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1. INTRODUCTION

The problem of observation in control systems has been
studied for many decades as most control laws require
access to the entire state vector, which usually is not
fully available in real-time setups (Luenberger, 1964). As
a dual problem with respect to control, observation can
adopt a static, dynamic, or adaptive form; this work
is concerned with the latter class. Besides stabilisation,
adaptive observers have been used to carry out a variety
of tasks such as unknown-input estimation (Dimassi and
Loŕıa, 2010), unknown-parameter identification (Cho and
Rajamani, 1997), fault detection and isolation (Yang and
Saif, 1995), fault-tolerant control (Ye and Yang, 2006), and
synchronisation of chaotic systems (Feki, 2003), among
others.

Some early works on adaptive observers are (Luders
and Narendra, 1973; Carroll and Lindorff, 1973; Kreis-
selmeier, 1977), where the state-estimation and parameter-
estimation problems were solved for linear time-invariant
(LTI) single-input-single-output (SISO) systems. By tak-
ing into account these works, new approaches have been
developed for the time-variant case: in (Bastin and Gevers,
1988) an adaptive observer has been proposed for SISO
systems that can be put into the canonical observer form;
in (Zhang, 2002; Zhao et al., 2012) adaptive observers
were proposed to achieve the estimation task in multiple-
input-multiple-output (MIMO) systems; these works show
that state and parameter estimations converge to their
real values if persistency of excitation (PE) is guaranteed.
This condition can also be found in (Besançon, 2000; Farza
et al., 2009; Loŕıa et al., 2009; Farza et al., 2018).

Problem statement: Particularly, in (Loŕıa et al., 2009)
adaptive observers for synchronisation of chaotic systems
of the form ẋ = A(y)x + Ψ(x)θ + B(t, x) have been

? This work has been supported by CONACYT scholarship 491553
and the Projects PROFAPI ITSON CA 2019-0002 and PROFEXCE
2020-2021.

proposed, where y is a measurable output, θ gathers
constant parametric uncertainties, and x is the state
to be estimated; A(·), Ψ(·), and B(·, ·) are allowed to
be nonlinear. Nevertheless, the solution therein relies on
Lipschitz bounds and conditions to guarantee PE; it does
not allow the system matrix to depend on something
else than the (known) linear output, thus limiting its
applicability.

Contribution: Inspired by (Loŕıa et al., 2009), this paper
proposes a novel nonlinear adaptive observer for state
estimation that overcomes some of the limitations of the
referred work, namely: the system matrix and the output
are now allowed to depend nonlinearly on any bounded
signal, and conditions based on PE and Lipschitz constants
can be avoided by a suitable factorisation of the error
signal. For the sake of clarity, no parametric uncertainties
are considered in this work, though extensions to that case
are straightforward.

Methodology: The factorisation proposed in (Quintana
et al., 2018) is used to construct an error system with
explicitly known structure. By means of the sector non-
linearity approach (Taniguchi et al., 2001), this system is
exactly rewritten as a convex sum of linear models where
available signals are split from unmeasurable ones in a
natural way. The direct Lyapunov method is combined
with polytopic argumentations to guarantee convergence
of the observation error to zero: an adaptive nonlinear
observer gain is thus proposed.

Organisation: A first result on nonlinear adaptive observer
design is provided in section 2, though strong limitations
arise that are then considered and solved in section 3
via a polytopic representation of the error system. The
effectiveness of the proposal is put at test and compared
against former methodologies in section 4 via 3 nonlinear
examples: 1 concerned with synchronisation, 2 others with
nonlinear expressions for the system or the output. Finally,
in section 5 conclusions and perspectives are discussed.
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Notation: Throughout this paper, given a matrix expres-
sion M , M > 0 (M < 0) stands for positive-definite
(negative-definite), M + (∗) = M +MT . The convex hull
of a set of vertices is denoted as co.

