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Abstract: The prediction of electricity demand plays an essential role in the building environment. It 

strongly contributes to making the building more energy-efficient, having the potential to increase both 

thermal and visual comfort of the occupants, while reducing energy consumption, by allowing the use of 

model predictive control. The present article focuses on the use of computational intelligence methods for 

prediction of the power consumption of a case study residential building, during a horizon of 12 hours. 

Two exogeneous variables (ambient temperature and day code) are used in the NARX model Two different 

time steps were considered in the simulations, as well as constrained and unconstrained model design. The 

study concluded that the smaller timestep and the constrained model design obtain the best power demand 

prediction performance. The results obtained compare very favourably with similar approaches in the 

literature 
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1. INTRODUCTION 

The prediction of the energy demand in buildings is important 

on many levels, from the household unit to the country level. 

It is necessary due to the essential role it plays in the electricity 

industry, as it provides the basis for the decision-making 

processes concerning power system planning and operation, as 

well as a basis for the demand side response through the use of 

model-based predictive control (MPC) and optimization of the 

devices´ operation. Predictions not only contribute to 

balancing demand and supply via on-site renewable energy 

sources (as the case of nearly zero energy buildings) at the 

household level, but also to utility planning. Traditionally, 

utilities apply prediction over a group of houses/buildings. 

However, with the improvement in technology, nowadays it is 

possible to predict at the household level, increasing the 

accuracy and providing powerful insights over the individual 

patterns of consumption – being able to address individually 

the demand response actions and increasing the flexibility of 

the whole energy systems. 

The use of data-driven methods for energy demand forecasting 

has been steadily increasing over the years. The main 

applications of the data-driven prediction methods of energy 

consumption in residential buildings may be segmented in 

three classes: 1) use of big data in the design stage to determine 

the best strategies to be adopted in terms of civil and energy 

engineering; 2) simulation and prediction of the performance 

mainly to allow MPC, optimization of network configuration; 

3) continuous evaluation through the building lifecycle, e.g. 
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safety of data storage in the cloud, refilling missing data, 

failure prediction, and preventive maintenance. 

The number of factors involved in energy consumption makes 

it very challenging to accurately implement its forecasting. 

Because of that,  the research community has been giving 

increased focus on this topic during the last years. For reviews, 

please see  (Daut et al., 2017, Amasyali and El-Gohary, 2018). 

The present article focuses on the use of computational 

intelligence methods for prediction of the electricity 

consumption of a case study residential building, during a 

horizon of 12 hours, based on the endogenous variable (energy 

demand) and two exogenous variables (ambient temperature 

and day code). The work was developed in the scope of the 

Project "NILMforIHEAM – 01/SAICT/2018 – Non-invasive 

load monitoring applied to intelligent energy management of 

residential buildings", funded by the Operational Program 

CRESC Algarve 2020.  

1.1 Brief literature review 

This work is based on the prediction of energy consumption 

via computational learning methods. Computational learning 

methods are data-driven methods based on input and output 

values that can predict, in this context, the power consumption 

of buildings without knowing the complex internal physical 

relationships of the system (Ferreira and Ruano, 2011). There 

is no preliminary need for heat transfer equations or 

parameters as detailed thermal behaviour or geometry. Indeed, 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 8323



 

 

     

 

these models are based on the usage of a function determined 

using samples of data describing the behaviour of a specific 

system (Foucquier et al., 2013, Killian and Kozek, 2016). 

Among the reviewed publications, the use of predictive models 

for MPC-based applications are dominant (von Grabe, 2016). 

The utilization of MPC for energy management in buildings 

has achieved substantial consideration in the last decade due 

to its importance to the building energy demand. The 

expansion in computational capabilities concerning building 

intelligence frameworks and the accessibility of further 

building information has driven its growth. Besides, the 

prediction of energy consumption has been decidedly 

connected to dynamic energy management frameworks, just as 

to the ideal administration of on-location sustainable power 

sources, such as solar energy. More details on this kind of 

application may be found in Serale et al. (2018). 

Recent methodological reviews were published on the use of 

computational learning for the prediction of energy usage in 

buildings (Loyola, 2018, Wei et al., 2018), in which the use of 

computational learning techniques was proven very effective. 

