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Abstract: This paper focuses on the large-scale task allocation problem for multiple Unmanned
Aerial Vehicles (UAVs). One of the great challenges with task allocation is the NP-hardness
for both computation and communication. This paper proposes an efficient decentralised task
allocation algorithm for multiple UAVs to handle the NP-hardness while providing an optimality
bound of solution quality. The proposed algorithm can reduce computational and communicating
complexity by introducing a decreasing threshold and building task bundles based on the
sequential greedy algorithm. The performance of the proposed algorithm is examined through
Monte-Carlo simulations of a multi-target surveillance mission. Simulation results demonstrate
that the proposed algorithm achieves similar solution quality compared with benchmark task
allocation algorithms but consumes much less running time and consensus steps.

Keywords: Multiple UAVs, task allocation, submodular maximisation, threshold bundle,
multi-target surveillance.

1. INTRODUCTION

Multiple Unmanned Aerial Vehicles (UAVs) have been
frequently applied in various applications because of their
obvious advantages over single UAV, such as stronger
adaptability, increased area coverage, and improved relia-
bility. Typical applications include large-area surveillance
[Capitan et al. (2016); Li and Duan (2017); Gu et al.
(2018)], precision agriculture [Milics (2019)], and search
and rescue [Kurdi et al. (2016)].

Cooperation among UAVs is key to their mission suc-
cess. Finding an effective task execution scheme promptly,
which is termed as task allocation, is the foundation of
successful cooperation. The task allocation problem con-
sidered in this paper is maximising an overall objective
function that is the sum of all individual objective function
values while satisfying the constraint that one task can
only be allocated to one UAV.

The main issue with task allocation is the NP-hardness
[Shin and Segui-Gasco (2016)], which means that finding
the optimal solution requires exponential time. It is in-
tractable to calculate the optimal solution in large-scale
applications. Therefore, developing efficient decentralised
task allocation algorithms that can provide a suboptimal
solution with low computational and communicating com-
plexity is the leading research direction.

Various approaches have been developed to handle the NP-
hardness of the task allocation problem, such as the heuris-
tic approach [Bai et al. (2018); Boveiri (2016); Otte et al.
(2019)] and the approximation approach [Qu et al. (2015);
Ding and Castanón (2017); Seo et al. (2018)]. Heuristic
algorithms can deliver feasible task allocation solutions
within certain convergence steps. However, this kind of

algorithms cannot provide any optimality bound of the
solution quality. Approximation algorithms can provide
optimality bounds of solution quality when the objective
functions meet the condition of submodularity [Feldman
et al. (2017)]. Submodularity is a ubiquitous feature in
the real-world combinatorial optimisation problems. The
Sequential Greedy Algorithm (SGA) provides an opti-
mality guarantee of at least 1/2 of the optimal solution
for maximising monotone submodular objective functions
subject to partition matroid constraints [Nemhauser et al.
(1978)]. This paper focuses on the algorithms that leverage
the approximation approach.

Effective cooperation of UAVs requires a proper network
architecture. In a centralised network, all UAVs need to
communicate with the ground station or a UAV leader.
This kind of networks highly rely on a single entity and a
failure to this entity could cause the failure of the entire
team. A decentralised network can enhance the reliability
and increase the range of coverage of the UAV team.
Therefore, the network architecture adopted in this paper
is a decentralised one.

Extensive works have utilised the decentralised approxi-
mation approach to handle the NP-hardness of compu-
tation. [Qu et al. (2015)] solved the decentralised task
allocation problem for a large group of satellites using
distributed SGA. [Williams et al. (2017)] considered the
intersection of multiple matroid constraints in the task
allocation of a surveillance mission. [Sun et al. (2019)]
solved the multi-agent coverage problem using distributed
SGA with the consideration of obstacles and the curvature
of submodularity. The approximation approach is also ap-
plied in many other areas, such as search and localisation
[Ding and Castanón (2017)], and sensor networks [Kumar
et al. (2017); Corah and Michael (2018)].
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However, a new challenge arises in the decentralised ar-
chitecture, which is the communicating complexity. UAVs
need to communicate their local information with each
other and make a consensus. Too many consensus steps
could cause inefficiency of the task allocation process.

