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1. INTRODUCTION

The concept of FDIR is being studied widely in the litera-
ture since the beginning of the 1970s and rapidly became
a mandatory component in most aerospace applications.
Initially based around physical redundancy for both de-
tection and recovery, most FDIR schemes at present are
model-based and use analytical redundancy. A thorough
analysis of the subject can be found in Chen and Patton
(2012), Blanke et al. (2016) and Isermann (2011). Other
valuable case studies are also presented in Frank (1990)
and Lou et al. (1986), as well as in Patton et al. (2000).

During the same period, LQG control became the preem-
inent technique employed in the aerospace industry due
to its tractable tuning procedure for nominal performance
and its effectiveness in minimizing sensor noise. A com-
plete analysis on the subject is presented in Kwakernaak
and Sivan (1972), as well as in Anderson and Moore (2007)
and Zhou et al. (1995).

The procedure introduced in this paper is developed for
a satellite micro-launcher prototype, presented in Dia-
conescu et al. (2019) 1 , consisting of a new recovery tech-
nique that brings together FDIR algorithms as well as
LQG control: instead of switching between separate con-
trollers for nominal and faulty functioning, the optimal
controller is adapted by only recomputing and replacing
its control and filtering feedback matrices, thus maintain-
ing optimality and avoiding command signal shocks that
usually result from controller switching.

The paper is organized as follows. Section 2 presents
the theoretical concepts pertaining to LQG control and
FDI. Section 3 focuses on the implementation details of
the novel recovery procedure. Section 4 showcases the
effectiveness of the proposed technique by simulating two
typical in-flight fault scenarios. Section 5 concludes with a
set of closing remarks.

1 This prototype is under analysis in the European Space Agency
contract, number 4000119953/17/F/JLVs, Advanced Control Tech-
niques for Future Launchers.

2. SYSTEM MODEL AND CONTROL DESIGN

2.1 System model

Accounting for the strong non-linear characteristics of the
micro-launcher’s model, multiple linear approximations
are needed in order to capture the launcher’s dynamics.
These may vary greatly depending on the micro-launcher’s
location on its prescribed trajectory, therefore each linear
approximation is valid only for a short amount of time, as
trajectory phases change along with variations in atmo-
spheric conditions.

The solid-body dynamics of the micro-launcher are fully
detailed in Chelaru (2018), and may be given in state-space
form as θ̇θ̈

z̈

 =

 0 1 0
aθ
θ̇

0 aż
θ̇

aθż 0 ażż
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ż
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bδż a
αω

ż
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coefficients that vary according to linearization conditions.
The states of the system are:

• θ - pitch angle (deg),

• θ̇ - pitch rate (deg/sec),
• ż - lateral drift speed (m/sec),

and the inputs are:

• δn - TVC nozzle deflection (deg),
• αω - wind incidence (deg),

where TVC abbreviates for “Thrust Vector Control”.

For the application presented in this paper, a discrete-time
linear approximation of the micro-launcher dynamics was
used. The considered time frame for which the approxima-
tion is valid is from 0 to 17 seconds after the launch. Wind
incidence dynamics have been ignored, and the system has
been discretized with a sample time of Ts = 0.1 seconds.
Moreover, in order to implement a fault-recovery module,
it was considered that the system’s first two states, θ
and θ̇, are being measured redundantly by two sensors
each. In general, the likelihood that two sensors which
measure the same signal may both fail is considered to be
negligible. The final discrete-time state-space realization
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is given numerically by

AML =

[
1.0004 0.1000 −0.0000
0.0077 1.0004 −0.0002
3.2642 0.1651 0.9318

]
, BML =

[
0.1479
2.9577
−3.0868

]
,

CML =

1 0 0
1 0 0
0 1 0
0 1 0

 , DML =

00
0
0

 .
The TVC actuator model acts as a low-pass filter and its
continuous-time model is given by

GTV C(s) = K
ω2

s2 + 2ζωs+ ω2
e−sτ , (2)

where τ = 0.015 seconds. Although the chosen sampling
time for discretization is greater than the input delay, the
former was chosen as the smallest quantity which preserves
the stabilizability of the system after discretization. The
discrete-time state-space realization for the TVC actuator,
discretized in the same manner as the rigid body, is then
as follows

ATV C =

[
4.127e− 05 0.0003686 −0.0005781
−0.000173 −0.0002871 0.0001213
−2.428e− 05 −4.076e− 06 −4.767e− 05

]
,

BTV C =

[
1.109
−0.1052
−0.2693

]
, CTV C =

[
0.243

−0.001977
0.01177

]T
,

DTV C = [0.7334] .