2. LYAPUNOV-BASED NONLINEAR ADAPTIVE
OBSERVER DESIGN

Consider the following nonlinear system

ẋ(t) = A(x)x(t) +B(y)u(t), y(t) = C(x)x(t), (1)

where x(t) ∈ Ω ⊂ Rn, u(t) ∈ Rm, and y(t) ∈ Ro are the
state, input, and output vectors, respectively, with 0 ∈ Ω;
A(·), B(·), and C(·) are matrices of appropriate dimensions
whose entries are bounded in Ω. Notice that matrix B is
only allowed to depend on the system output.

Consider also the following nonlinear observer associated
to (1)

˙̂x(t) =A(x̂)x̂(t)+B(y)u(t)+L(̂x,y, t)(y−ŷ),
ŷ(t) =C(x̂)x̂(t),

(2)

where x̂(t) ∈ Ω̂ ⊂ Rn is the observer state and L(x̂, y, t) ∈
Rn×o is a possibly nonlinear observer gain; this gain
should be designed such that the observation error e(t) =
x(t) − x̂(t) goes to zero as time goes to infinity, i.e.,
limt→∞ e(t) = 0. Notice that asking the observer state

x̂ to lie in the compact set Ω̂ is somehow related with
asking for Lipschitz bounds in classical observer design
with unmeasured premise variables (Lendek et al., 2010) 1 .

According to (Quintana et al., 2018), the error system can
always be expressed as:

ė(t) =
(
Ā(x,x̂)−L(̂x,y,t)C̄(x,x̂)

)
e(t), (3)

where Ā(x, x̂)e(t) = A(x)x − A(x̂)x̂ and C̄(x, x̂)e(t) =
C(x)x − C(x̂)x̂ are given explicitly. Let us illustrate this
explicit rewriting by considering p(x) = x1+x21x2+x32 as a
polynomial expression appearing in some entry of A(x)x or
C(x)x; then, one of the possible factorisations of the error
signals e1 = x1 − x̂1 and e2 = x2 − x̂2 from p(x)− p(x̂) is

p(x)−p(x̂)=x1−x̂1+x21x2− x̂21x̂2+x32 − x̂32
=e1+x21e2+x̂2

(
x21−x̂21

)
+
(
x22+x2x̂2+x̂22

)
e2

=e1+x21e2+x̂2 (x1+x̂1) e1+
(
x22+x2x̂2+x̂22

)
e2

=
[
1+x̂2(x1+x̂1) x21+x22+x2x̂2+x̂22

][e1
e2

]
.

When p(x) is non-polynomial, the Taylor series approach
can be used to convert it to a Taylor polynomial of an
arbitrary degree; then the procedure illustrated above to
factorise e(t) is the same.

Theorem 1. The origin of the nonlinear error system (3) is
asymptotically stable if there exist matrices P (t), Q(t) ∈
Rn×n such that 0 < c1I ≤ P (t) = PT (t) ≤ c2I, Q(t) =
QT (t) > 0, with L(x̂, y, t) = P−1(t)C̄T (x, x̂) and

Ṗ (t)= C̄T(x,x̂)C̄(x,x̂)−P (t)Ā(x, x̂)− 1

2
Q(t) + (∗), (4)

∀x ∈ Ω, ∀x̂ ∈ Ω̂, ∀t ≥ 0. Moreover, any trajectory e(t)
starting within {e : eTP (t)e ≤ k, k > 0} ⊂ Ωe, with

1 Indeed, assumptions on the boundedness of the time-variant dif-
ference between the true and the estimated states in Bergsten and
Driankov (2002), or for gradient expressions in Guerra et al. (2018),
imply x̂ belongs to some compact set.

Ωe = {e : x ∈ Ω, x̂ ∈ Ω̂}, goes to zero as time goes to
infinity.

