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Abstract: Redundant robotic systems are designed to accomplish multiple tasks simultaneously.
Task-priority control schemes exploit system redundancy by arranging tasks in priority and
ensuring strict prioritization between tasks at different priority levels. This paper investigates
the relationship between task-priority operational space control and feedback linearization of
multiple-input-multiple-output (MIMO) systems. We derive sufficient conditions for input-output
feedback linearization and input-to-state feedback linearization of a redundant robotic system
influenced by a task-priority operational space pre-feedback control law. Moreover, we analyze the
effect of incompatible tasks and provide sufficient conditions for input-output and input-to-state
feedback linearizability of the controllable dimensions of incompatible lower-priority tasks. These
conditions can be employed when designing the operational space tasks in order to guarantee
both task space and joint space stability.

Keywords: Application of nonlinear analysis and design, Lagrangian and Hamiltonian systems,
stability of nonlinear systems, redundancy resolution, task-priority control

1. INTRODUCTION

A robotic systems is termed kinematically redundant
when it has more degrees of freedom (DOFs) than those
strictly required to execute a given task. For such systems,
additional lower-priority tasks can be executed by utilizing
the redundant DOFs. Redundancy can be resolved at the
velocity, acceleration or force level and typically employs
some form of Jacobian pseudoinverse defining null-space
operators for each task. These null-space operators ensure
strict prioritization between tasks when two or more tasks
cannot be achieved simultaneously.

Kinematic task-priority control resolves redundancy at
the velocity or acceleration level by generating velocity or
acceleration references for some dynamic controller to fol-
low. The method was introduced in Hanafusa et al. (1981),
further developed in Nakamura et al. (1987) and generalized
to any number of tasks in Siciliano and Slotine (1991). An
alternative to kinematic control is the operational space
formulation introduced in Khatib (1987). The operational
space formulation is a holistic approach that assigns joint
torques directly by transforming the equations of motion
from joint space into the operational space (also known as
task space). Although mainly introduced for non-redundant
systems, a dynamically consistent null space operator was
defined in Khatib (1987), allowing two operational space
tasks to be defined and controlled simultaneously. In Sentis
and Khatib (2004); Sentis and Khatib (2006); Sentis (2007),
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the operational space formulation was extended to an
arbitrary number of tasks by generalizing the dynamically
consistent null space operator from Khatib (1987) to any
number of priority levels. These null space operators ensure
a prioritized hierarchy among tasks in the sense that
torques generated by lower priority tasks do not produce
accelerations or forces affecting the task dynamics of higher
priority tasks.

Within various task-priority control schemes, the stability
properties of lower-priority tasks, as well as joint space
stability have been notoriously hard to analyze (Nakanishi
et al., 2008). Stability of a kinematic task-priority control
scheme was analyzed in Antonelli (2009), while a modified
version of the extended operational space formulation
from Sentis and Khatib (2004) investigated the stability
properties of a lower-priority posture task in Sentis et al.
(2013), where asymptotic stability of the controllable
directions of the posture error was shown. In Dietrich et al.
(2018), asymptotic stability was proven for the regulation
case using a passivity-based operational space control law
with an arbitrary number of priority levels with potential
conflicting tasks.

The main contributions of this paper are sufficient condi-
tions for input-output and input-to-state feedback lineariz-
ability of redundant robotic systems under the influence of
a task-priority operational space pre-feedback control law.
Furthermore, we analyze the case where tasks are incompat-
ible and provide sufficient conditions for input-output and
input-to-state feedback linearizability of the controllable
dimensions of the incompatible lower-priority tasks. These
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conditions can be employed when designing the operational
space tasks in order to guarantee stability in both task
space and joint space. Stability can be ensured through
input-output feedback linearization with asymptotically
stable zero dynamics, or alternatively, by ensuring that
the system is input-to-state feedback linearizable, which
implies trivial zero dynamics.

This paper is organized as follows: After presenting relevant
background material in Section 2, a state-space represen-
tation of the robotic equations of motion is derived under
a task-priority operational space pre-feedback control law
in Section 3. Moreover, the input-output dynamics from
the virtual task control input to the output is also derived.
Conditions for input-output and input-to-state feedback
linearizability are given in Section 4. Additionally, we show
how the control law from Sentis and Khatib (2004) can be
seen as a special case of input-output feedback linearization
with a PD controller for the linearized dynamics. Further-
more, we consider the case where tasks are incompatible
and provide sufficient conditions for input-output and input-
to-state feedback linearizability without requiring all tasks
to be compatible. Section 5 verifies the theoretical results
in simulation for a redundant underwater floating-base
manipulator before Section 6 concludes the paper.

2. BACKGROUND THEORY

This section presents background material relevant to the
rest of this paper.