The output of the TVC actuator, up[k], will be measured
by two sensors in order to ensure that input-fault detection
is both possible and reliable. However, as its values are
not employed in the control feedback loop, the two TVC
actuator measurements will not be explicitly included in
the final state-space model.

2.2 The discrete-time Riccati equation

The discrete-time Riccati equation and a series of compu-
tationally-efficient algorithms designed to solve it are ex-
tensively covered in Laub (1979). The general expression
of the equation is given by

ATXA−X − (ATXB + S)(BTXB +R)−1×
×(BTXA+ ST ) +Q = 0. (3)

For most practical applications, the matrix S which quan-
tifies state-input interaction is taken 0. Sufficient condi-
tions for the existence of a unique stabilizing solution may
be taken as:

• (A,B) is stabilizable;

•
[
Q S
ST R

]
> 0 or, if S = 0, simply Q > 0 and R > 0.

The discrete-time Riccati equation is solved by computing
a basis U for the stable deflation subspace of the symplec-
tic matrix

Z =

[
A+BR−1BTA−1Q −BR−1BTA−T

−A−TQ A−T

]
. (4)

If we write U as

U =

[
U1

U2

]
∈ R2n×n, (5)

then the solution to the Riccati equation is computed as

X = U2U
−1
1 . (6)

For a comprehensive treatment of this subject, one can
consult Bittanti et al. (1991) and Ionescu et al. (1999).

2.3 Controller synthesis

In order to minimize measurement noise and disturbance
effects on the system’s sensors, a Linear Quadratic Gaus-
sian (LQG) control algorithm will be implemented. Sensor
fault detection algorithms are usually heavily influenced
by measurement noise, therefore LQG control ensures that
we use the optimal controller for a given noise level. The
procedure for implementing LQG control algorithms is
given in detail in Maciejowski (2007) and Skogestad and
Postlethwaite (2007).

The micro-launcher linear model is unstable but fully con-
trollable and observable, while the TVC actuator model
is stable. For controller synthesis, ensuring closed-loop
stability, good stability margins and reference tracking is
vital. A schematic of the control loop is given in Fig. 1.

K GTV C GML

w
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+

+

−

Fig. 1. Control loop signals and transfers

For reference tracking, an integrator was included in the
open-loop transfer, in accordance with the Internal Model
Principle. The augmented open-loop transfer for negative
output feedback now becomes

Pa = −GMLGTV C
Ts
z − 1

=

[
Aa Ba
Ca Da

]
. (7)

The stabilizing LQG controller’s realization is then

Ks =

[
Aa +BaF + LCa + LDaF −L

F 0

]
, (8)

where the matrices L, F are the stabilizing solutions of the
discrete-time filtering,

AaY A
T
a −Y −AaY CTa (CaY C

T
a +RL)−1CaY A

T
a +QL = 0,

(9)
and control,

ATaXAa−X−ATaXBa(BTaXBa+RF )−1BTaXAa+QF = 0,
(10)

Riccati equations, along with the feedback matrices

LT = −(CaY C
T
a +RL)−1CaY A

T
a , (11)

F = −(BTaXBa +RF )−1BTaXAa, (12)

for the filtering and control cases, respectively. For the
control equation, the weighting matrices,

RF = 1,

QF = diag{1, 10, 1, 1, 1, 1, 1, 1, 1},
are chosen empirically, by tuning so as to obtain the best
compromise between overshoot and settling time. For the
filtering equations, the weighting matrices QL and RL are
chosen to ensure that a stabilizing solution to the filtering
Riccati equation exists and that the filtering is optimal
with regard to measurement noise, respectively