Proof. Since P (t) = PT (t) > 0, then V (t, e) = eTP (t)e >
0 is a Lyapunov function candidate; its time derivative is

V̇ (t, e)=eT
(
P (t)Ā(x,x̂)−P (t)L(̂x,y,t)C̄(x,x̂)+(∗)+Ṗ (t)

)
e

=eT
(
P (t)Ā(x,x̂)− C̄T(x,x̂)C̄(x,x̂)+(∗)+Ṗ (t)

)
e,

where the error system (3) and L(x̂, y, t) have been sub-

stituted. Clearly, the condition V̇ (t, e) < 0 ∀e 6= 0 can be
guaranteed if

P (t)Ā(x,x̂)−C̄T(x,x̂)C̄(x,x̂)+(∗)+Ṗ (t) = −Q(t),

which is equivalent to (4), thus proving that V (t, e) is a
valid Lyapunov function for the error system (3). It follows
immediately that any trajectory beginning in the outer-
most Lyapunov level set within Ωe goes asymptotically to
zero as time goes to infinity; such Lyapunov level set has
the form {e : eTP (t)e ≤ k, k > 0}, which concludes the
proof.

Theorem 1 can be useful in the very particular case of
having only available signals in the righthand side of (4)
as illustrated in the next example.

Example 1. Consider the Lorenz oscillator given by equa-
tions (Loŕıa et al., 2009):[

ẋ1
ẋ2
ẋ3

]
=

[−16 16 0
45.6 −1 −x1

0 x1 −4

][
x1
x2
x3

]
, y = [1 0 0]

[
x1
x2
x3

]
, (5)

where x1, x2, and x3 are the states and y = x1 is the
(linear) output.

In this case, a nonlinear observer of the form (2) is: ˙̂x1
˙̂x2
˙̂x3

 =

[−16 16 0
45.6 −1 −x̂1

0 x̂1 −4

][
x̂1
x̂2
x̂3

]
+ L(̂x1,x̂2,x̂3,y,t)(y − ŷ)

where x̂1, x̂2, and x̂3 are the observer states and ŷ = x̂1 is
the observer output.

Defining ei = xi − x̂i, i ∈ {1, 2, 3}, the error system (3) is[
ė1
ė2
ė3

]
=

([ −16 16 0
45.6− x̂3 −1 −x1

x̂2 x1 −4

]
−L(̂x1,x̂2,x̂3,y,t)[1 0 0]

)[
e1
e2
e3

]
,

where the fact that x1x3 − x̂1x̂3 = x1e3 + x̂3e1 and
x1x2 − x̂1x̂2 = x1e2 + x̂2e1 has been used to achieve such
factorisation.

The observation problem can be solved by means of
Theorem 1 because all the signals in the nonlinear er-
ror are available, i.e., x1 (the system output), x̂2, and
x̂3. A simulation is performed by implementing the dy-
namic P (t) in (4) along with the system and observer
dynamics, from which the adaptive nonlinear observer
gain L(x̂1, x̂2, x̂3, y, t) is obtained on-line. Fig. 1 shows the
behaviour of the error signals and the Lyapunov func-

tion along the time. Initial conditions x(0) = [1 1 1]
T

,

x̂(0) = [0 0 0]
T

, and

P (0) =

[
5 1 2
1 8 3
2 3 9

]
, σ (P (0)) = {4.15, 5.65, 12.2},
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Fig. 1. Time evolution of the error norms and Lyapunov
function V (t, e) in example 1.

were employed. Matrix Q(t) was chosen as a multiple of
P (t) to guarantee its definite-positiveness, more specifi-
cally, Q(t) = 50P (t). Notice that the error signals go
to zero and the Lyapunov function from Theorem 1 is
monotonically decreasing, as expected.

Yet, as the following example shows, Theorem 1 cannot
be used in most cases because Ṗ (t) usually depends on
non-available signals:

Example 2. Consider the following nonlinear system[
ẋ1
ẋ2

]
=

[
0 −x1
−1 −x2

][
x1
x2

]
+

[
1
−1

]
u, y=[x1 1]

[
x1
x2

]
, (6)

where x1 and x2 are the states and y = x21 + x2 is the
nonlinear output.

