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Abstract: Modelling real world systems involving humans such as biological processes for
disease treatment or human behavior for robotic rehabilitation is a challenging problem because
labeled training data is sparse and expensive, while high prediction accuracy is required from
models of these dynamical systems. Due to the high nonlinearity of problems in this area, data-
driven approaches gain increasing attention for identifying nonparametric models. In order to
increase the prediction performance of these models, abstract prior knowledge such as stability
should be included in the learning approach. One of the key challenges is to ensure sufficient
flexibility of the models, which is typically limited by the usage of parametric Lyapunov
functions to guarantee stability. Therefore, we derive an approach to learn a nonparametric
Lyapunov function based on Gaussian process regression from data. Furthermore, we learn a
nonparametric Gaussian process state space model from the data and show that it is capable
of reproducing observed data exactly. We prove that stabilization of the nominal model based
on the nonparametric control Lyapunov function does not modify the behavior of the nominal
model at training samples. The flexibility and efficiency of our approach is demonstrated on
the benchmark problem of learning handwriting motions from a real world dataset, where our
approach achieves almost exact reproduction of the training data.

Keywords: Nonparametric methods, Machine learning, Nonlinear system identification,
Learning systems, Lyapunov methods, Human centered automation, Gaussian processes

1. INTRODUCTION

Identification of models for systems involving humans is a
highly relevant problem in many fields such as medicine,
where dynamical systems can be used to model the pro-
gression of a disease, and robotic rehabilitation, where
models of the human behavior can be used to maximize
the training efficiency. Major difficulties in these modelling
problems typically are a high nonlinearity of real world
systems, the absence of first principle models and sparsity
of the expensive data (Pentland and Liu, 1999). Therefore,
parametric models are generally not capable of represent-
ing these complex system appropriately.

As a more flexible solution, data-driven approaches, which
can extract necessary information automatically from
training data, have gained increasing attention for model-
ing nonlinear systems, since they exhibit sufficient flexibil-
ity to adapt their complexity to the observed data and only
require marginal prior knowledge. Although classical sys-
tem identification literature has considered the problem of
determining stable models, see, e.g, (Lacy and Bernstein,
2003), the combination of machine learning techniques and
control theory has led to a variety of new approaches
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recently. A common method is to adapt standard machine
learning approaches using Lyapunov stability constraints
during model parameter optimization. Using a quadratic
Lyapuonv function, this method has been applied to Gaus-
sian mixture models in the stable estimator of dynam-
ical systems approach proposed by Khansari-Zadeh and
Billard (2011), and is further improved in (Figueroa and
Billard, 2018) by employing additional prior distributions,
which ensure physical consistency. The constrained opti-
mization method has also been used in combination with
neural networks (Neumann et al., 2013), where the flexibil-
ity of the model can be improved by learning the Lyapunov
function with a separate neural network (Lemme et al.,
2014). Since this constrained training approach can have
negative effects on the learning performance, it has been
proposed to learn a possibly unstable nominal model and
a control Lyapunov function (CLF) separately, such that
a virtual control can be determined based on the CLF to
stabilize the nominal model (Mohammad Khansari-Zadeh
and Billard, 2014). This approach has been pursued with
different Lyapunov functions, such as the weighted sum
of asymmetric quadratic functions (Mohammad Khansari-
Zadeh and Billard, 2014) and sums of squares (Umlauft
et al., 2017). Furthermore it has been extended to achieve
risk-sensitive behavior by considering the model uncer-
tainty due to sparsity of data (Pöhler et al., 2019).

Although the existing methods ensure stable trajectories
and achieve low reproduction errors on many practical ex-
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amples, there are no guarantees on the achievable expres-
siveness using a certain model. As this issue arises mainly
due to the use of parametric Lyapunov functions, we de-
velop a novel, nonparametric Lyapunov function which can
be learned from data using Gaussian process regression.
We employ a Gaussian process state space model (GP-
SSM) as nominal model, and show that it can learn dynam-
ical systems accurately on training data. By stabilizing the
GP-SSM based on the nonparametric control Lyapunov
function, we prove that the resulting model is capable of
reproducing observed data exactly, while being globally
asymptotically stable. The flexibility of the approach is
demonstrated in learning dynamical systems from a real
world dataset, and compared to existing methods.