RL = E{v[n]vT [n]} = diag{σ2
1 , σ

2
2 , σ

2
3 , σ

2
4}, (13)

QL = εIn, ε→ 0, ε > 0. (14)

Here, QL is the covariance matrix of the internal process
noise, QL = E{w[n]wT [n]}. The internal noise is consid-
ered to be zero, but in order to ensure that the filtering
Riccati equation has a stabilizing solution, QL was defined
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as a positive definite matrix with minute eigenvalues. For
most spaceflight applications, a measurement noise with
a standard deviation of around 1% of usual signal am-
plitudes is considered moderately-high. We shall employ
this level of noise and, since simulations in this paper
have unit-level amplitudes for most measured signals, we
will consider all measurement noise to have variances of
σ(·) = 10−4. Finally, the integrator is folded into the
stabilization block and the LQG controller is given as

K =
Ts
z − 1

Ks. (15)

2.4 Fault detection and isolation

Fault Detection and Isolation (FDI) schemes are usually
based on the generation of residual signals. A residual
has the purpose of monitoring one or more values of
interest for the system, and to indicate when a non-typical,
faulty behavior occurs. For discrete-time systems, model
based residual generators use parity relations to verify the
consistency of a value. This method is thoroughly analyzed
in Chen and Patton (2012). Next, we present a residual
generation method based on temporal redundancy. We
consider the following discrete-time linear model{

x[k + 1] = Ax[k] +Bu[k] +R1f [k]

y[k] = Cx[k] +Du[k] +R2f [k]
(16)

where x ∈ Rn is the state vector, y ∈ Rm is the output
vector, u ∈ Rr is the input vector and f ∈ Rg is the fault
vector.

The temporal-redundancy parity relations are constructed
by using the model equations from time sample k−s until
the present time sample, k. As given in Chen and Patton
(2012), these are written as follows

y[k − s]
y[k − s+ 1]

...
y[k]

−H


u[k − s]
u[k − s+ 1]

...
u[k]

 = Wx[k−s]+M


f [k − s]

f [k − s+ 1]
...

f [k]


(17)

or with simplified notation

Y [k]−HU [k] = Wx[k − s] +MF [k], (18)

where we define the matrices H, W , M as

H =


D 0 . . . 0
CB D . . . 0
...

...
. . .

...

CAs−1B CAs−2B . . . D

 ∈ R(s+1)×(s+1)r, (19)

W =


C
CA
...

CAs

 ∈ R(s+1)m×n, (20)

M =


R2 0 . . . 0
CR1 R2 . . . 0
...

...
. . .

...

CAs−1R1 CAs−2R1 . . . R2

 ∈ R(s+1)×(s+1)r. (21)

Matrix M cannot be computed, as the faults dynamics
cannot be readily known.

Considering the previous parity relation, a residual signal
can be defined as

r[k] = V (Y [k]−HU [k]) = VWx[k − s] + VMF [k], (22)

where V is computed such that the residual will not be
affected by the nominal dynamics of the process, but will

respond to stimulation by fault signals. Therefore, the
matrix V must ensure that the following

VW = 0⇒ V T ∈ ker(WT ), while VM 6= 0. (23)

In order for V to exist, the number of time samples s used
for time redundancy must be large enough to ensure that
W has more rows than columns, so that it is guaranteed
to have a left null space with V taken as its basis. Finally,
the residual signal in extended form is

r[k] = V




y[k − s]
y[k − s+ 1]

...
y[k]

−H


u[k − s]
u[k − s+ 1]

...
u[k]


 . (24)

In addition, to help with the detection of slowly-varying
fault signals, the residuals are further filtered as follows

rf [k] =
z + 0.5

z − 1
r[k].