By considering the following nonlinear observer[
˙̂x1
˙̂x2

]
=

[
0 −x̂1
−1 −x̂2

][
x̂1
x̂2

]
+

[
1
−1

]
u+L(̂x1,x̂2,y,t)(y−ŷ), (7)

where the states are x̂1, x̂2, and ŷ = x̂21+x̂2 is the observer
output, the following error system is obtained[
ė1
ė2

]
=

([
−x̂2 −x1
−1 −x2−x̂2

]
−L(̂x1,x̂2,t) [x1+x̂1 1]

)[
e1
e2

]
. (8)

Notice that unavailable states x1 and x2 appear in the er-
ror system above; therefore, Theorem 1 cannot be applied.

In order to overcome this problem, the fact that the
dynamical equation (4) can be equivalently rewritten as a
tensor product model by means of the sector nonlinearity
approach (Taniguchi et al., 2001), can be used in the spirit
of (Quintana et al., 2018) to split available signals (x̂,
y) from the remaining ones. The next section will show
that convexity is useful to solve this problem under mild
considerations.

3. NONLINEAR ADAPTIVE OBSERVERS AND
TENSOR PRODUCT MODELS

Due to the bounds in the entries of the original system
(1) and the nonlinear observer (2), those in (3) are also
bounded. Bounded expressions can be rewritten as a
convex sum of their bounds, i.e., given an expression
z ∈ [z0, z1], the following holds:

z =
z1 − z
z1 − z0︸ ︷︷ ︸
w0(z)

z0 +
z − z0

z1 − z0︸ ︷︷ ︸
w1(z)

z1,

where w0(z) + w1(z) = 1, w0, w1 ∈ [0, 1] for the referred
interval in z: this is known as the convex sum property
(Bertsekas et al., 2003).

Since x(t), x̂(t) are bounded in the compact sets Ω and

Ω̂, respectively, the non-constant terms in the entries of
matrices Ā(x, x̂) and C̄(x, x̂) can be rewritten as convex
sums. Thus, by using the notation in (Quintana et al.,
2018), we denote as zi(x̂, y) ∈ [z0i , z

1
i ], i ∈ {1, 2, . . . , p} the

p non-constant bounded terms that depend exclusively on
available signals and as ζj(x, x̂) ∈ [ζ0j , ζ

1
j ], j ∈ {1, 2, . . . , ρ},

the remaining ones. Due to convexity, the convex sums
as well as the convex functions can be grouped at the
leftmost side of any expression that contains them. In this
way, the error system (3) can be expressed as the following
algebraically equivalent tensor product model 2 :

ė(t)=
∑
i∈Bp

∑
j∈Bρ

wi(̂x,y)ωj(x,x̂)
(
Āij−L(x̂, y, t)C̄ij

)
e(t), (9)

where B = {0, 1}, i = (i1, i2, . . . , ip), j = (j1, j2, . . . , jρ),
wi(x̂, y) = w1

i1
w2
i2
· · ·wpip , wi0 = (z1i − zi(x̂, y))/(z1i − z0i ),

wi1 = 1 − wi0, i ∈ {1, 2, . . . , p}, ωj(x, x̂) = ω1
j1
ω2
j2
· · ·ωρjρ ,

ωj0 = (ζ1j − ζj(x, x̂))/(ζ1j − ζ0j ), j ∈ {1, 2, . . . , ρ}, Āij =

Ā(x, x̂)
∣∣
wiωj=1

, C̄ij = C̄(x, x̂)
∣∣
wiωj=1

.

It is important to highlight that the tensor product model
(9) is not an approximation of the nonlinear error system
(3), but an exact representation.

Thus, based on the above convex rewriting, the following
result can be stated.