Several works have considered handling the NP-hardness
of communication using the approximation approach. The
Consensus-Based Bundle Algorithm (CBBA) developed in
[Choi et al. (2009)] is one of the most widely accepted
decentralised task allocation algorithms. CBBA can re-
duce consensus steps hence relaxing the communicating
complexity by building task bundles. However, if any con-
flict appears, UAVs need to rebuild their bundles contin-
ually, which incurs increased computational complexity.
[Qu et al. (2019)] came up with an assumption of ad-
missible task sets. In this case, a large group of earth-
observing satellites could achieve an undiminished opti-
mality bound of the task allocation solution quality even
though only local information and communication were
available. The assumption is reasonable for homogeneous
and static agents but intractable to be applied directly for
general heterogeneous moving UAVs. Our previous work
[Li et al. (2019b)] proposed an efficient decentralised task
allocation algorithm DTTA that enabled parallel alloca-
tion by leveraging a decreasing threshold [Badanidiyuru
and Vondrák (2014); Buchbinder et al. (2016)]. DTTA
could reduce both computational and communicating com-
plexity significantly compared with decentralised SGA and
CBBA.

This paper extends DTTA by building task bundles based
on the decreasing threshold [Badanidiyuru and Vondrák
(2014); Buchbinder et al. (2016)]. The proposed algorithm,
Threshold Bundle-based Task Allocation (TBTA), can
further reduce consensus steps hence further releasing
communicating complexity compared with DTTA. In each
iteration of DTTA, each UAV select one qualified task
whose marginal value is no less than the current threshold
based on its local information then stops searching. While
in each iteration of TBTA, each UAV continues searching
after it finds one qualified task and adds this task to
its bundle until it cannot find any other qualified tasks.
Then, it coordinates with other UAVs with its task bundle
instead of one task. Therefore, during one consensus step,
more tasks could be allocated with TBTA than DTTA.

Moreover, in CBBA, the bundle will become invalid if the
first task of the bundle is removed because of the conflict
with other UAVs’ selections. Then, UAVs need to rebuild
their bundles with consideration of the tasks released from
the invalid bundles of previous iterations. On the contrary,
the bundle in TBTA is still valid even if the first task of
the bundle is removed. This is because, if a task is removed
from the bundle, the marginal values of the following tasks
in this bundle will not decrease according to the feature of
submodularity. Thus, all tasks in the bundles are allocated
to UAVs during this iteration. No task will remain to the
next iteration for reevaluation. Therefore, TBTA is more
efficient than CBBA.

The performance of the proposed algorithm TBTA is com-
pared with benchmark task allocation algorithms through
Monte-Carlo simulations of a multi-target surveillance
mission adopted from [Li et al. (2019a)]. Simulation results

indicate that TBTA achieves almost the same solution
quality with benchmark algorithms but spends the fewest
consensus steps. Moreover, TBTA and DTTA consume
much less running time and consensus steps than SGA
and CBBA. TBTA consumes fewer consensus steps but
slightly more running time than DTTA.

2. PRELIMINARIES

This section provides relevant definitions and concepts
that are related to the proposed task allocation algorithm.
These concepts can also be found in our previous work [Li
et al. (2019a)].

Definition 1. (Task Allocation). Task allocation refers to
allocating a group of tasks T to a group of UAVs A to
maximise the total value measured as

f(T ,A) =

|A|∑
a=1

fa(Ta), (1)

where fa is the objective function for UAV a, Ta is a
set that contains all the tasks allocated to UAV a. The
constraint is that one task can only be allocated to one
UAV but each UAV can take multiple tasks.

Definition 2. (Submodularity [Feldman et al. (2017)]) N
is a finite set. A real-valued set function f : 2N → R is
submodular if, for all X,Y ⊆ N ,

f(X) + f(Y ) ≥ f(X ∩ Y ) + f(X ∪ Y ).

Equivalently, for all A ⊆ B ⊆ N and u ∈ N\B,

f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B). (2)

Eqn. (2) is also known as the diminishing return which is
an important property of submodular functions. Specifi-
cally, the marginal value of a given element u will never
increase as more elements have already been selected.

Definition 3. (Marginal value [Feldman et al. (2017)]) For
a set function f : 2N → R, S ⊆ N and u ∈ N , define the
marginal value of f at S with respect to u as

∆f(u|S) := f(S ∪ {u})− f(S).

Definition 4. (Monotonicity [Feldman et al. (2017)]) A
set function f : 2N → R is monotone if, for every
A ⊆ B ⊆ N , f(A) ≤ f(B). And f is non-monotone if
it is not monotone.