These studies compare different methodologies and highlight 

the importance of the mentioned models for prediction. They 

also present a detailed review concerning the main concepts 

and technologies of the use of big data in building design and 

energy usage prediction, based on the survey of around 100 

cases of applications. It is recognized that tools as MATLAB 

and Python are used to develop mathematical programming. 

Several studies used Artificial Neural Networks (ANN) as the 

primary technique to evaluate and predict energy consumption 

(Ahmad et al., 2018, Rahman et al., 2018, Ai et al., 2019). 

Among the reviewed studies, it was possible to identify the 

main inputs used in the computational learning models. These 

input data may be segmented into two main categories: 

weather-related parameters and building pertaining 

parameters. Concerning the weather-related parameters, the 

atmospheric temperature is the parameter most used as an 

exogenous variable, but also solar radiation availability and 

relative humidity. Considering the building-related 

parameters, the total building energy consumption data is the 

most used variable, followed by parameters as occupancy, 

usage of devices, indoor temperatures and fenestration 

characteristics. 

The prediction of the energy consumption may have different 

focus among the studies, considering the slice of total energy 

demand in the building under consideration. Most samples of 

studies reviewed in the scope of this work focus on the whole-

building energy consumption (Wakui et al., 2017, Do and 

Cetin, 2018, Fayaz and Kim, 2018), however other studies 

focus only on heating demand (Ai et al., 2019, Arabzadeh et 

al., 2018), only on cooling demand (Moon and Jung, 2016), 

both on heating and cooling (Geysen et al., 2018), and also on 

the detailed segmentation considering devices and other uses 

as water heating (Babaei et al., 2015). The prediction horizon 

of reviewed studies was segmented in an hourly fraction, hour, 

day, month and year, with varying prediction time steps (most 

hourly for one-day as a prediction horizon, and daily for the 

one-month horizon). The validation methods of the prediction 

models also varied between the different studies reviewed: use 

of analytical proof, experimental analysis, model comparison, 

reference comparison, and simulation comparison, being 

analytical proof and experimental analysis the most used. An 

extensive review may be found in (Amasyali and El-Gohary, 

2018, Mynhoff et al., 2018).  

1.2. Objectives and work organization 

The present study aims to discuss the prediction of energy 

consumption in a residential building, having as a case study 

the Honda Smart Home, located in Davis, United State. The 

objective is to develop an accurate prediction model, in order 

to be subsequently used in decision making and model 

predictive control. The design formulation (unconstrained or 

constrained optimization), as well as the time-step to be 

employed are also discussed here. 

The paper is organized into five sections. Section 1 presents 

the scope of work, background information, and objectives. 

Section two presents the case study, the Honda Smart Home 

architecture and the dataset available by their experimental 

campaigns. The data used as input for the models developed 

by this work are also presented in this section. Section three 

presents the predictive model design, concerning problem 

formulation, the prediction horizon validation method, and 

design experiments. Results are shown and discussed in 

Section four, and Section five presents the conclusions and 

points out future research. 

2. CASE STUDY DESCRIPTION – HONDA SMART 

HOME US 

The Honda Smart Home (HSH) US (Honda, 2019), located on 

the West Village campus of the University of California, 

Davis, was brought to light in 2014. The building is considered 

to be a Net Zero Energy Building (NZEB), due to its capability 

to produce on-site all the electricity – by renewable energy use 

– to meet the electricity needs annually. The construction of 

the HSH was made based on sustainable materials and 

techniques, and it accounts also with a ground-source heat 

pump, efficient equipment and lighting, and a complex home 

energy management system to control the different systems 

accordingly. The building is extensively described on its 

website. The group responsible for the HSH makes available 

experimental data every six months. Based on the publicly 

available data, some studies were developed, focused mainly 

on the integration between electric vehicles and the smart 

home, and the home management systems of the HVAC 

solutions, as well as construction practices. 

 

Fig. 1. Honda Smart Home US. Source: (Honda, 2019). 
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To develop the present study, and based on the background 

information previously presented, from the data set provided 

by the HSH group, two parameters will be used from the HSH 

data set. They are the total average electric power demand and 

the outdoor ambient temperature. The whole dataset with 

minute sampling intervals may be found in (Honda, 2019). 