Theorem 2. The origin of the nonlinear error system (3)
with tensor product model (9), is asymptotically stable
if there exist matrices P (t), Q(t) ∈ Rn×n such that
0 < c1I ≤ P (t) = PT (t) ≤ c2I, Q(t) = QT (t) > 0, and

Ṗ (t)=
∑
j∈Bρ

∑
l∈Bρ

ω̄jω̄l

(∑
i∈Bp

∑
k∈Bp

wi(x̂, y)wk(x̂, y)

×
(
C̄TklC̄ij−P (t)Āij−

1

2
Q(t)+(∗)

))
, (10)

∀x ∈ Ω, ∀x̂ ∈ Ω̂, ∀t ≥ 0, with ω̄j = ω̄1
j1
ω̄2
j2
· · · ω̄ρjρ

and ω̄l = ω̄1
l1
ω̄2
l2
· · · ω̄ρlρ defined through arbitrary known

functions ω̄i0, ω̄i1, i ∈ {1, 2, . . . , ρ}, such that ω̄i0 ∈ [0, 1],
ω̄i1 = 1− ω̄i0, and the nonlinear observer gain as

L(̂x,y,t) = P−1(t)
∑
l∈Bρ

ω̄l

∑
k∈Bp

wkC
T
kl. (11)

Moreover, any trajectory starting within {e : eTP (t)e ≤
k, k > 0} ⊂ Ωe, with Ωe = {e : x ∈ Ω, x̂ ∈ Ω̂}, goes to zero
as time goes to infinity.
2 In rewriting the tensor product model (9), it is not necessary to
define a new convex function for expressions like zri ; e.g., z2i = zizi
can be rewritten as

z21 =

(
1∑

i1=0

w1
i1
zi11

)(
1∑

i2=0

w1
i2
zi21

)
=

1∑
i1=0

1∑
i2=0

w1
i1
w1

i2
zi11 zi21 ,

where only a new index was added (but not a nonlinearity).
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Proof. Suppose that conditions in Theorem 2 hold. By
expanding (10) we have

Ṗ (t)=
∑
l∈Bρ

ω̄l

(∑
k∈Bp

wkC̄
T
kl

)∑
j∈Bρ

ω̄j

(∑
i∈Bp

wiC̄ij

)

−P (t)
∑
j∈Bρ

ω̄j

(∑
i∈Bp

wiĀij

)
− 1

2
Q(t)+(∗),

= C̃T(̂x,y)C̃ (̂x,y)−P (t)Ã(̂x,y)− 1

2
Q(t)+(∗),

where

Ã(̂x,y)=co

{∑
i∈Bp

wiĀij

}
, C̃ (̂x,y)=co

{∑
i∈Bp

wiC̄ij

}
.

Clearly, Ṗ (t) is a differential inclusion as ω̄j and ω̄l are
arbitrary convex functions. Then, by invoking Theorem 1,
we can prove that the origin of

ė(t)=
(
Ã(̂x,y)−C̃ (̂x,y)L(̂x,y,t)

)
e(t), (12)

is asymptotically stable, which ensures the same for the
origin of (3), because system (3) belongs to the differential
inclusion (12). The same Theorem guarantees the exis-
tence of the Lyapunov set {e : eTP (t)e ≤ k, k > 0} ⊂ Ωe,
thus concluding the proof.

It is worth noticing that 1) the observer gain (11) depends
only on available signals and it should use all of them to
get more flexibility, and 2) P (t) and L(̂x,y,t) are calculated
through each iteration, as can be seen in the block diagram
of Fig. 2.