2.1 Derivatives

For a mapping A : Rn → Rl×m, the partial derivative of
A(x) with respect to x ∈ Rn is written

∂

∂x
A(x) =

[
∂A
∂x1

∂A
∂x2
· · · ∂A

∂xn

]
(x) ∈ Rl×mn, (1)

which reduces to the standard definition of the Jacobian
matrix of a vector-valued function when m = 1. When x is
a function of time t ∈ R≥0, the time derivative of A(x) is
given by

d

dt
A(x) =

n∑
i=1

∂A

∂xi
ẋi =

∂A

∂x
(ẋ⊗ Im) , (2)

where ⊗ denotes the Kronecker product. Note that when
m = 1, we have ẋ ⊗ 1 = ẋ and hence (2) reduces to
the familiar expression d

dtA(x) = ∂A
∂x ẋ. Furthermore, we

define the partial derivative of the product of two matrices
A : Rn → Rl×m and B : Rn → Rm×p with respect to
x ∈ Rn by

∂

∂x

[
A(x)B(x)

]
=
∂A(x)

∂x

(
In ⊗B(x)

)
+A(x)

∂

∂x
B(x). (3)

Given a real valued function λ : Rn → R and vector field
f : Rn → Rn. The Lie derivative of λ along f is given by

Lfλ(x) =

n∑
i=1

∂λ

∂xi
fi(x) =

∂λ

∂x
f(x). (4)

2.2 Modeling of robotic systems

The system configuration of an n degree of freedom (DOF)
robotic system can be expressed by the joint variables

q = col (q1, q2, . . . , qn) ∈ Rn. The dynamic equations of
motion for a robotic manipulator are given by (Siciliano
and Khatib, 2016)

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ, (5)

where M(q) ∈ Rn×n is the manipulator inertia matrix,
C(q, q̇) ∈ Rn×n is the Coriolis and centrifugal matrix,
G(q) ∈ Rn is the gravity torque vector, and τ ∈ Rn is
the joint torque vector.

A task is defined as a generic m-dimensional control
objective, specified as a function of the system configuration.
The relationship between the joint space and task space
variables are given by the direct kinematics equation
(Siciliano and Khatib, 2016)

σ = fσ(q), (6)

where fσ : Rn → Rm is a mapping from joint space to
task space, which is nonlinear in general. Differentiating
(6) with respect to time once and twice, yields the first-
and second-order differential kinematics equation

σ̇ = J(q)q̇, (7)

σ̈ = J(q)q̈ + J̇(q, q̇)q̇, (8)

where J = ∂fσ(q)
∂q ∈ Rm×n is the configuration-dependent

task Jacobian matrix, q̇ ∈ Rn is the system velocity
vector and q̈ ∈ Rn is the system acceleration vector. A
robotic system is kinematically redundant when it has
more DOFs than those strictly required to execute a
given task (Siciliano and Khatib, 2016), which requires
the dimension of the system configuration q to be larger
than the dimension of the task variable σ.

2.3 Operational Space Control

The operational space dynamics are found by solving (5)
for q̈, which combined with (8) yields

σ̈ = JM−1 (τ − Cq̇ −G) + J̇ q̇. (9)

By mapping the generalized torque into a generalized force
through the relation

τ = JTF, (10)

defining the inertia matrix associated with the task variable
σ as

Λ =
(
JM−1JT

)−1

∈ Rm×m, (11)

and pre-multiplying both sides of (9) by Λ, the operational
space dynamics are obtained as

Λσ̈ + Λ
(
JM−1Cq̇ − J̇ q̇

)
+ ΛJM−1G = F, (12)

which can be written as

Λσ̈ + d+ p = F, (13)

where d = Λ
(
JM−1Cq̇ − J̇ q̇

)
and p = ΛJM−1G.

If the system is redundant with respect to σ, we may
decompose the torque vector into a torque corresponding
to the primary task and another torque acting in the null-
space of the primary task as follows (Khatib, 1987)

τ = JTF +Nτ0, (14)

where τ0 is an arbitrary torque acting in the null-space of
J . The null-space operator N satisfies JM−1N = 0 and is
given by

N = In − JT J̄T , (15)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5534



with

J̄ = M−1JT
(
JM−1JT

)−1

∈ Rn×m. (16)

The matrix J̄ is known as the dynamically consistent
pseudoinverse of J , which is a weighted pseudoinverse of
J where the weight is the inverse of the inertia matrix
(Khatib, 1987).