The objective functions considered in this paper are nor-
malised (i.e. f(∅) = 0), non-negative (i.e. f(S) ≥ 0 for all
S ⊆ N ), monotone, and submodular.

Definition 5. (Matroid [Badanidiyuru and Vondrák (2014)])
A matroid is a pair M = (N , I) where N is a finite set
and I ⊆ 2N is a collection of independent sets, satisfying:

• ∅ ∈ I
• A ⊆ B,B ∈ I ⇒ A ∈ I
• A,B ∈ I, |A| < |B| ⇒ ∃ b ∈ B\A such that A ∪
{b} ∈ I.

Specifically, the matroid constraints consist of uniform
matroid constraint and partition matroid constraint. The
uniform matroid constraint is also named as cardinality
constraint which is a special case of matroid constraint.
In cardinality constraints, any subset S ⊆ N satisfying
|S| ≤ k is independent. Partition matroid constraint
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means that a subset S can contain at most a certain
number of elements from each partition.

According to Definition 1, at most one task-UAV pair from
the task-UAV pairs that are related to this specific task
can be selected. If all task-UAV pairs are considered as a
ground set (i.e. N := T ×A) and each task-UAV pair as an
element of the ground set (i.e. uj,a := j×a ∀j ∈ T , a ∈ A),
the task allocation problem in this paper can be handled as
submodular maximisation subject to a partition matroid
constraint.

3. ALGORITHM AND ANALYSIS

This section describes and analyses the proposed decen-
tralised task allocation algorithm TBTA.

3.1 Algorithms

The proposed algorithm TBTA, which is presented in
Algorithm 3, mainly has three phases, i.e., initialisation
phase, bundle construction phase, and bundle coordination
phase. The bundle construction phase and the bundle coor-
dination phase are described as subfunctions in Algorithm
1 and Algorithm 2, respectively.

Algorithm 1 BuildBundle for UAV a

Input: fa : 2T → R≥0,Na, Ta, θ
Output: Ba
1: Ba ← ∅
2: for j ∈ Na do
3: if ∆fa(j|Ta ⊕ Ba) ≥ θ then
4: Ba ← Ba ⊕ j
5: end if
6: end for
7: return Ba

Algorithm 2 BundleCoor for UAV a

Input: a, Ta,Ba
Output: Ta, J
1: J ← ∅
2: Send Ba to all UAVs i ∈ A.
3: Receive Bi from all UAVs i ∈ A.
4: while ∃Bi 6= ∅ do
5: for i ∈ A do
6: if Bi 6= ∅ then
7: if Bi[0] /∈ J then
8: Ti ← Ti ⊕ Bi[0]
9: J ← J ⊕ Bi[0]

10: end if
11: Bi ← Bi\{Bi[0]}
12: end if
13: end for
14: end while
15: return Ta, J
// Bi[0] is the first element of the bundle Bi

In the initialisation phase (Algorithm 3, lines 1 ∼ 4), UAV
a conducts preparatory works. UAV a searches the task
ground set and finds the locally largest marginal value
ωmaxa . Then it makes a consensus with all other UAVs
through the MaxCons function to find the globally largest
marginal value ωmaxa∗ (stored as d) and set it as the initial

Algorithm 3 decentralised TBTA for UAV a

Input: fa : 2T → R≥0, T ,A, ε
Output: A set Ta ⊆ T
1: Ta ← ∅, Na ← T
2: ωmaxa ← max

ja∈Na

∆fa(ja|Ta)

3: a∗, ωmaxa∗ ←MaxCons(a, ωmaxa )
4: d← ωmaxa∗ , θ ← d, r ← |T |
5: while θ ≥ ε

rd do
6: Ba ← BuildBundle(fa,Na, Ta, θ)
7: Ta, J ← BundleCoor(a, Ta,Ba)
8: if J 6= ∅ then
9: Na ← Na\J

10: else
11: θ ← (1− ε)θ
12: end if
13: end while
14: return Ta

value of the threshold θ. The threshold value is decreasing
overtime. The terminal value of the threshold is set as ε

rd,
where ε ∈ (0, 1) is the threshold decreasing parameter, r
is the number of tasks.

The function MaxCons in Algorithm 3 is the maxi-
mum consensus function. UAV a sends the locally largest
marginal value ω∗a together with the corresponding UAV
id a to all other UAVs. Meanwhile, this UAV also receives
this kind of information from all other UAVs. After UAV a
has gathered the information from all other UAVs, it will
find the globally largest marginal value ωmaxa∗ . It is proved
that MaxCons can reach a consensus within finite time
[Giannini et al. (2016)]. Note that, each UAV uses this
function only for one time.