4. EXAMPLES

Example 2. (continued). Recall that the error system as-
sociated to the nonlinear system (6) and the nonlinear
observer (7) is given by (8). Thus, by choosing the non-
constant terms as z1 = x̂1 ∈ [−1, 1], z2 = x̂2 ∈ [−2, 2]
(available), ζ1 = x1 ∈ [−1, 1] and ζ2 = x2 ∈ [−2, 2]
(unavailable), a convex rewriting of the error system (8)
in the compact sets Ω = {x : |x1| ≤ 1, |x2| ≤ 2} and

Ω̂ = {x̂ : |x̂1| ≤ 1, |x̂2| ≤ 2} is:

ė =
∑
i∈B2

∑
j∈B2

wiωi

([
−zi22 −ζj11
−1 −ζj22 −z

i2
2

]
−L(x̂,t)

[
ζj11 +zi11 1

])
e,

where wi(z) = w1
i1
w2
i2

, w1
0 = 0.5 − 0.5x̂1, w1

1 = 1 − w1
0,

w2
0 = 0.5 − 0.25x̂2, w2

1 = 1 − w2
0, and ωj(ζ) = ω1

j1
ω2
j2

,

Adaptive Nonlinear

Observer

System 1
s

x t( )

P t( )

y t( )

ˆ( )x t

1
s

1
s

( )C x

( )ˆC x ˆ( )y t

ˆ( )x t

( )u t

ˆ( )x t

&P t( )

&x t( )

Fig. 2. Adaptive nonlinear observer implementation.

ω1
0 = 0.5 − 0.5x1, ω1

1 = 1 − ω1
0 , ω2

0 = 0.5 − 0.25x2,
ω2
1 = 1− ω2

0 .

Once the error system is rewritten in a tensor product
form, we can solve the observation problem by means of
Theorem 2. Thus, replacing the convex functions ωj =
ω1
j1
ω2
j2

(depending on unavailable signals) by known given

ω̄j = ω̄1
j1
ω̄2
j2

, ω̄j0 = ω̄j1 = 0.5, j ∈ {1, 2}, the nonlinear
observer gain (11) is

L(x̂, t) = P−1(t)
∑
l∈B2

ω̄l

∑
k∈B2

wkC
T
kl.

Hence, following the scheme in Fig. 2, P (t) and L(x̂, t)
are computed on-line. Fig. 3 shows the behaviour of the
nonlinear system states along with the nonlinear observer

ones. Initial conditions are x(0) = [−0.3 0.4]
T

, x̂(0) =

[0 0]
T

, and P (0) = I, the input signal is u(t) = 0.1 sin 5t+
0.2 sin 10t−0.4 sin 20t, and matrixQ(t) is defined asQ(t) =
20P (t). As it can be seen, the observation task takes place
correctly.

Notice that, in contrast with results in Alessandri and
Rossi (2015); Loŕıa et al. (2009), the output is no longer
limited to be linear; moreover, the system matrix is no
longer required to depend exclusively on the output as
in Loŕıa et al. (2009). In this example, however, results
in Loŕıa et al. (2009) can still be used if the system
is rewritten as ẋ = Ax + B(t, x), but then Lipschitz
conditions should be employed for B(t, x). In Mart́ınez-
Garćıa et al. (2019), the systems under consideration are
of the form ẋ(t) = Ax + g(y, u) with a linear output;
nevertheless, system (6) cannot be expressed in that form.

Example 3. Consider the following nonlinear system[
ẋ1
ẋ2

]
=

[
−1−x1 exp(x1)
x2 −10x22

][
x1
x2

]
+

[
0.5
1

]
u, y=x1, (13)

along with the nonlinear observer[
˙̂x1
˙̂x2

]
=

[
−1−x̂1 exp(x̂1)
x̂2 −10x̂22

][
x̂1
x̂2

]
+

[
0.5
1

]
u−L(̂x,y,t)(y−ŷ),

where ŷ = x̂1 is the observer output and, as before, L(̂x,y,t)
is the nonlinear gain.