2.4 Extension to k tasks

By defining the task specific inertia matrix and dynamically
consistent pseudoinverse of task i as

Λi =
(
JiN

T
i M

−1NiJ
T
i

)−1

=
(
JiM

−1NiJ
T
i

)−1

, (17)

J̄i = M−1JTi Λi, (18)

the null-space operator in (15) can be extended to an
arbitrary number of priority levels as follows (Sentis and
Khatib, 2004)

N1 = I, (19a)

Nk+1 =
(
I −NkJTk J̄Tk

)
Nk. (19b)

A pre-feedback control law for k tasks arranged in priority
is then given by (Sentis and Khatib, 2004)

τ = JT1 u1 +N2J
T
2 u2 + · · ·+NkJ

T
k uk, (20)

with

ui = Λiai + di + pi, (21)

ai = µi − JiM−1
i−1∑
j=1

NjJ
T
j Λjaj , (22)

µi = σ̈d,i −Kd,i
˙̃σi −Kp,iσ̃i, (23)

di = Λi

(
JiM

−1Cq̇ − J̇iq̇
)

(24)

pi = ΛiJiM
−1G, (25)

where σ̃(x, t) = σ(x) − σd(t) represents the task error
and Kd,i and Kp,i are derivative and proportional gains,
respectively.

2.5 Input-output feedback linearization of MIMO systems

This section is based upon Isidori (1995) and Sastry (1999).

Consider an input affine nonlinear control system of the
form

ẋ = f(x) +

m∑
i=1

gi(x)ui

yj = hj(x), 1 ≤ j ≤ m
(26)

where x ∈ D ⊂ Rn is the state vector, f, gi : D → Rn are
smooth vector fields, and hi : D → R are smooth functions.
Differentiating the ith output yi with respect to time yields

ẏi = Lfhi +

m∑
j=1

(
Lgjhi

)
uj . (27)

Observe that if Lgjh = 0 for all j = 1, . . . ,m, then the
input does not appear in ẏi. Assume that yi has to be
differentiated with respect to time ri times before at least
one component of the control input vector u explicitly
appears in a time derivative of yi, then the rith derivative
of yi is given by

y
(ri)
i = Lrif hi +

m∑
j=1

Lgj

(
Lri−1
f hi

)
uj . (28)

The integer ri is defined as the smallest integer such that

LgjL
k
fhi(x) = 0, 1 ≤ j ≤ m, k ≤ ri − 2 (29a)

LgjL
ri−1
f hi(x) 6= 0, for at least one 1 ≤ j ≤ m. (29b)

For single-input single-output (SISO) systems with m = 1,
(29) is the definition of the relative degree of y = h(x), with
h : Rn → R. The concept of relative degree is extended to
multiple-input multiple-output (MIMO) systems as follows
(Isidori, 1995; Sastry, 1999):

Definition 1. (Vector relative degree). The system (26) has
a vector relative degree {r1, . . . , rm} at a point x0 if

(i)

LgjL
k
fhi(x) = 0, 0 ≤ k ≤ ri − 2, (30)

for all 1 ≤ j ≤ m, for all 1 ≤ i ≤ m, and for all x in a
neighborhood of x0.

(ii) The m×m matrix

A(x) =


Lg1L

r1−1

f
h1(x) ... LgmL

r1−1

f
h1(x)

Lg1L
r2−1

f
h2(x) ... LgmL

r2−1

f
h2(x)

...
...

...
Lg1L

rm−1
f

hm(x) ... LgmL
rm−1
f

hm(x)

, (31)

is nonsingular at x = x0.

Whenever the system (26) has a well-defined vector relative
degree {r1, . . . , rm} at x0, we say that the system is input-
output feedback linearizable at x0 since the control law

u = A−1(x)
(
µ− b(x)

)
, (32)

where µ = col (µ1, . . . , µm) and

b(x) =


Lr1f h1(x)
Lr2f h2(x)

...
Lrmf hm(x)

 , (33)

yields the linear and decoupled system
y

(r1)
1

y
(r2)
2
...

y
(rm)
m

 =


µ1

µ2
...
µm

 . (34)

Furthermore, if r1 + r2 + · · · + rm = n, we say that the
system is input-to-state or full-state feedback linearizable
since the set of functions

φik(x) = Lk−1
f hi(x), i ≤ k ≤ ri, 1 ≤ i ≤ m, (35)

completely define a local coordinate transformation at x0.

3. STATE-SPACE REPRESENTATION

In this section, we derive a state-space representation
of the robotic equations of motion under a task-priority
operational space pre-feedback control law for an arbitrary
number of tasks. Moreover, the input-output dynamics
from the virtual task control inputs to the output task
errors are also derived.