The remainder of this paper is organized as follows. In
Section 2, we describe the considered problem. Section 3
explains our approach to learn a stable dynamical system
which reproduces observed data. The method is compared
to existing approaches on real world data in Section 4.

2. PROBLEM STATEMENT

Consider a nonlinear, discrete-time dynamical system 1

xk+1 = f(xk) (1)

which is asymptotically stable on the continuous valued
state space X ⊂ Rd. Furthermore, assume that the func-
tion f(·) is unknown and that consecutive measurements
of the states are taken such that we obtain a training data

set D = {(x(m)
k ,x

(m)
k+1)}Mm=1 with M ∈ N data pairs. We

will make use of the following assumption.

Assumption 1. The function f(·) defines an asymptoti-
cally stable system (1) on the compact set X ⊂ Rd.

We want to estimate a model based on the observed
data, which exhibits the posed assumptions on stability.
Therefore, the goal is to derive a stable model of the un-
known dynamical system, which maximizes the accuracy
of the reproduced training trajectories by reproducing the

observed data (x
(m)
k ,x

(m)
k+1) exactly.

3. STABILIZATION OF GAUSSIAN PROCESS STATE
SPACE MODELS

For learning stable dynamical systems capable of repro-
ducing observations, we follow the control Lyapunov func-
tion approach proposed in (Umlauft et al., 2017). For
this virtual stabilization method, we separately learn a
nominal system model µ : X→ Rd and a control Lyapunov
function V : X → R+ from the training data. For a
prediction, we determine the optimal, stabilizing virtual
control u∗(x) for the nominal model µ(·) based on the
control Lyapunov function V (·), which minimally modifies
the nominal model, and define the stable model as

f̂(x) = µ(x) + u∗(x). (2)

Since we consider scenarios with sparse data, we employ
Gaussian process (GP) regression, whose implicit bias-
variance trade-off avoids overfitting and hence, provides

1 Notation: Lower/upper case bold symbols denote vec-
tors/matrices, respectively, In the n × n identity matrix, R+

all positive real numbers, ‖ · ‖ the Euclidean norm and E[·] the
expectation operator.

high prediction accuracy with few training samples. We
consider deterministic systems and therefore, we use noise-
free Gaussian process state space models as nominal model
in contrast to the approach proposed in (Umlauft et al.,
2017). We show that the noise-free GP-SSMs are capa-
ble of reproducing the training data exactly under weak
assumptions in Section 3.1. In Section 3.2 we propose a
novel method to learn a nonparametric control Lyapunov
function from training data based on Gaussian process
regression, which is guaranteed to converge along the train-
ing data. Finally, we show that a stabilizing control can be
obtained via a constrained optimization and equals zero
for all training data in Section 3.3. Therefore, we obtain
an asymptotically stable model (2), which is capable of
reproducing observed data exactly.

3.1 Gaussian Process State Space Models

Gaussian processes are a powerful machine learning tool
for approximating nonlinear functions (Rasmussen and
Williams, 2006). A GP is a stochastic process on the
continuous input domain X such that each finite subset
{x1, . . . ,xN} ⊂ X is assigned a joint Gaussian distribu-
tion. This view is equal to a consideration as distribution
over functions, which is typically expressed through

f(x) ∼ GP(m(x), k(x,x′)) (3)

with prior mean and covariance function

m(x) = E[f(x)] (4)

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]. (5)