During the considered three-year period, the power hits a 

maximum of 8,57 kW, a minimum of 0 kW and a mean value 

of 0,99 kW. During the same period, the temperature achieves 

a maximum of 42,82 ºC, a minimum of -2,00ºC and an average 

value of 17ºC. 

3. PREDICTIVE MODEL DESIGN 

The data set is composed of 15 min averages of power 

consumption and outdoor temperature of the HSH, during 

three years (2016, 2017 and 2018). Additionally, a codification 

of each day, within a week, considering holidays and their 

position within the week, was employed (Ferreira et al., 2009). 

The model intends to predict the power consumption for a 

prediction horizon of 12 hours, in a multi-step fashion. 

The problem type is one-step-ahead prediction, in a non-linear 

autoregressive with exogenous inputs (NARX) configuration  

and the delays associated with each variable (v1 – power, v2 – 

ambient temperature, v3 – the day code). The model design 

employed intends to obtain a small Root Mean Square Error 

(RMSE) over the prediction horizon, which is 12 hours. Two 

Problems (P) are simulated in this work, each one in two 

versions: i) P1a - hourly time steps and a multi-objective 

unconstrained design; ii) P1b - hourly time steps and a multi-

objective constrained design; iii) P2a - 15-minutes time step 

and a multi-objective unconstrained design and; iv) P2b - 15-

minutes time step and a multi-objective constrained design. 

Notice that the 15 minutes time-step is due to the technical 

requirements of interchanging energy-information between 

the prosumer and the energy supplier (Presidencia do 

Conselho de Ministros, 2019). 

3.1  Data set construction 

The data set construction aims to select data for training, 

testing and validation data for the artificial neural network 

design. This work uses the ApproxHull algorithm proposed by 

Khosravani et al. (2016). ApproxHull is a randomized 

approximation algorithm for determining the convex hull of 

the data, that treats memory and time complexity efficiently. 

These convex hull vertices are compulsorily introduced in the 

training set so that the model can be designed with data 

covering the whole operational range. 

ApproxHull is an incremental algorithm, applicable to high 

dimension data efficiently; it starts with an initial convex hull 

and subsequently the current convex hull grows iteratively by 

adding the new vertices into it. A pre-processing phase is 

performed on the original data set before applying the convex 

hull. It scales the dimensions in the range of [-1,1], identifies 

the maximum and minimum of each dimension (as vertices of 

the initial convex hull). Then, it generates a population of k 

facets based on the initial vertices of the convex hull, with 

validity checked in each iteration, identify the furthest points 

in the current facets population as new vertices of the convex 

hull, updating the current convex hull by adding the newly 

found vertices to the current set of vertices. A detailed 

explanation of the convex hull method and algorithm may be 

found in (Khosravani et al., 2016).  

For the data set construction, the whole interval of data 

(samples (S)) is employed for both problems. To each variable 

[v1, v2, v3], lags are associated for three periods: period 1 

(first lags immediately before the sample), period 2 (lags 

centred 24h before), and period 3 (lags centred a week before). 

The lags are, for each variable, respectively: P1 [4, 4, 1], [1, 1, 

0] ,[1, 0, 0]; P2 [20, 20, 1], [4, 4, 0], [4, 0, 0]. The number of 

Training Samples (Str) is 60% of the whole set, while Testing 

Samples (Ste) and Validation Samples (Sva) have a dimension 

of 20% each. All convex hull points are incorporated in the 

training set. The input used to MOGA (Multiobjective Genetic 

Algorithm) are the three data sets generated. 

3.2  MOGA design 

The design criteria include multiple conflicting objectives, 

which implies that the model identification problem must be 

considered as a multiobjective combinatorial optimization. 

Genetic algorithms are particularly well suited to address this 

problem because they can evolve optimized model structures 

that meet pre-specified design criteria in acceptable computing 

time. Globally, the ANN structure optimization problem can 

be viewed as a sequence of actions undertaken by the model 

designer, which should be repeated until pre-specified design 

goals are achieved. These actions can be grouped into three 

major categories: problem definition, solution(s) generation 

and analysis of results. For a detailed explanation of the 

MOGA design framework used, please consult Ferreira and 

Ruano (2011)).  