3.1 Equations of motion

The task-priority operational space control law in (20) can
be rewritten as

τ = JT1 u1 +N2J
T
2 u2 + · · ·+NkJ

T
k uk (36)
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=
[
JT1 N2J

T
2 . . . NkJ

T
k

]

u1

u2
...
uk

 (37)

= T (q)u, (38)

where ui ∈ Rmi , u ∈ Rm with m =
∑k
i=1mi, and

where the null space operators Ni are given by (19).
Define the equality task variables as σi(x) ∈ Rmi and
the corresponding task error as

yi(x, t) = σi(x)− σi,d(t), i = 1, . . . , k, (39)

where σi,d(t) is the desired task value. By applying the
pre-control law in (38), the dynamic equations of motion
(5) can be expressed in state-space form as a nonlinear
affine control system

ẋ = f(x) + g(x)u,

y = h(x, t),
(40)

where x = col (x1, x2) = col (q, q̇) ∈ D ⊂ R2n is the state
vector of joint angles and joint velocities and

f(x) =

[
x2

−M(x1)−1
(
C(x)x2 +G(x1)

)] ∈ R2n, (41)

g(x) =

[
0n×m

M(x1)−1T (x1)

]
∈ R2n×m, (42)

h(x, t) =

y1(x, t)
...

yk(x, t)

 ∈ Rm. (43)

3.2 Input-output dynamics

If the task error given by (39) is only a function of the
configuration of the robotic system, then yi(x1) has to be
differentiated with respect to time twice for the input to
appear. The time derivative of yi(x1) is given by

ẏi(x, t) =
∂yi
∂x

ẋ+
∂yi
∂t

(44)

=
∂σi(x1)

∂x

(
f(x) + g(x)v

)
− σ̇i,d(t), (45)

where
∂σi(x1)

∂x
f(x) =

[
∂σi(x1)
∂x1

∂σi(x1)
∂x2

]
f(x) (46)

=
∂σi(x1)

∂x1
x2 (47)

= Ji(x1)x2, (48)

and
∂σi(x1)

∂x
g(x) =

[
∂σi(x1)
∂x1

∂σi(x1)
∂x2

] [
0

M(x1)−1T (x1)

]
(49)

= 0. (50)

As expected, the control input does not appear in ẏi.
Differentiating the task error with respect to time once
more yields

ÿi =
∂ẏi
∂x

ẋ+
∂ẏi
∂t

(51)

=
∂

∂x

(
Ji(x1)x2

)
g(x)u+

∂

∂x

(
Ji(x1)x2

)
f(x)− σ̈i,d(t)

(52)

= Ai(x)u+ bi(x)− σ̈i,d(t), (53)

where

Ai(x) =
∂

∂x

(
Ji(x1)x2

)
g(x) (54)

=
[
∂Ji(x1)x2

∂x1

∂Ji(x1)x2

∂x2

] [
0

M(x1)−1T (x1)

]
(55)

= Ji(x1)M(x1)−1T (x1), (56)

and bi(x) is obtained from (57)-(60). Since two arbitrary
vectors a, b ∈ Rn satisfy

(In ⊗ b) a = (a⊗ In) b, (61)

it follows that (In ⊗ x2)x2 = (x2 ⊗ In)x2, which together
with (2) and ẋ1 = x2 implies that

J̇i(x1) =
∂Ji(x1)

∂x1
(ẋ1 ⊗ In) . (62)

Consequently, (60) can be rewritten as

bi(x) = J̇ix2 − JiM−1 (Cx2 +G) . (63)

The input-output dynamics of all tasks can therefore be
expressed as

ÿ1

ÿ2
...
ÿk


︸ ︷︷ ︸
ÿ

=


A1(x)
A2(x)
...

Ak(x)


︸ ︷︷ ︸

A(x)

u+


b1(x)
b2(x)
...

bk(x)


︸ ︷︷ ︸

b(x)

−


σ̈1,d(t)
σ̈2,d(t)
...

σ̈k,d(t)


︸ ︷︷ ︸

σ̈d(t)

, (64)

where

b(x) =


J̇1x2 − J1M

−1 (Cx2 +G)

J̇2x2 − J2M
−1 (Cx2 +G)
...

J̇kx2 − JkM−1 (Cx2 +G)

 , (65)

and

A(x) =


J1M

−1JT1 0m1×m2 0m1×m3 ... 0m1×mk
J2M

−1JT1 J2M
−1N2J

T
2 0m2×m3

... 0m2×mk

J3M
−1JT1 J3M

−1N2J
T
2 J3M

−1N3J
T
3

... 0m3×mk
...

...
...

...
...

JkM
−1JT1 JkM

−1N2J
T
2 JkM

−1N3J
T
3 ... JkM

−1NkJ
T
k

,
(66)

since Ai = JiM
−1T and JiM

−1Nk = 0 for i < k.

4. MIMO FEEDBACK LINEARIZATION

This section presents the main results of this paper; namely,
sufficient conditions for input-output and input-to-state
feedback linearizability of a redundant robotic system
under the influence of a task-priority operational space pre-
feedback control law. Moreover, the results are extended
to the case where tasks are incompatible.