A GP is completely specified by its mean function m(·)
and covariance kernel k(·, ·). The mean function allows
to include prior knowledge in the form of approximate
or parametric models. While such models exist for some
applications, we do not assume their availability in the
following and set the prior mean function to m(x) = 0
without loss of generality. The covariance kernel k(·, ·) is
used to encode more abstract prior knowledge such as
information about the smoothness of the regressed func-
tion and determines which functions can be approximated
properly with a Gaussian process. Probably the most com-
monly used kernel is the squared exponential (SE) kernel
with automatic relevance determination

k(x,x′) = σ2
fexp

(
− 1

2

d∑
i=1

(
xi − x′i
li

)2)
, (6)

where σ2
f ∈ R+ is the signal variance and li ∈ R+,∀i =

1, . . . , d are the length-scale parameters. These vari-
ables are concatenated in a hyperparameter vector ψ =
[l1 . . . ld σf ]T . The squared exponential kernel is a universal
kernel in the sense of (Steinwart, 2001) which means that
it allows to approximate continuous functions arbitrarily
well. Therefore, Gaussian process regression with this ker-
nel is capable of learning many typical dynamics.

We employ d independent GPs to model a dynamical
system with d-dimensional state space, such that the i-th
component is denoted by

fi(x) ∼ GP(0, ki(x,x
′)). (7)

Predictions with this model can be calculated by con-
ditioning the prior GPs (7) on the given training set

D = {x(n)
k ,x

(n)
k+1}Ni=1. The conditional expectation µ(·) can
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be calculated analytically using linear algebra. For this
reason, we define target vectors

yi = [x
(1)
k+1,i . . . x

(N)
k+1,i]. (8)

Then, the predictive mean is given by

µi(x) = ki(x)K−1i yi (9)

with Ki,n,m = ki(x
(n)
k ,x

(m)
k ) and ki,n = ki(x,x

(n)
k ).

Remark 1. The matrix inverse in (9) theoretically always
exists for the squared exponential kernel if there is no

repeated entry in the input data, i.e., x
(n)
k 6=x

(m)
k , ∀n 6=m,

due to the fact that this kernel is universal (Steinwart,
2001). However, a small regularizer, typically called obser-
vation noise variance σ2

on, can be added on the diagonals of
Ki in order to avoid numerically ill-conditioned inversions.
This regularizer has typically a small effect on the predic-
tion since the resulting mean squared prediction error is
smaller than the noise variance (Rasmussen and Williams,
2006).

The hyperparameters ψi of the Gaussian processes fi(·)
can be obtained by independently maximizing the log-
likelihood

log p(yi|Xi)=− 1

2
yTiK

−1
i yi−

1

2
log det(Ki)−

N

2
log 2π, (10)

whereX = [x
(1)
k . . . x

(N)
k ] denotes the input training data

matrix. This optimization problem is typically solved us-
ing gradient based approaches (Rasmussen and Williams,
2006), even though it is generally non-convex.

We use the posterior mean function µ(·) defined through (9)
to define a nominal dynamical model

xk+1 = µ(xk) (11)

which is generally not asymptotically stable. However,
training samples are reproduced exactly such that we
obtain the following result.

Lemma 1. Consider a training data set D={(x(m)
k ,x

(m)
k+1)}Mm=1

generated by an unknown dynamical system (1), which has
a stable equilibrium at the origin. Furthermore, assume
that the training data set is augmented by adding the
pair (0,0). Then, a Gaussian process state space model
trained with this training data set reproduces the training
data exactly and has an equilibrium at the origin.

Proof. Performing the prediction for all training in-

puts x
(m)
k jointly yields

µi(Xk) = KiK
−1
i yi = yi,

where µi(Xk) = [µi(x
(1)
k ) . . . µi(x

(M)
k ) µi(0)] and the

inverse is well defined due to the fact that we consider
a deterministic function f(·) such that x

(m)
k+1 6= x

(m′)
k+1 ,

∀m 6= m′. Furthermore, we have the identity

[y1 . . . yd]
T = [x

(1)
k+1 . . . x

(M)
k+1 0]

due to the definition of the data set D. Therefore, the train-
ing data is reproduced exactly by the nominal system (11).
Finally, the equilibrium at the origin follows from the ad-
ditional training pair (0,0) due to (Umlauft et al., 2018).