Thus, the error system is given by

0 2 4 6 8 10
-0.3

-0.2

-0.1

0

x
1
(t
),
x̂
1
(t
)

x1(t)
x̂1(t)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

Time (s)

x
2
(t
),
x̂
2
(t
)

x2(t)
x̂2(t)

Fig. 3. Time evolution for the states in example 2.
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[
ė1
ė2

]
=

[
−x1+x̂1−(x21−x̂21)+x2 exp(x1)−x̂2 exp(x̂1)

x1x2−x̂1x̂2−10(x32−x̂32)

]
− L(̂x,y,t)(x1−x̂1).

The error signals ei = xi− x̂i, i ∈ {1, 2}, can be factorised
as x1 − x̂1 = e1, x21 − x̂21 = (x1 + x̂1)e1, x1x2 − x̂1x̂2 =
x1e2 + x̂2e1, x32 − x̂32 = (x22 + x2x̂2 + x̂22)e1, x2 exp(x1) −
x̂2 exp(x̂1) = exp(x1)(x2 − x̂2) + x̂2(exp(x1) − exp(x̂1)),
where the non-polynomial expression exp(x1) − exp(x̂1)
is treated via its Taylor series. To do that, consider a
Taylor polynomial of degree 3 around 0 for exp(x1) and
exp(x̂1); then, we have x2 exp(x1)−x̂2 exp(x̂1)≈exp(x1)e2+
x̂2
(
1+1/2 (x1+x̂1)+1/6

(
x21+x1x̂1+x̂21

))
e1; from where

the error signal arises. Thus, by choosing the available
non-constant terms as z1 = x1, z2 = x̂1, z3 = x̂2,
z4 = exp(x1), and the unavailable state as ζ1 = x2 in
the compact sets Ω = {x : |x1| ≤ 2, |x2| ≤ 2} and

Ω̂ = {x̂ : |x̂1| ≤ 2, |x̂2| ≤ 2}, a convex rewriting of the
error system is[
ė1
ė2

]
=
∑
i∈B7

∑
j∈B2

wi(z)ωj(ζ)

([
Ā11 zi44
zi33 Ā22

]
−L(̂x,y,t) [1 0]

)[
e1
e2

]
,

where Ā11 = −1−(zi11 +zi22 )+zi33 (1+1/2(zi11 +zi22 )+1/6(zi11 z
i5
1 +

zi11 z
i2
2 +zi22 z

i6
2 )) and Ā22 = zi11 −10(ζj11 ζ

j2
1 +ζj11 z

i3
3 +zi33 z

i7
3 ),

wi(z) = w1
i1
w2
i2
w3
i3
w4
i4
w1
i5
w2
i6
w3
i7

, w1
0 = 0.5− 0.25x1, w1

1 =

1−w1
0, w2

0 = 0.5−0.25x̂1, w2
1 = 1−w2

0, w3
0 = 0.5−0.25x̂2,

w3
1 = 1 − w3

0, w4
0 = 1.02 − 0.138 exp(x1), w4

1 = 1 − w4
0,

ωj(ζ) = ω1
j1
ω1
j2

, ω1
0 = 0.5− 0.25x2, ω1

1 = 1− ω1
0 .

By means of Theorem 2, the observer gain is

L(̂x,y,t)=P−1(t)
∑
l∈B2

ω̄l

∑
k∈B7

wkC
T =P−1(t)CT ,

with ω̄1
0 = ω̄1

1 = 0.5, C = [1 0], and Q(t) = 30P (t).
Notice that a constant C makes the convex functions
disappear from L(̂x,y,t), but the dynamic equation of P (t)
still includes the known system nonlinearities via their
convex rewriting.

A simulation has been run for initial conditions P (0) = I,

x(0) = [1.5 1]
T

, and x̂(0) = [0 0]
T

under the input
signal u(t) = sin 5t + sin 20t − sin 40t + sin 60t. In Fig.
4 the observer performance is shown, where x̂2 effectively
estimates x2.
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Time (s)

e
(t
)

e1(t)
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Fig. 4. Estimation of x2 and time evolution of the nonlinear
observer gain in example 3.