4.1 Input-output feedback linearization

We want to show that the system (5) is input-output
feedback linearizable under the influence of the task-priority
operational space control law (38) whenever the operational
space tasks are chosen such that they are non-conflicting
and kinematic singularities are avoided.

Kinematic singularities are all points x for which

rank
(
Ji(x)

)
< mi, (67)
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bi(x) =
∂

∂x

(
Ji(x1)x2

)
f(x) =

[
∂Ji(x1)x2

∂x1

∂Ji(x1)x2

∂x2

] [ x2

−M(x1)−1
(
C(x)x2 +G(x1)

)] (57)

=
∂Ji(x1)x2

∂x1
x2 −

∂Ji(x1)x2

∂x2
M(x1)−1

(
C(x)x2 +G(x1)

)
(58)

=
∂Ji(x1)

∂x1
(In ⊗ x2)x2 + Ji(x1)

∂x2

∂x1
−
(
∂Ji(x1)

∂x2
(In ⊗ x2) + Ji(x1)

∂x2

∂x2

)
M(x1)−1

(
C(x)x2 +G(x1)

)
(59)

=
∂Ji(x1)

∂x1
(In ⊗ x2)x2 − Ji(x1)M(x1)−1

(
C(x)x2 +G(x1)

)
. (60)

with Ji ∈ Rmi×n and mi ≤ n. Furthermore, all tasks are
compatible around some point x0 if

rank
(
Ni(x0)JTi (x0)

)
= mi, i = 1, . . . , k, (68)

where Ni ∈ Rn and n ≥ mi. Note that (68) implies that
rank(Ji(x0)) = mi, i.e. that kinematic singularities are
avoided.

Theorem 1. Consider the system (40), obtained from (5)
under the influence of the task-priority pre-feedback control
law (38). If the task Jacobians Ji ∈ Rmi and the null-space
operators Ni ∈ Rn given by (19) satisfy

rank
(
Ni(x)JTi (x)

)
= mi, i = 1, . . . , k, (69)

for all x ∈ U , where U is a neighborhood of x0. Then, the
system (40) is input-output feedback linearizable in U with
a vector relative degree {r1, r2, . . . , rm} = {2, 2, . . . , 2}.

Proof. Eq. (69) implies that the matrix NiJ
T
i has full

rank and hence that (17) is well-defined for all i = 1, . . . , k
since the inertia matrix M(x1) has full rank for all x.
Consequently, every submatrix in (66) has full rank, which
further implies that A(x) has full rank for x ∈ U and thus
that the system in (40) has a vector relative degree

{r1, r2, . . . , rm} = {2, 2, . . . , 2} , (70)

at x0. 2

When Theorem 1 is satisfied, the control input

u = A−1(x)
(
µ− b(x) + σ̈d(t)

)
, (71)

renders the input-output dynamics (64) equivalent to m
fully linearized and independent single-input single-output
subsystems 

ÿ1

ÿ2
...
ÿk

 =


µ1

µ2
...
µk

 . (72)

Moreover, we can show that the inverse of A(x) is given
by the closed-form expression

A−1 =


Λ1 012 013 ... 01k

−Λ2J2M
−1Γ21 Λ2 023 ... 02k

−Λ3J3M
−1Γ31 −Λ3J3M

−1Γ32 Λ3
... 03k

...
...

...
...

...
−ΛkJkM

−1Γk1 −ΛkJkM
−1Γk2 −ΛkJkM

−1Γk3 ... Λk

,
(73)

where 0kp ∈ Rk×p is the k × p zero matrix, Λj is given by
(17) and for each j = 1, 2, . . . , k

Γij =

{
Ni−1J

T
i−1Mi−1, i = j + 1,(

I −Ni−1J
T
i−1Λi−1Ji−1M

−1
)

Γ(i−1)j , i > j + 1,

(74)

for all i = j + 1, . . . , k.

Remark 1. Since (72) is a linear system, µ can easily be
designed such that the input-output dynamics of every task
is exponentially stable. However, the zero dynamics must
be asymptotically stable in order to guarantee that (40) is
minimum phase, and hence asymptotically stable (Isidori,
1995).

4.2 Equivalence with a traditional task-priority operational
space control law

The task-priority operational space control law in Sentis
and Khatib (2004) can be seen as a special case of input-
output feedback linearization with a PD controller for the
linearized dynamics. Specifically, by defining the vectors
ξi := col (yi, ẏi), Eq. (72) yields the following differential
equations

ξ̇i = Fiξi +Giµi, (75)

where

Fi =

[
0mi×mi Imi×mi
0mi×mi 0mi×mi

]
, Gi =

[
0mi×mi
Imi×mi

]
, (76)

for i = 1, . . . , k. By employing the PD control law

µi =
[
−Kp,i −Kd,i

]
ξi, (77)

the closed-loop system for each task becomes

ÿi +Kd,iẏi +Kp,iyi = 0, (78)

under the assumption that all tasks are compatible, i.e. the
conditions of Theorem 1. The control law given by (38),
(71) and (77) is exactly equal to (20), which was introduced
in Sentis and Khatib (2004).