The exact reproduction of data regardless of their com-
plexity is a major advantage of the nonparametric GP
modeling approach. However, this reproduction is only
possible, if the training data can be considered noise-

free, which is exploited in the proof as the property

x
(m)
k+1 6=x

(m′)
k+1 . In applications with few training data such

as medical applications or human-robot interaction, this
condition is typically satisfied due to the sparsity of the
data. Therefore, it is not a severe restriction.

Remark 2. Since we only focus on deterministic systems
in our approach, the variance of the next state xk+1 is not
of primary interest in this paper. However, it could be used
to determine regions of the state space X, which require
more training data in order to provide a good model of the
dynamical system.

3.2 Learning Nonparametric Control Lyapunov Functions

Although exact reproduction of the data is possible using
GP-SSMs, this does not imply that the stabilized system
(2) also exhibits superior reproduction performance. This
is due to the fact that an insufficiently flexible param-
eterization of the control Lyapunov function V (·) might
not allow the decrease of V (·) along all training samples.
However, the required flexibility is difficult to determine a
priori with parametric functions such as sums of squares or
weighted sum of asymmetric quadratic functions (Umlauft
et al., 2017). Therefore, we propose to learn a control
Lyapunov function from data based on Gaussian process
regression to exploit the flexibility of a fully nonpara-
metric approach. Since we do not have any target values
for the supervised learning, we cannot directly apply the
GP regression approach. Therefore, we approximate the
infinite horizon cost Ṽ∞(x) =

∑∞
k=1 l(f

k(x)), where fk(·)
denotes the k-times application of the dynamics f(·) and
l : Rd → R+ is a chosen stage cost, by transforming
the Bellman equation at training points into a regression
problem as proposed in (Lederer and Hirche, 2019). This
is formalized in the following lemma.

Lemma 2. Consider the approximate infinite horizon cost

V∞(x) = λT (k(Xk,x)− k(Xk+1,x)), (12)

with positive definite stage cost l : Rd → R+, training

pointsXk = [x
(1)
k . . . x

(M)
k ],Xk+1 = [x

(1)
k+1 . . . x

(M)
k+1] and

k(X,x) =
[
k(x(1),x) . . . k(x(M),x)

]T
(13)

λ = κ−1[l(x
(1)
k+1) . . . l(x

(M)
k+1)]T , (14)

where the elements of the invertible matrix κ ∈ RM×M
are defined using the squared exponential kernel k(·, ·) as

κmn = k
(
x
(m)
k ,x

(n)
k

)
− k

(
x
(m)
k+1,x

(n)
k

)
− k

(
x
(m)
k ,x

(n)
k+1

)
+ k

(
x
(m)
k+1,x

(n)
k+1

)
. (15)

Then, the control Lyapunov function

V (x) = l(x) + max{0, V∞(x) + V∞(0)} (16)

is positive definite and decreasing along the training data,

i.e., V (x
(m)
k )≥V (x

(m)
k+1), ∀m=1, . . . ,M .

Proof. Since l(·) is a positive definite function, V (·) is
positive due to its definition (16). Hence, it remains to
show the decrease along the training data. For this reason,
we first consider the exact infinite horizon cost function
Ṽ∞(·), which satisfies the Bellman equation

Ṽ∞(x)− Ṽ∞(f(x)) = l(f(x)).
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Due to (Lederer and Hirche, 2019), a function satisfying
this equation on a finite set of pairs (x,f(x)) can be
obtained through noiseless GP regression with the kernel

k̃(x,x′)=k(x,x′)−k(f(x),x′)−k(x,f(x′))+k(f(x),f(x′))

and output training data y = [l(x
(1)
k+1) . . . l(x

(M)
k+1)]T,

where invertibility of the matrix κ defined through (15) is
guaranteed due to the usage of the universal squared expo-
nential kernel. This follows directly from a representation
of Ṽ∞(·) in the feature space associated with the kernel
k(·, ·) and the linearity of this representation. Substituting
the obtained regression result into the original feature
space representation of Ṽ∞(·) directly yields (12). Since
the approximate infinite horizon cost (12) is guaranteed
to satisfy the Bellman equation on the training pairs, the
approximated cost l(x) + V∞(x) is decreasing along the
training data. Since this property is shift invariant, i.e.,
adding a constant to (12) does not change the decrease
along training data, (12) is not guaranteed to be positive
for all x 6= 0. Therefore, we enforce V (0) = 0 by adding
the value of (12) evaluated at the origin and exclude
obvious regression errors by setting negative values of
the shifted approximate infinite horizon V∞(x) + V∞(0)
to 0. Since regression errors do not occur on the training
samples, the decrease along training data is guaranteed for
(16) and the theorem is proven.