Notice that unlike the approaches proposed in (Ekramian
et al., 2013; Na et al., 2017; Dimassi et al., 2019), no
Lipschitz conditions and/or extended output are required
to solved the observation problem for system (13).

A key aspect of this work has been the fact that unavail-
able signals, while captured in convex structures, allow
choosing them in an arbitrary way if convexity holds
for the proposed functions. So far, examples have chosen
constant values due to simplicity; nevertheless, as the
following example shows, the given known functions ω̄ can
be time-varying as long as the convex-sum property hold:

Example 4. Consider the equations of the chaotic oscilla-
tor of Lü (Loŕıa et al., 2009):[

ẋ1
ẋ2
ẋ3

]
=

[−2.2587 −x3 0
0 −10 x1
0 x1 −4

][
x1
x2
x3

]
, y=

[
0 1 0
0 0 1

]
︸ ︷︷ ︸

C

[
x1
x2
x3

]
,

along with a nonlinear observer in the form (2) ˙̂x1
˙̂x2
˙̂x3

 =

[−2.2587 −x̂3 0
0 −10 x̂1
0 x̂1 −4

][
x̂1
x̂2
x̂3

]
− L(x̂, y, t)(y − ŷ),

where L(x̂, y, t) is the nonlinear observer gain and ŷ =

[x̂2 x̂3]
T

is the observer output.

Thus, the error system is[
ė1
ė2
ė3

]
=

([−2.2587 −x3 −x̂2
x̂3 −10 x1
x̂2 x1 −4

]
−L(̂x,y,t)C

)[
e1
e2
e3

]
,

which can be rewritten in convex form by considering non-
constant terms z1 = x3 ∈ [−40, 20], z2 = x̂2 ∈ [−40, 30],
z3 = x̂3 ∈ [−40, 20], and ζ1 = x1 ∈ [−40, 40], where the
first three are known and the fourth one is not available:[
ė1
ė2
ė3

]
=
∑
i∈B3

∑
j∈B1

wiωj

Ā11 −zi11 −z
i2
2

zi33 −10 ζj11
zi22 ζj11 −4

−L(̂x,y,t)C

[e1e2
e3

]
,

where Ā11 = −2.2587, w1
0 = 1/3 − x3/60, w1

1 = 1 − w1
0,

w2
0 = 3/7 − x̂2/70, w2

1 = 1 − w2
0, w3

0 = 1/3 − x̂3/60,
w3

1 = 1− w3
0, and ω1

0 = 1/2− x1/80, ω1
1 = 1− ω1

0 .

By using Theorem 2, we can consider ω̄1
0 = 0.5−0.4 sin 20t

and ω̄1
1 = 1 − ω̄1

0 in order to implement the dynamic
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Fig. 5. Time evolution of the error signal e1 and the time-
varying convex function ω̄ in example 4.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

8055



P (t) in (10); the nonlinear observer gain is L(x̂, y, t) =
P−1CT . A simulation is performed by implementing (10)

for initial conditions P (0) = I, x(0) = [3 −4 2]
T

, and
x(0) = [10 10 10]. In Fig. 5 error signal e1 and the time-
varying convex functions ω̄1

0 and ω̄1
1 are shown.

5. CONCLUSIONS

A novel adaptive nonlinear observer has been presented.
The design is based on a factorisation of the error signal
via a recently appeared explicit methodology along with a
polytopic representation that naturally separates available
from non-available signals. Thanks to the polytopic split, a
dynamic implementation of the Lyapunov matrix has been
made possible that allows the adaptive nonlinear observer
gain to be obtained on line. In contrast with recent works,
it has been shown that the proposed design avoids con-
ditions on persistency of excitation and Lipschitz bounds.
Illustrative examples have been provided. Adaptive output
feedback and fault-tolerant control under this observation
scheme are left for future work.
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