4.3 Input-to-state feedback linearization

In order to avoid analyzing complicated zero dynamics, we
can obtain trivial internal dynamics by designing the tasks
such that the system has a vector relative degree at a point
x0 satisfying r1 + r2 + · · ·+ rm = 2n.

Theorem 2. The system (40), obtained from (5) under the
influence of the task-priority pre-feedback control law (38),
is input-to-state feedback linearizable in a neighborhood U
of x0 if the tasks are chosen such that the system is input-
output feedback linearizable in U with a vector relative
degree {r1, r2, . . . , rm} = {2, 2, . . . , 2} with m = n.

Proof. When m = n we have r1 + · · · + rn = 2n, hence
the local coordinate transformation z(x, t) = Φ(x, t) =
col (y1, . . . , yk, ẏ1, . . . , ẏk) ∈ R2n is a local diffeomorphism.
The control input u = A−1(x)

(
µ− b(x)− σ̈d(t)

)
∈ Rn,

transforms (64) into the linear and decoupled controllable
system

ż = Fz +Gµ, (79)
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with[
∂Φ
∂x

(
f(x)−g(x)A−1(x)(b(x)+σ̈d(t))

)
+ ∂Φ
∂t

]
x=Φ−1(z)

= Fz, (80)[
∂Φ

∂x
g(x)A−1(x)

]
x=Φ−1(z)

= G, (81)

where

F =

[
0n×n In×n
0n×n 0n×n

]
, G =

[
0n×n
In×n

]
, (82)

and

∂Φ

∂t
= −

σ̈1,d(t)
...

σ̈k,d(t)

 ∈ R2n, (83)

∂Φ

∂x
=



∂y1

∂x
...
∂yk
∂x
∂ẏ1

∂x
...
∂ẏk
∂x


=



J1 0m1×n
...

...
Jk 0mk×n
J̇1 J1
...

...

J̇k Jk


∈ R2n×2n. 2 (84)

Remark 2. If the tasks are designed such that Theorem
2 holds, then the virtual control input µ in (79) can
be designed using linear control techniques to achieve
exponential stability of z = 0, which is equivalent to
exponential stability of x = Φ−1(0). Moreover, if U = R2n

then global exponential stability can be guaranteed.

4.4 Incompatible tasks

If the jth task becomes incompatible with one or more
higher priority tasks at some point x0 we have

Null
(
Nj(x0)JTj (x0)

)
6= ∅, (85)

which implies that rank
(
Nj(x0)JTj (x0)

)
= m̆j < mj and

hence that Λ−1
j and A(x0) are singular and that the system

does not have a vector relative degree. However, as long
as each of the higher priority tasks are still compatible
with one another, the submatrix of A(x0) containing the

first
∑j−1
i=1 mi rows and columns will still be nonsingular.

Consequently, the first j − 1 tasks are still input-output
feedback linearizable.

As for the jth task, if m̆j ≥ 1, we can show that the
m̆j controllable dimensions are still input-output feedback
linearizable. To characterize the controllable dimensions,
the linearly dependent columns of the matrix Nj(x)JTj (x)

are removed. A permutation vector of indices Ej ∈ Rm̆j
corresponding to the linearly independent columns of NjJ

T
j

can be computed from the QR decomposition of JjN
T
j . This

permutation vector is then utilized to obtain a reduced
task Jacobian J̆j ∈ Rm̆j×n. The controllable dimensions
y̆j ∈ Rm̆j of yj are found by selecting the components of
yj contained in the permutation vector Ej , i.e. y̆j = yj(Ej)
in MATLAB colon notation. The computational procedure
is summarized in Algorithm 1.

Define m̆ =
∑k
i=1 m̆i as the sum the controllable task

dimensions. By computing the task Jacobians and null-

Algorithm 1 Computing controllable task dimensions,
Jacobians and null-space operators
Input: Ji(x1), yi(x1), 1 ≤ i ≤ k.
Output: J̆i, y̆i, Λ̆i and N̆i, 1 ≤ i ≤ k.

1: for i = 1 to k do
2: Compute the permutation vector Ei corresponding to linearly

independent rows of NiJ
T
i from a QR factorization of JiN

T
i .