The hyperparameters of the control Lyapunov function
V (·) can be obtained via the standard approach of max-
imizing the log-likelihood (10). However, if we assume a
parameterized stage cost lθ(·), we can optimize jointly with
respect to hyperparameters ψ and cost parameters θ

min
ψ,θ

log p(lθ(Xk+1)|Xk+1,Xk), (17)

where the log-likelihood is given by

log p(lθ(Xk+1)|Xk+1,Xk) =

− 1

2
lTθ (Xk+1)κ−1lθ(Xk+1)− 1

2
log(|κ|)−N

2
log(2π) (18)

with the abbreviation lθ(Xk+1) =
[
lθ(x

(1)
k+1) . . . lθ(x

(M)
k+1)

]
.

This approach exhibits the advantage that the highly local
approximate infinite horizon cost V∞(·), which is typically
nonzero only in the proximity of training data, and the
global parametric stage cost l(·) are jointly adapted to the
data.

Remark 3. While we assume GPs with squared exponen-
tial kernels in this article, all theoretical results are directly
applicable to arbitrary universal kernels (Steinwart, 2001).

Remark 4. Although the Lyapunov function V (·) depends
on the hyperparameters ψ and the stage cost parame-
ters θ, the fundamental properties such as the decreasing
value along the training data are not influenced by them.
Therefore, the Lyapunov function V (·) is considered non-
parametric. However, the behavior away from the training
data crucially depends on the hyperparameters such that
the hyperparameter optimization (18) is an important step
in obtaining suitable hyperparameters.

3.3 Reproductivity Preserving Stabilization

We pursue the optimization based approach proposed in
(Umlauft et al., 2017) to virtually stabilize the nominal

system (11) with minimal modification. Within this ap-
proach we obtain the stabilizing control u(x) through

u∗(x) = arg min
u

1

2
uTu, (19a)

subject to:

V (µ(x) + u) < V (x) ∀x 6= 0

V (µ(x) + u) = V (x) ∀x = 0,
(19b)

where V (·) is the nonparametric Lyapunov function (16).
Although these non-convex constraints generally prevent
guarantees for the global optimality of solutions, this is not
a problem since local minima can trivially be obtained by
setting u∗(x) = −µ(x). Therefore, asymptotic stability
is not affected by the non-convexity of the optimization
problem which is exploited in the following theorem.

Theorem 3. The model (2) with nominal model defined
through (9) and stabilizing control obtained in (19) based
on the nonparametric control Lyapunov function (16) with
radially unbounded stage cost l(·) is globally asymptot-
ically stable and reproduces training data exactly, i.e.,

f̂(x
(m)
k ) = x

(m)
k+1, for all m = 0, . . . ,M .

Proof. The function V (·) is positive definite and radially
unbounded since the stage cost l(·) also satisfies these
conditions. The optimization problem is always feasible
since u∗(x) = −µ(x) is a trivial solution and ‖u‖∗ is
bounded since each mean function of the Gaussian process
state space model is bounded, i.e.,

|µi(x)| ≤ σ2
f

√
N ||K−1i yi|| ∀i = 1, . . . , d,

with yi from (8). Because the training set is fixed and gen-
erated by a deterministic function f(·) the norm of K−1i yi
is a finite constant. Hence, V (·) is a Lyapunov function and
the system (2) is globally asymptotically stable. Finally,
reproduction of observed training data follows from the
fact that V (·) is decreasing along training data as shown
in Lemma 2 and the exact reproduction of training data
with the nominal model (11) as proven in Lemma 1.