The ANN structure used in the present work uses as model 

type Radial Basis Function (RBF). In this particular 

application, MOGA determines the optimal number of 

neutrons in a range from 2 to 10 and selects the most important 

input features within a range from 2 to 20.  Topology and 

feature selection are performed by the genetic part of MOGA. 

Each model in the current population is a specific RBF, whose 

parameters are estimated (trained) using a modified version of 

the Levenberg-Marquardt algorithm, which exploits the linear-

nonlinear parameter separation.  

At the first iteration of the training algorithm the model 

parameters have to be initialised. This particular application 

uses clustering to spread the centers in distinct regions of the 

input feature space. As the ANN training algorithm is iterative, 

an early-stopping criterion is used as a termination criterion. 

As the model is nonlinear, the final result depends on the initial 

values of its parameters. As such, five training trials are 

executed for each RBF, and the best compromise trial over all 

the objectives, is selected among the five. 
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Considering the actions briefly detailed, the objectives to 

minimize are the RMSEs of the training set (
tr ), of the testing 

set (
te ), the model complexity (O(µ)) and the forecasting 

error (
p  ). This last criterion is obtained as: 

( ) ( )( )
1

, , ,
PH

p

i

D PH RMSE E D PH i
=

=                                           (1) 

where D is an additional simulation set, with p data points, and 

E is an error matrix: 

( )
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 ,        ( 2) 

where e[i,j] is the model prediction error taken from the instant 

i of D at step j of PH. This is an unconstrained multi-objective 

optimization problem. Sometimes some of the objectives are 

setup as goals that must be met, and the objective problem 

becomes constrained. 

MOGA is executed with 80 generations, a population size of 

100, the proportion of random emigrants of 0.10 and a 

crossover rate of 0.70 is employed. When MOGA stops its 

execution, the non-dominated or preferable (with restrictions) 

set of models is evaluated on a third data set, the validation 

data set (εva), in order to avoid any tendency that may have 

arisen during the MOGA optimization. The final selection of 

one model is then performed based on the objective values 

obtained and the RMSE obtained over the validation data set. 

After the first unconstrained design of each problem, the 

second design is performed, with constraints on some of the 

objectives, taking into consideration the unconstrained results. 

The restrictions considered for both P1b and P2b were 

RMSE(εtr) = 0,21, RMSE(εte) = 0,20 and O(µ) = 210 (P1b) and 

200 (P2b). 

4. RESULTS AND DISCUSSION 

4.1  ApproxHull output 

The results obtained by the Approxhull algorithm, are 

presented in Table 2. 

Table 2.  ApproxHull results 

P S Features Vertices Str Ste Sva 

P1 26111 21 1199 15666 5222 5223 

P2 104519 69 1711 62711 20903 20905 

4.2  Non-dominated sets 

The minimum results for the non-dominated sets (using data 

scaled in the interval [-1,+1]) are presented in Table 3. It is 

possible to conclude that smaller RMSE errors for training, 

testing, and validation belong to P2 (with 15 minutes time 

steps). Notice also that, in terms of 
p  the summation for P2 

extends to 4 times the number of terms of P1. 

Table 3.  Minimum values for non-dominated or 

preferable sets 

P P1a P1b P2a P2b 

εtr 0,18 0,17 0,12 0,12 

εte 0,16 0,16 0,14 0,11 

εva 0,16 0,16 0,14 0,11 

εp 3,92 3,94 9,24 9,26 

4.3  Selected models  

Eqs (3) to (6) present the lags used in the selected models for 

P1a, P1b, P2a, and P2b, respectively.  Further details and 

performance obtained with the selected models are presented 

in Table 4.  
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Table 4.  Selected model results 

P P1a P1b P2a P2b 

Features 12 8 18 19 

Neurons 9 2 8 9 

O(µ) 117 18 152 180 

||w2||  795 11,9 56,8 29,5 

εtr 0,18 0,19 0,16 0,12 

εte 0,16 0,16 0,15 0,11 

εva 0,16 0,17 0,15 0,11 

εp 4,19 3,94 9,46 9,34 

 