3: Set J̆i = Ji(Ei, :) (In MATLAB colon notation).
4: Obtain the controllable dimensions from y̆i = yi(Ei).
5: Compute Λ̆i according to (17) with Ji = J̆i.
6: Compute N̆i according to (19) with Ji = J̆i.
7: end for
8: return J̆i, y̆i, Λ̆i and N̆i, 1 ≤ i ≤ k.

space operators according to Algorithm 1 and applying the
task-priority operational space pre-feedback control law

τ = J̆T1 ŭ1 + N̆2J̆
T
2 ŭ2 + · · ·+ N̆kJ̆

T
k ŭk = T̆ ŭ, (86)

the system (5) becomes

ẋ = f(x) + ğ(x)ŭ,

y̆i = σ̆i(x1)− σ̆i,d(t), i = 1, . . . , k,
(87)

where ğ(x) ∈ R2n×m̆ is given by (42) with T (x1) = T̆ (x1).

Corollary 1. The system (87), obtained from (5) under the
influence of the task-priority pre-feedback control law (86),
is input-output feedback linearizable in a neighborhood U
around x0.

Proof. The proof follows immediately from Theorem 1
since the matrix N̆i(x0)J̆Ti (x0) has full rank, which implies

that Ă(x0) ∈ Rm̆×m̆ is non-singular. 2

Corollary 2. The system (87) obtained from (5) under the
influence of the task-priority pre-feedback control law (86)
is input-to-state feedback linearizable in a neighborhood
U around x0 if the sum of controllable task dimensions
is equal to the dimension of the configuration space, i.e.
m̆ = n.

Proof. The proof follows immediately from Theorem 2
and Corollary 1. 2

Remark 3. A consequence of Corollary 2 is that expo-
nential stability of the controllable directions z̆(x, t) =

Φ̆(x, t) = col
(
y̆1, . . . , y̆k, ˙̆y1, . . . , ˙̆yk

)
or equivalently, expo-

nential stability of x = Φ−1(0) can be guaranteed by simply
defining the task σk(x1) = x1 with task error

yk(x1) = x1 − x1,d, (88)

at the lowest priority level, thereby ensuring that m̆ = n.
Moreover, if U = R2n and the permutation vectors of
indices E1, . . . , Ek are constant, then global exponential
stability can be guaranteed.

5. SIMULATIONS

This section applies the theoretical results of this paper
to a simulation study of an articulated intervention-AUV
(AIAUV) based on the Eelume robot (Schmidt-Didlaukies
et al., 2018; Liljebäck and Mills, 2017) depicted in Fig. 1.

The system configuration is described by ξ = col
(
piib, q, θ

)
,

where piib ∈ R3 is the position of the base in an inertial
frame, q = col (η, ε) ∈ R4 is a unit quaternion describing
the orientation of the base and θ ∈ Rn are the joint angles.
The joint velocities are given by θ̇ and the linear and angular

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5538



Fig. 1. The Eelume AIAUV (Courtesy of Eelume)

velocities of the base frame with respect to an inertial frame
are denoted viib and ωiib, respectively. These velocities are

collected in the velocity vector ζ = col
(
viib, ω

i
ib, θ̇

)
∈ R6+n.

The equations of motion are given by (Schmidt-Didlaukies
et al., 2018)

ξ̇ = Jξ(q)ζ, (89a)

M(θ)ζ̇ + C(θ, ζ)ζ +D(θ, ζ)ζ +G(ξ) = τ, (89b)

where M(θ) is the inertia matrix including hydrodynamic
added mass, C(θ, ζ) is the Coriolis-centripetal matrix in-
cluding hydrodynamic added mass, D(θ, ζ) is the damping
matrix, G(ξ) is the vector of gravitational and buoyancy
forces and moments, and τ is the control input vector of
generalized forces and torques. Moreover, the kinematic
transformation matrix is given by

Jξ(q) =

Rib(q) 03×3 03×n
04×3 Tq(q) 04×n
0n×3 0n×3 In

 , Tq(q) =
1

2

[
−εT

ηI3 + [ε]×

]
,

(90)

where Rib(q) ∈ SO(3) is a rotation matrix representing the
orientation of the base relative to the inertial frame and
[·]× : R3 → so(3) ⊂ R3×3 denotes the skew symmetric
map.

The task with the highest priority is the end-effector
configuration task. The task error is defined by

y1(ξ) :=

RTd
(
piie − pid,e

)[
log
(
RTdR

i
e

)]
∨

 ∈ R6, (91)

where piie and pid,e are the measured and desired positions of
the end-effector in the inertial frame, respectively. Moreover,
Rie(q, θ) = Rib(q)R

b
e(θ) ∈ SO(3) is the rotation matrix

from the end-effector frame to the inertial frame and
Rd ∈ SO(3) is the desired orientation of the end-effector.
Additionally, log : SO(3)→ so(3) is the matrix logarithm
from the special orthogonal group of dimension three to
its Lie algebra and ∨ : so(3) → R3 is the “vee” operator
identifying the Lie algebra with R3 (Chirikjian, 2011).