Although we use the trivially feasible control u∗(x) =
−µ(x) to prove asymptotic stability, it might not lead to
good local optima as starting point of numerical optimiza-
tion. Therefore, we propose to choose as initial point for
the numerical optimization the closest training point in
the training data set (including the origin) which satisfies
the stability conditions. This approach results in weak
convergence to the training data as local optima in the
proximity of data are more likely to be found.

Remark 5. If the stability conditions are already satified
by the uncontrolled GP-SSM, the optimal control u∗ is
0. Therefore, there is no need to solve the optimization
(19) numerically and computation time can be reduced by
directly using the nominal model (11).

4. EXPERIMENTAL EVALUATION

In order to demonstrate the flexibility of the pro-
posed nonparametric (NP) Lyapunov function, we com-
pare its performance to the weighted sum of asymmet-
ric quadratic functions (WSAQF) VWSAQF (Mohammad
Khansari-Zadeh and Billard, 2014) and the sum of squares
(SOS) Lyapunov function (Umlauft et al., 2017). We eval-
uate the performance in learning the motions of the LASA
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handwriting dataset 2 because it is a well-established
benchmark for stable nonlinear dynamical systems, which
fosters comparability of the methods. The setting of our
simulations is described in Section 4.1, while the results
are presented in Section 4.2 and discussed in Section 4.3.

4.1 Experimental Setting

The LASA data set consists of 24 handwriting shapes
recorded with a tablet computer. For each shape 3 to 15
recordings of the same motion are in the data set with a
single trajectory consisting of 150 or 250 data points. Since
some of the trajectories of a single shape intersect and
practically exhibit a stochastic behavior, our approach is
not directly applicable to the original data. In order to en-
sure comparability of the control Lyapunov functions, we
downsample the training data by a factor 10 to resolve this
issue and obtain sparse data. For learning the GP-SSMs
we add a regularizer 10−14 to the diagonal of the kernel
matrices Ki and κ in order to improve numerical stability
of the matrix inversion in (9) and (14), respectively.

Control Lyapunov functions We compare the flexibility
of three different Lyapunov functions:

• The WSAQF Lyapunov function proposed in (Mo-
hammad Khansari-Zadeh and Billard, 2014) which is
given by

VWSAQF(x)=xTP0x+

L∑
l=1

βl(x)(xTPl(x−εl))2, (20)

where

βl(x) =

{
0 if xTPl(x− εl)<0

1 otherwise,
(21)

with positive definite matrices Pl, l = 0, . . . , L. We set
L = 3 in our simulations resulting in 18 parameters.
• The SOS Lyapunov function proposed in (Umlauft

et al., 2017) which is defined as

VSOS(x) = m(x)TP0m(x), (22)

where m(·) is a vector of monomials and P0 is a
positive definite matrix, see (Papachristodoulou and
Prajna, 2005) for a detailed explanation on the SOS
technique. We use monomials up to degree 2 which
results in 15 free parameters.
• The proposed nonparametric Lyapunov function de-

fined in (16) which is denoted as VNP(·) in the sequel.
We employ a quadratic stage cost l(x) = xTP0x with
positive definite matrix P0 such that the conditions
of Theorem 3 for global asymptotic stability are met.

The parameters Pl of the WSAQF and SOS control
Lyapunov function are optimized to fit the data through
the minimization problem

min
Pl

M∑
m=1

max
{
0, V (x

(m)
k+1)−V (x

(m)
k )

}
. (23)

The positive definiteness of the matrices Pl is enforced
using a Cholesky decomposition and constraining the
eigenvalues of it to be larger than 0.01 in all approaches.