3. FAULT ISOLATION AND RECOVERY SCHEME

3.1 Isolation and recovery for sensor fault

The detection procedure for the plant’s outputs was im-
plemented with a separate residual generator for each of
the four sensors. This approach ensures the possibility of
isolating a fault in any of the sensors, whereas implement-
ing a single residual generator for all four sensors would
result in the residual signals interacting with each other
in a way that would make fault isolation very difficult to
achieve. The dynamics of each output was used separately
to implement the four residual generators. The relations
are as follows:

G =

[
A B
C D

]
=


A B
C1 D1

C2 D2

C3 D3

C4 D4

 = GML GTV C , (25)

Gi =

[
A B
Ci Di

]
, i = 1 : 4, (26)

ri[k] = Vi




ŷi[k − s]
ŷi[k − s+ 1]

...
ŷi[k]

−Hi


u[k − s]

u[k − s+ 1]
...

u[k]


 , (27)

ri[k] = Vi(Ŷi[k]−HiU [k]), i = 1 : 4 . (28)

Taking into account the effect of measurement noise on
individual residual signals, optimal Kalman filters were
used in order to estimate the real value of each measured
output. The estimated values were then used for residual
generation, therefore minimizing the effect of the measure-
ment noise on the residual signals.

The estimated outputs were computed as follows ˙̂xi = (A+ LiCi)x̂i + [B + LiDi −Li]
[
u
yi

]
,

ŷi = Cix̂i +Diu, i = 1 : 4,

(29)

where x̂i is the estimated state vector of the i-th observer
and the matrix Li is computed using the solution of the
discrete-time Riccati equation

AYiA
T − Yi −AYiCTi (CiYiC

T
i +Ri)

−1CiYiA
T +Qi = 0,

(30)
LTi = −(CiYiC

T
i +Ri)

−1CiYiA
T , (31)

where Qi = εIn and Ri = σ2
i , i = 1 : 4. The recovery

module for sensor faults consists in adapting the controller
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by modifying its state matrices. As seen in section II,
using LQG controllers the noise effect can be penalized
by choosing the diagonal values of RL as the value of the
noise variance. When there are no faults, the matrix RL is
defined as in (13).

If there is a fault on one of the sensors, then a controller
that strongly penalizes its value can be computed by
increasing the sensor’s associated noise variance: σf →∞.
Considering all cases for sensor faults, and assuming that
for each of the plant’s outputs (pitch angle and pitch rate)
only one of the two corresponding sensors can be faulty
at any given time, 9 different matrices RLi

were used. For
the nominal case, the matrix given in (13) was used, while
for the other 8 cases it was modified by replacing the value
of σk, k = 1 : 4, with σf , depending on which of the four
sensors became faulty. In order to consider each case of
sensor fault, 9 different matrices Li were computed. For
each matrix Li a discrete-time Riccati equation was solved,
respectively

AaYiA
T
a − Yi −AaYiCTa (CaYiC

T
a +RLi)

−1×
×CaYiATa +QL = 0, (32)

LTi = −(CaYiC
T
a +RLi)

−1CaYiA
T
a , i = 1 : 9. (33)

Thus, 9 different controllers were computed for the sensor’s
recovery module. For each controller, only the matrix L
would change. The recovery module ensures that when a
fault is detected and isolated, the proper Li is used. The
stabilizing controller is as follows

Ksi =

[
Aa +BaF + LiCa + LiDaF −Li

F 0

]
, i = 1 : 9.

(34)
3.2 Isolation and recovery for actuator fault

In order to isolate actuator faults, two sensors measuring
the TVC nozzle’s deflection, up[k], were used.

For each of them a residual generator was implemented

ri[k] = VTV C




upi [k − s]
upi [k − s+ 1]

...
upi [k]

−HTV C


u[k − s]

u[k − s+ 1]
...

u[k]


 ,

(35)
ri[k] = VTV C(Upi [k]−HTV CU [k]), i = 1 : 2. (36)

For detection, a fault of the actuator is declared only if
both up[k] sensors measure similar values and if a signifi-
cant change in the residual signals is observed, in order to
rule out sensor malfunction. For the scenario investigated
in this paper, the fault was modeled as a saturation on the
commanded nozzle deflection, u[k], which corresponds to
actuator loss of effectiveness.