We exploit system redundancy by defining a positioning
task for the base. The task error is defined by y2 := piib −
pid,b, where pid,b is the desired position of the AIAUV base
frame in the inertial frame.

Because y1 and y2 consume at most 9 DOFs, we have
at least 5 uncontrolled DOFs at all times. Consequently,
stability of (89) can only be guaranteed if the resulting
zero dynamics is asymptotically stable. As an alternative
to performing a complicated analysis of the zero dynamics,
a joint angle regulation task y3 = θ is designed to eliminate
the residual DOFs of the system.
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Fig. 2. The position of the end-effector piie and base piib.

By defining x = col (x1, x2) = col (ξ, ζ) and employing the
task-priority operational space pre-feedback control law in
(86), restated in terms of the case study as

τ = J̆1(ξ)T ŭ1 + N̆2(ξ)J̆T2 (ξ)ŭ2 + N̆3(ξ)J̆T3 (ξ)ŭ3 (92)

= T̆ (ξ)ŭ, (93)

the equations of motion (89) together with the task error
outputs can be rewritten as the nonlinear system

ẋ = f(x) + ğ(x)ŭ, (94a)

y̆i = h̆i(x1), 1 ≤ i ≤ 3 (94b)

where

f(x) =

[
Jξ(x1)x2

−M(x1)−1
(
C(x)x2 +D(x)x2 +G(x1)

)] , (95)

ğ(x) =

[
0

M(x1)−1T̆ (x1)

]
. (96)

By deriving the input-output dynamics as in Section 3.2
and applying Algorithm 1 we obtain the reduced input-
output dynamics

col
(

¨̆y1, ¨̆y2, ¨̆y3

)
= Ă(x)ŭ+ b̆(x)− ¨̆σd(t), (97)

which satisfies m̆i = n+6 for all x such that tr(RTdR
i
e) 6= −1

since y1 and y3 are always compatible and m1 +m3 = 14.
By Corollary 2, the system (94) is input-to-state feedback
linearizable in a neighborhood U around x(t0) = x0 where
the permutation vectors E1, E2 and E3 obtained from
Algorithm 1 are constant. Hence, the feedback linearizing
control input

ŭ = Ă−1(x)
(
µ̆− b̆(x) + ¨̆σd(t)

)
, (98)

with the virtual control input µ̆ = col (µ̆1, µ̆2, µ̆3) given by

µ̆i = −Kp,iy̆i −Kd,i
˙̆yi, 1 ≤ i ≤ 3, (99)

results in the following decoupled and linear systems

¨̆yi +Kd,i
˙̆yi +Kp,iy̆i = 0, 1 ≤ i ≤ 3, (100)

where Kp,i = 0.04Im̆i and Kd,i = 0.4Im̆i for 1 ≤ i ≤ 3.

Simulation results are presented in Figs. 2 to 4. Whenever
a change in compatibility occurs between the tasks, the
permutation vectors E2 and E3 will change, which results
in discontinuities in (93), as observed in Fig. 4 at t ' 363 s.
From t ≥ 350 s, the desired end-effector position moves
outside of the manipulator workspace as defined by the
desired base position. As a result, the lower-priority base
position task is no longer controllable in the x-direction,
as observed from Fig. 2. Moreover, from Fig. 3 it is clear
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Fig. 3. The joint angles θ and the measured and desired
orientation of the end-effector represented by the roll-
pitch-yaw Euler angles φ, θ and ψ.
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Fig. 4. The control input τ of generalized forces and torques.

that the joint regulation task becomes fully compatible
for t ≥ 350 s, since every component of θ converges to
zero. Finally, we observe from Fig. 4 that the commanded
forces and torques are well within the physical limits of the
Eelume robot.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have shown how a well-known task-priority
operational space control law can be formulated in the
standard framework of feedback linearization of nonlinear
MIMO control systems. Through this formulation, we
obtain sufficient conditions for the input-output and input-
to-state feedback linearizability of a redundant robotic
system influenced by a task-priority operational space
pre-feedback control law. These conditions can thus be
employed when designing the operational space tasks, and
it is shown that under these conditions both task space and
joint space stability can be guaranteed. Moreover, we have
shown that in the case where the tasks are not compatible,
certain components of the incompatible lower-priority tasks
may still be input-output linearizable, and we have provided
sufficient conditions for input-to-state linearizability when
compatibility between tasks cannot be guaranteed.

Future work should investigate the effect of discontinuities
in the control law as a result of changes in the controllable
dimensions of lower-priority tasks. In order to obtain a
continuous control law, smoothing techniques such as the
one in Moe et al. (2018) could be employed.
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