As if can be seen, the considerations done for Table 3 are valid 

for Table 4. 
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To analyze the prediction results a one-week period, from 23 

February to 1 March 2016, was employed. A prediction 

horizon of 12 hours was considered, which means that for 

Problems P1 12 prediction steps were used, while for P2 48 

steps-ahead were employed. The forecasting error for this 

period and for each one of the four problems is shown in the 

last line of Table 4. As it can be seen, P1 problems (with 1-hour 

step) performance is worse than using a 15-min prediction 

step, in P2 problems. Analyzing now the model design 

formulation, the constrained one (b) obtains better results than 

the unconstrained one (a). Overall, P1a obtains the worst 

forecasting results, while P2b achieves the best ones. Figure 2 

presents the target values (real building power demand) and 

one-step prediction values for these two extreme cases.  

 

 

Fig. 2. Target values and one-step-ahead predicted values 

obtained with model (3) - top and model (6) - bottom. 

Another important prediction indicator is how the forecasting 

error evolves throughout the prediction horizon. For P1 

problems, the RMSE along PH ranged between 0,67 and 0,85 

kW (please note that the original scale is now used), for P1a, 

and for P1b, between 0,71 and 0,89. For P2, the RMSEs varied 

between 0,55 and 1,10 for P2a, and for P2b, between 0,67 and 

0,83. It is interesting to verify that, although in P2 problems 48 

steps are considered, and in P1 only 12, the former models 

obtain a better RMSE evolution. Figure 3 illustrates the 

evolution of the RMSE over PH of model (6).  

 

Fig. 3. RMSE evolution of the selected model for P2b. 

4.4  Performance Comparison 

The reliability of these techniques is highly dependent on the 

quality and amount of available data, as the physical 

approaches were dependent on the complexity of the 

underlying model. The availability of data is recognized by 

many authors as a challenging factor that may be either an 

opportunity or an obstacle, according to the case. It is however 

quite tricky to perform a qualitative and comparative 

assessment of the various techniques devised in this field, 

since – again – their performances will depend on the training 

data used as input (Foucquier et al., 2013). 

Bearing in mind that a performance comparison should be 

considered mainly qualitatively than quantitatively, it is 

nevertheless important to compare the obtained results with 

the performance of related studies. In Mynhoff et al. (2018), 

different prediction models (AN-NNAR, Hidden Markov 

Models, Support Vector Machines (SVM), MultiLayer 

Perceptrons and Deep Belief Networks) were designed for 

one-step daily and weekly forecasts. 8 weeks of 1-hour data 

were extracted from Pecan Street database, in 4 different 

scenarios. For daily forecasts, the RMSEs varied between 4.02 

(ANN-NAR) to 1.48 (DBN) kW. Much better results were 

obtained in the present work, using three years of data, 

although a ceiling of a half day is considered. 

The authors of (Yildiz et al., 2018) compared the forecasting 

performance of ANNs, SVMs and Least-Squares SVMs, with 

different data resolutions and forecasting horizons, for 

different load profiles, obtained by a clustering process. In the 

same way as in the previous work, these are one-step-ahead 

forecasts, although with different forecasting horizons. The 

best results obtained for a house with similar load profile, 

RMSEs within the range of 0.8 to 1.6 kW are obtained for a 

time resolution of 30 minutes and a 12-hours forecast. Again, 

the results presented in this paper compare very favorably with 

these values. 
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5. CONCLUSIONS 

This work focuses on improving the accuracy of predictive 

models for the energy demand in buildings, using the Honda 

Smart Home US data as an example. It used an ANN-RBF 

based model with MOGA optimization, exploring two 

problems: three years data with hourly time steps between 

samples and the same data with 15-minute time steps between 

samples, each one analyzed using unconstrained and 

constrained optimization. It was shown that the smaller 

timesteps in a constrained model presented better prediction 

results. 

Future work will employ these consumption forecasting 

models, as well as  electricity production predictive models for 

model predictive scheduling of a real household in the South 

of Portugal, with PV energy production and storage. 
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