In the bundle construction phase, UAV a builds its bundle
given the current threshold θ. The notation ⊕ represents
the operation of appending the right element to the end of
the left element. UAV a evaluates all the remaining tasks
in Na and appends the qualified tasks to its task bundle
Ba one by one. A qualified task means that the marginal
value of this task is no less than the current threshold
θ. Note that the marginal value is calculated given the
combination of Ta and the updated Ba.

In the bundle coordination phase, UAVs coordinate with
each other using their bundles and allocate tasks. The
notation J is an auxiliary set that contains all the tasks
that have already been allocated to UAVs. UAVs check the
first tasks from all non-empty bundles. If the task Bi[0] is
not in J , then append it to the corresponding Ta and J ,
respectively (Algorithm 2 lines 7 ∼ 10). Here, Bi[0] is the
first element of the bundle Bi for UAV a. Then, remove this
task from the bundle Bi (Algorithm 2 line 11). All tasks
that appear in this phase have marginal values no less
than the current threshold. At the end of this phase, all of
them will be allocated, which enables parallel allocation.
After the bundle coordination, UAV a removes the tasks
appearing in J from its remaining task set Na if J is
not empty (Algorithm 3 lines 8 ∼ 9). J = ∅ means that
no UAV can build a bundle under the current threshold,
which triggers the decrease of the threshold (Algorithm 3
lines 10 ∼ 11).
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3.2 Analysis

TBTA requires a fewer number of function evaluations,
thus consumes less running time, Compared with CBBA.
There are two main reasons.

On the one hand, TBTA builds bundles differently with
CBBA. In CBBA, each UAV needs to evaluate all the
remaining tasks to find the best task that can provide
the largest marginal value. After adding this task to its
bundle, this UAV evaluates all the remaining tasks again
to find the next best task given its current selection and
task bundle. This means that UAVs with CBBA need to
reevaluate all the remaining tasks every time before they
add a new task into their bundles. However, in TBTA,
UAVs evaluate all the remaining tasks only for one round
to build their bundles. Once a UAV finds a qualified task,
it will add this task to its bundle directly.

On the other hand, the bundles in CBBA could become
invalid during each consensus step, but the bundles in
TBTA are always valid. As mentioned in [Choi et al.
(2009)], the bundles are built based on the largest marginal
values. If one task is removed from the bundle because
of the conflict with other UAVs, the following tasks in
this bundle will become invalid. Then, this UAV needs to
rebuild its bundle. However, in TBTA, the marginal values
of the following tasks are still no less than the current
threshold because of submodularity. Therefore, TBTA
requires less number of objective function evaluations than
CBBA.

TBTA has the same theoretical performance guarantee
with DTTA in terms of both solution quality and com-
putational complexity. In both DTTA and TBTA, UAVs
evaluate all the remaining tasks only for one round to find
all qualified tasks given each threshold. Therefore, TBTA
and DTTA achieve the same theoretical optimality guar-
antee and consume the same number of objective function
evaluations in the worst case.

The theoretical performance of TBTA is summarised in
Theorem 1.

Theorem 1. The proposed algorithm TBTA achieves an
optimality bound of at least 1/2− ε for maximising mono-
tone submodular objective functions with computational
complexity of O( rε ln r

ε ) for each UAV, where r = |T | is the
number of tasks, ε is the threshold decreasing parameter.

Since TBTA has the same theoretical performance with
DTTA, please refer to our previous work [Li et al. (2019b)]
for the proof of Theorem 1.

4. NUMERICAL SIMULATIONS

This section validates the proposed task allocation algo-
rithm TBTA via numerical simulations. The simulation
scenario is adopted from [Segui-Gasco et al. (2015)] in the
monotone case, which is a multi-target surveillance mission
using multiple heterogeneous UAVs.

In the simulation scenario, it is assumed that a group of
UAVs a ∈ A equipped with different sensors automatically
carry out the surveillance mission of a set of heterogeneous
task points that are randomly located on a L×L 2-D space.

Here, different sensors can represent different cameras with
different technical specifics.

The surveillance mission aims to maximise the reward that
is measured by an objective function while minimising
the calculation time and communication burden. The
constraint is that one task can only be allocated to one
UAV.