In order to ensure that the closed-loop system remains
stable when the plant’s command is saturated, the con-
troller Ks is modified to produce a command signal that
is smaller in amplitude by recomputing the F matrix. This
was achieved by modifying its weighting matrices, RF and
QF , and increasing their values to further penalize both
state and command signal dynamics. A pair of appropriate
retuning matricesQFf

andRFf
was found, ensuring a com-

mand amplitude that is low enough to accommodate the
actuator fault. As is customary, these weighting matrices
for the control Riccati equation were chosen in an empirical
manner.These are

RFf
= 105,

QFf
= diag{104, 104, 1, 1, 1, 1, 1, 1, 1}.

Then, Ff is computed as a solution to the discrete-time
Riccati equation defined by the new weighting matrices

ATaXiAa −Xi −ATaXiBa(BTaXiBa +RFf
)−1×

×BTaXiAa +QFf
= 0, (37)

Ff = −(BTaXaB +RFf
)−1BTaXAa. (38)

For the purpose of actuator fault recovery, only two cases
are possible. When there is no fault, the controller Ks

uses the nominal matrix computed for F . When there
is a fault, the value of F inside the controller’s state
space equations is switched to Ff by the recovery module,
which ensures the command is lower in amplitude and
thus less prone to be affected by saturation. With both
recovery modules considered, the stabilizing controller has
the following expression

Ksij =

[
A+BFj + LiC + LiDFj −Li

Fj 0

]
, (39)

where i = 1 : 9 and j = 1 : 2. As always, the optimal
stabilizing block Ksij has a discretized integrator attached
to its output in order to form the desired controller

K =
Ts
z − 1

Ksij . (40)

4. MICRO-LAUNCHER APPLICATION

4.1 Sensor FDIR scenario

In order to illustrate the performance of the proposed
FDIR scheme, a series of faults have been applied to the
plant’s sensors. As stated above, each of the two outputs
(pitch angle and pitch rate) have a set of two corresponding
sensors each, in order to have the possibility of operating
function recovery when one of the two fails.
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Fig. 2. Measured values during sensor failures

Fig. 2 showcases the values measured by the four sensors
of the micro-launcher, when the reference is given as

r[k] = 1[k − 10] ,

with two faults placed upon the first and the third sensor:

f1[k] = (k − 50)(1[k − 50]− 1[k − 150]), yf1 = y1 + f1 ,

f3[k] = 2(1[k− 100]− 1[k− 200]), yf3 = y3 + f3 .
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Fig. 3. Residual values during sensor failures

In Fig. 3, the associated residual signals are illustrated.
The first fault is detected at approximately t = 6 sec,
when the residual associated to the first sensor exceeds
the fault threshold, and the values measured by the first
and second sensors begin diverging, respectively

r1[k] ≥ 0.15 , ‖Y1 − Y2‖2 ≥ 0.5,
Yi = [yi[k − s] . . . yi[k − 1] yi[k]] , i = 1 : 4 .

Note that the fault threshold was chosen large enough so
that a fault scenario is not triggered by mere measurement
noises, but also small enough to detect the ramp-like fault
acting upon the first pitch angle sensor at t = 5 sec.
The delay induced in the detection process is directly
influenced by the number of samples s used to generate
the residual. Here, a delay of approximately 0.6 sec was
considered a good compromise between response time and
reliability. The first sensor becomes functional again at
approximately t = 17 sec, after another spike in the
associated residual has been detected, indicating that the
fault’s effect has disappeared and the values measured by
the first and second sensors are similar, respectively

r1[k] < 0.15 , ‖Y1 − Y2‖2 < 0.5 .
The second fault is detected at t = 10 sec, when the
following relations are satisfied:

r3[k] ≥ 0.1 , ‖Y3 − Y4‖2 ≥ 0.5 .
The third sensor is declared functional again at t = 21 sec,
when the following relations are satisfied:

r3[k] < 0.1 , ‖Y3 − Y4‖2 < 0.5 .
Before t = 6 sec, the nominal matrix L is used:

L =


0.4780 0.4780 0.0690 0.0690
0.0118 0.0118 0.7747 0.7747
1.5964 1.5964 −0.6832 −0.6832
0.0051 0.0051 0.2279 0.2279
−0.0005 −0.0005 −0.0216 −0.0216
−0.0012 −0.0012 −0.0553 −0.0553
0.0046 0.0046 0.2055 0.2055

 .
Between t = 6 sec and t = 10 sec, the nominal L matrix
used to compute the controller is replaced with Lf1 in order
to accommodate the fault placed upon the first sensor:

Lf1 =


0.0000 0.9176 0.0697 0.0697
0.0000 0.0218 0.7748 0.7748
0.0000 3.1868 −0.6830 −0.6830
0.0000 0.0092 0.2280 0.2280
0.0000 −0.0009 −0.0216 −0.0216
0.0000 −0.0022 −0.0554 −0.0554
0.0000 0.0083 0.2055 0.2055

 .
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Fig. 4. Reconfiguration effects for faulty sensors

It can be noted that the first column which corresponds
to the estimation of the values for the first sensor is zero,
thus indicating that the first feedback signal is no longer
used to compute the command. The following two fault
cases that arise until t = 21 sec are treated in the same
manner, with the columns corresponding to faulty sensors
being full of 0 values.

Fig. 4 showcases the effects of the sensors faults on the
plant’s outputs, when the recovery module is implemented.
As it can be seen, after a short transient period, the
outputs return to the normal values, and the faults have
no further effect.

4.2 Actuator FDIR scenario

For the modeling of the actuator failure, the considered
reference is

r[k] = 1[k − 30]− 1[k − 90] + 1[k − 150]− 1[k − 210] ,

while the fault is modeled as a saturation, starting at
t = 15 sec:

sat(u[k]) =


−0.4 , u[k] ≤ −0.4,

0.4 , u[k] ≥ 0.4,

u[k] , u[k] ∈ (−0.4, 0.4) .

Fig. 5 illustrates the command sent to the actuator. Before
the saturation is applied at t = 15 sec, we have

‖u‖∞ = 1.3 ,

while after t = 15 sec the command is being saturated.

In Fig. 6, the plant’s outputs are illustrated, which clearly
indicate that the closed-loop system is now unstable,
and the nominal control effort has failed to stabilize the
launcher. In order to prevent complete mission failure,
the recovery module modifies the controller’s state space
equations, ensuring the closed-loop can withstand strong
saturation levels and still remain stable.

Fig. 7 shows the controller output when the recovery
module is implemented and active. At roughly t = 15 sec,
the actuator becomes saturated and the recovery module
switches the value of F inside the controller’s state-space
equations to Ff :

Ff = [−0.16 −0.17 0 −0.13 0 0 −0.77] .

The nominal value of F , used before t = 15 sec, was

F = [−1.56 −0.5 −0.07 −0.3 0 −0.02 −0.99] .
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Fig. 5. Saturated controller output without fault recovery
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Fig. 6. Flight instability caused by faulty actuator

The matrix Ff ensures a smaller command u[k], as shown
by comparing the Frobenius norms of the two matrices:

‖F‖
F

= 1.938, ‖Ff‖F = 0.814, ‖Ff‖F < ‖F‖F .
The effect of the recovery can be seen in Fig. 8. At
t = 15 sec, when the second rectangular impulse is sent
to the closed-loop system, a strong oscillation appears
on both outputs but, due to the action of the recovery
module, the outputs return to normal operating ranges
after roughly 5 seconds.

5. CONCLUSIONS
As showcased by the application results in section 4, the
proposed recovery method ensures not only fault-tolerance
in case of sensor failure, but also provides the means
to successfully preserve closed-loop stability in case of
actuator failure. Moreover, by using this method to adapt
the controller’s state equations without switching to a new
one, the state vector does not suffer from discontinuities
and the control law maintains its optimal quality.
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