of Economic Development (MiSE), tasks 6.1 and 6.2 of the
program OR-06 2017-2020 assigned to Mandelli Sistemi SpA.

The industrial EMA project has received funding from the Lombardy
region, Italy, in the context of the SMART4CPPS (Smart Solutions
for Cyber-Physical Production Systems) project.

REFERENCES
Chirico, A.J. and Kolodziej, J.R. (2014). A data-driven

methodology for fault detection in electromechanical
actuators. Journal of Dynamic Systems, Measurement,
and Control, 136(4), 041025.

Ding, S.X. (2014). Data-driven design of fault diagnosis
and fault-tolerant control systems. Springer-Verlag Lon-
don.

Garnett, R., Osborne, M.A., and Roberts, S.J. (2009).
Sequential bayesian prediction in the presence of change-
points. In Proceedings of the 26th Annual International
Conference on Machine Learning, 345–352. ACM.

Kammammettu, S. and Li, Z. (2019). Change point and
fault detection using kantorovich distance. Journal of
Process Control, 80, 41 – 59. doi:https://doi.org/10.
1016/j.jprocont.2019.05.012.

Kanamori, T., Hido, S., and Sugiyama, M. (2009). A
least-squares approach to direct importance estimation.
Journal of Machine Learning Research, 10(Jul), 1391–
1445.

Lamnabhi-Lagarrigue, F., Annaswamy, A., Engell, S.,
Isaksson, A., Khargonekar, P., Murray, R.M., Nijmeijer,
H., Samad, T., Tilbury, D., and den Hof, P.V. (2017).
Systems & control for the future of humanity, research
agenda: Current and future roles, impact and grand
challenges. Annual Reviews in Control, 43, 1 – 64. doi:
https://doi.org/10.1016/j.arcontrol.2017.04.001.

Liu, S., Yamada, M., Collier, N., and Sugiyama, M. (2013).
Change-point detection in time-series data by relative
density-ratio estimation. Neural Networks, 43, 72–83.

Mazzoleni, M., Maccarana, Y., and Previdi, F. (2017a). A
comparison of data-driven fault detection methods with
application to aerospace electro-mechanical actuators.
IFAC-PapersOnLine, 50(1), 12797–12802. doi:10.1016/
j.ifacol.2017.08.1837. 20th IFAC World Congress.

Mazzoleni, M., Maccarana, Y., Previdi, F., Pispola, G.,
Nardi, M., Perni, F., and Toro, S. (2017b). Development
of a reliable electro-mechanical actuator for primary
control surfaces in small aircrafts. In Advanced Intel-
ligent Mechatronics (AIM), 2017 IEEE International
Conference on, 1142–1147. IEEE.

Mazzoleni, M., Previdi, F., Scandella, M., and Pispola, G.
(2019). Experimental development of a health moni-
toring method for electro-mechanical actuators of flight
control primary surfaces in more electric aircrafts. IEEE
Access, 1–1. doi:10.1109/ACCESS.2019.2948781.

Mazzoleni, M., Scandella, M., Maccarana, Y., Previdi, F.,
Pispola, G., and Porzi, N. (2018a). Condition assess-
ment of electro-mechanical actuators for aerospace using
relative density-ratio estimation. IFAC-PapersOnLine,
51(15), 957 – 962. doi:https://doi.org/10.1016/j.ifacol.
2018.09.070. 18th IFAC Symposium on System Identi-
fication SYSID 2018.

Mazzoleni, M., Scandella, M., Maccarana, Y., Previdi, F.,
Pispola, G., and Porzi, N. (2018b). Condition moni-
toring of electro-mechanical actuators for aerospace us-
ing batch change detection algorithms. In 2018 IEEE
Conference on Control Technology and Applications
(CCTA), 1747–1752. doi:10.1109/CCTA.2018.8511334.

Mazzoleni, M., Formentin, S., Previdi, F., and Savaresi,
S.M. (2014). Fault detection via modified princi-
pal direction divisive partitioning and application to
aerospace electro-mechanical actuators. In Decision and
Control (CDC), 2014 IEEE 53rd Annual Conference on,
5770–5775. IEEE.

Previdi, F., Maccarana, Y., Mazzoleni, M., Scandella, M.,
Pispola, G., and Porzi, N. (2018). Development and
experimental testing of a health monitoring system of
electro-mechanical actuators for small airplanes. In
2018 26th Mediterranean Conference on Control and
Automation (MED), 673–678. doi:10.1109/MED.2018.
8442734.

Randall, R.B. and Antoni, J. (2011). Rolling element
bearing diagnostics - a tutorial. Mechanical Systems and
Signal Processing, 25(2), 485 – 520. doi:https://doi.org/
10.1016/j.ymssp.2010.07.017.

Tsai, P., Cheng, C., and Hwang, Y. (2014). Ball screw
preload loss detection using ball pass frequency. Me-
chanical Systems and Signal Processing, 48(1), 77 – 91.
doi:https://doi.org/10.1016/j.ymssp.2014.02.017.

Varga, A. (2017). Solving fault diagnosis problems. Studies
in Systems, Decision and Control, 1st ed.; Springer
International Publishing: Berlin, Germany.

Yamanishi, K. and Takeuchi, J.i. (2002). A unifying
framework for detecting outliers and change points from
non-stationary time series data. In Proceedings of
the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, 676–681. ACM.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

104