Simulation of the stabilized models In order to compare
the flexibility in reproducing the training data exactly
2 Data set is available at https://bitbucket.org/khansari/seds

V (xk) ∆rep S
shape

∆rep all
24

t̄train t̄test

WSAQF 14276 2377 0.7468s 0.0101s
SOS 6107 1819.8 0.4655s 0.0083s
Our method ”NP” 280.99 415.6 2.9536s 0.0056s

Table 1. Reproduction error and average com-
putation times for Lyapunov function training

and stabilizing control computation.

we simulate the dynamical systems stabilized with the
different control Lyapunov functions starting at the initial
points of each trajectory. The optimization (19) is solved
using an interior point algorithm where the strict inequal-
ity constraint (19b) is enforced through

V (µ(x) + u)− V (x) ≤ −ρ log(1 + V (x)) (24)

with ρ = 0.01 in order to improve numerical robustness.
The simulation of trajectories is stopped, if they reach a
neighborhood ‖xk‖≤10 or exceed 1000 steps. We measure
the reproduction error ∆rep between the control Lyapunov
functions using the total area between the training trajec-
tory and the simulated trajectory. In addition to these sim-
ulations, we compare the computational efficiency of dif-
ferent approaches. For this reason we measure the average
time t̄train it takes to fit the control Lyapunov functions to
the data. Furthermore, we predict the stabilized models on
a uniformly spaced 100×100 grid and compare the average
computation time t̄test for a non-trivial control u∗(x) 6=0.

4.2 Results

The training data D, the stabilized GP-SSMs f̂(x) and the

simulated trajectories x̂
(m)
k for the S-shape of the LASA

dataset are shown in Fig. 1. The square root of the control
Lyapunov functions V (x) are visualized by colormaps with
red denoting highest and dark blue lowest values. In addi-
tion to the stabilized models, the GP-SSM without stabi-
lization is depicted which reproduces the training trajecto-
ries exactly. The quantitative results regarding computa-
tion times and reproduction errors for the S-shape as well
as the whole data set are shown in Table 1. It can be clearly
seen that the nonparametric Lyapunov function provides
a lower reproduction error and allows even a faster opti-
mization, while it takes significantly more time to train.

4.3 Discussion

The simulations clearly show that the nonparametric
control Lyapunov function in combination with a noise-
free GP-SSM allows the precise reproduction of observed
training data. Since existing approaches such as SOS or
WSAQF are limited by the number of used parameters,
not all training samples satisfy the stability conditions.
Therefore, the stabilizing control u(x) computed based
on the SOS and WSAQF control Lyapunov functions
can cause a deviation from the observed trajectories. In
contrast, our nonparametric approach adapts its flexibil-
ity to the data. Although the nonparametric Lyapunov
function exhibits local minima, this does not cause an
increasing Lyapunov function along trajectories. Instead,
a local minimum leads to discrete-time dynamics, which
can have large differences between consecutive states, since
the system must move from the local minimum to a state
with smaller Lyapunov function within a single time step.
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Fig. 1. GP-SSM stabilized by different control Lyapunov
functions together with the training data for the
LASA S-shape movement.

Moreover, the nonparametric Lyapunov function approach
relies on a precise nominal model: when the nominal model
is too imprecise such that the nominal trajectories devi-
ate significantly from the training data, the approximate
infinite horizon cost V∞(·) is almost zero such that the
quadratic stage cost l(·) dominates. Therefore, trajectories
do generally not converge to training data which would
be necessary for a risk-sensitive behavior with awareness
of the sparsity of data. However, this does not affect
stability of the obtained model and could be overcome by
employing the approach proposed in (Pöhler et al., 2019).
Furthermore, the dominance of the quadratic cost l(·)
exhibits also advantages regarding the computation time
of the optimal controls u∗(x) such that the nonparametric
Lyapunov function is the fastest on average (see Table 1).

5. CONCLUSION

In this paper, we develop a novel approach for learning a
fully nonparametric, asymptotically stable model, which is
capable of precisely reproducing observed data. We show
that deterministic training data can be learned exactly
with GP-SSMs, and employ a nonparametric control Lya-
punov function learned from the data to stabilize the
nominal GP-SSM without modifying the nominal model
at training points. In a comparison to existing GP-SSM
stabilization approaches on a real world dataset the supe-

rior flexibility and precision of the nonparametric control
Lyapunov function is demonstrated. In order to extend
the applicability of the approach to systems with noisy
data, we will modify the approach in future work, such
that stochastic stability conditions can be considered for
learning the nonparametric Lyapunov function.
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