The objective function of the surveillance mission is a
coverage-type function. Different tasks are marked with
an task importance factor vj according to their values.
Different sensors are suitable for different tasks. The
task-UAV fitness factor maj represents the match fitness
between the abilities of UAV a and the requirements of
task j. The utility of the tasks j ∈ Ta is measured as the
sum of the product of maj and vj . For the tasks j /∈ Ta, we
add an exponentially decaying term related to the shortest
distance between task j and tasks in Ta which is denoted
as dmin(j, Ta). When UAV a is carrying out a task at the
location of this task, it can partially serve another one
nearby. The objective function for UAV a is

fa(Ta) =
∑
j∈Ta

majvj +
∑
j /∈Ta

majvje
− dmin(j,Ta)

d0 , (3)

where d0 is a reference distance. The overall objective func-
tion of the surveillance mission is obtained by combining
Eqns. (3) and (1):

f(T ,A) =
∑
a∈A

∑
j∈Ta

majvj +
∑
j /∈Ta

majvje
− dmin(j,Ta)

d0

 .
We conduct Monte-Carlo simulations to validate the pro-
posed algorithm and compare its performance with bench-
mark decentralised task allocation algorithms. In the sim-
ulations, 50 tasks and varying numbers of UAVs are ran-
domly located on a L × L 2-D space, where L = 10km.
The numbers of UAVs are increased from 4 to 20, denoted
by Na. The importance factors of tasks are chosen from
uniformly random numbers vj ∈ [0.6, 1.0]. Each task-
UAV fitness factor is set as a uniformly random number
maj ∈ [0.5, 1.0]. Set the threshold decreasing parameter
ε = 0.1, the reference distance as d0 = 1km. The running
time is measured as the number of objective function
evaluations, which is independent on the computer status.
We run 100 rounds of simulations and get the average
values. The performances of SGA, CBBA, DTTA, and
TBTA are compared with SGA as a baseline.

The Monte-Carlo simulation results are demonstrated in
Fig. 1. According to Fig. 1 (a), it is clear that all these
four algorithms achieve almost the same solution quality.
Overall, TBTA performs the best in terms of reducing
communicating complexity. CBBA can effectively reduce
consensus steps, but it consumes obviously increased run-
ning time compared with SGA. DTTA and TBTA can
significantly reduce both running time and the number of
consensus steps. Fig. 1 (f) shows that, when there are 20
UAVs, TBTA only consume 36.8% of consensus steps and
38% of running time compared with SGA. Note that, as
the number of UAVs goes up, the percentages of function
values achieved by DTTA and TBTA almost stay stable,
but the percentages of running time and consensus steps
are decreasing with SGA as a baseline. This means that
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(a) Function values (b) Running time

(c) Consensus steps (d) Consensus steps

(e) Ratio comparison Na = 4 (f) Ratio comparison Na = 20

Fig. 1. Performance comparison of different task allocation algorithms (Na is the number of agents)

the performances of DTTA and TBTA are getting better
as the scale of the task allocation problem increases.

Comparing TBTA with DTTA, it is clear that TBTA
can further reduce the number of consensus steps based
on DTTA. Fig. 1 (d), (e), and (f) indicate that TBTA
consumes fewer numbers of consensus steps than DTTA,
although it spends a bit more running time. As the number
of UAVs increases, the differences in the performances
of DTTA and TBTA become smaller. At a high ratio of
the number of tasks versus the number of UAVs, TBTA
obviously outperforms other algorithms in terms of releas-
ing communicating burden. Additionally, the numbers of
consensus steps consumed by DTTA and TBTA decrease

as the number of UAVs increases. The reason is that,
more tasks can be allocated during each consensus step
as more UAVs participating. This is a beneficial feature
in the large-scale decentralise task allocation problems
where reducing communicating complexity is one of the
significant challenges.

5. CONCLUSION

This paper proposed a decentralised algorithm, which
is named as Threshold Bundle-based Task Allocation
(TBTA), for the large-scale task allocation problems. The
performance of the proposed algorithm was analysed the-
oretically and validated through Monte-Carlo simulations.
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TBTA could not only relax the computational complexity
but also reduce the communicating complexity for the de-
centralised UAV systems compared with benchmark algo-
rithms. Simulation results revealed that TBTA consumed
the fewest number of consensus steps.

One future work could be applying the lazy strategy that
was developed in our previous work [Li et al. (2019b)]
to further reduce the running time and the number of
consensus steps. Another future work could be validating
the proposed algorithm with physical experiments using
multiple drones.
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