
Controlled microparticle separation using
whispering gallery mode forces ?

Yuhe Chang ∗ Oleksiy Svitelskiy ∗∗ Kamil L. Ekinci ∗,∗∗∗

Sean B. Andersson ∗,∗∗∗∗

∗Department of Mechanical Engineering, Boston University, Boston,
MA 02215 USA (e-mail: yuhec@bu.edu).

∗∗Department of Physics, Gordon College, Wenham, MA 01984 USA
(e-mail: oleksiy.svitelskiy@gordon.edu))

∗∗∗Division of Materials Science and Engineering, and the Photonics
Center, Boston University, Boston, Massachusetts 02215, USA

(e-mail: ekinci@bu.edu)
∗∗∗∗Division of Systems Engineering, Boston University, Boston, MA

02215 USA (e-mail: sanderss@bu.edu)

Abstract: There is a wide variety of applications that require sorting and separation of micro-
particles from a large cluster of similar objects. Existing methods can distinguish micro-particles
by their bulk properties, such as their size, density, and electric polarizability. These methods,
however, are not selective with respect to the individual geometry of the particles. In this work,
we focus on the use of a resonance effect between a microparticle and an evanescent light field
known as the Whispering Gallery Mode (WGM) force. The WGM force is highly sensitive to the
radius of the particle and is both controllable and tunable. In this paper, we explore through
simulation the design of a WGM-based device for micro-particle separation. In this device,
particles flow in through an inlet and are carried over two actuation regions given by waveguides
carrying laser light to generate the evanescent field. Particles are observed by a camera, allowing
for feedback control on the power of the lasers. While the basic control structure is simple, there
are several challenges, including unknown disturbances to the fluid flow, limited laser power,
and uni-directional control over each actuation region. We combine Expectation Maximization
with Kalman filtering to both estimate the unknown disturbance and filter the measurements
into a position estimate. We then develop simple hybrid controllers and compare them to the
ideal setting (without any constraints) based on a Linear–Quadratic–Gaussian (LQG) control
approach.

Keywords: Optical Implement, Optical Nonlinearities, Optical stochastic control, LQG control
method

1. INTRODUCTION

Microparticle separation refers to the general problem of
selectively moving individual micrometer-sized particles
based on a variety of physical properties. Applications for
these techniques are widespread and can be found in, e.g.,
microbiology (Sajeesh and Sen, 2014; Rieseberg, 2001; Lin
and Lee, 2008), pharmacology in (Toner and Irimia, 2005),
biomedical engineering (Vaziri and Gopinath, 2008; Suresh
et al., 2005), the electronics industry (Whitesides, 2006;
Manz et al., 1992), where they are applied to sort differ-
ent micron-scale particles such as cells, chromosome and
chemical ions. Generally, separation and sorting techniques
can be broadly categorized into either passive or active
methods. (Zhu and Trung Nguyen, 2010; Sajeesh and Sen,
2014). Passive methods mainly rely on the changes in
hydrodynamic effects induced by the different physical
properties of the particles such as the channel geometry
and inherent hydrodynamic forces (Bhagat et al., 2010).

? This work was supported in part by NSF through grant CMMI-
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These approaches do not require external forces and can
be useful where there are strict power requirements. Active
methods require an external actuation from, e.g., an elec-
trical, magnetic, or optical field, for imparting a selective
force (Kersaudy-Kerhoas et al., 2008). These techniques
have relatively higher sorting sensitivity than passive ap-
proaches. In this work, we focus on an active method to
sort based on the geometry of the particle using an optical
interaction known as a Whispering Gallery Mode (WGM).

The WGM interaction is related to but distinct from the
better known method of optical tweezers. Optical tweezers
use a field created by a focused beam of coherent light
to generate an optical force that can be used to hold
and manipulate meso-scale objects (Ashkin et al., 1986;
Neuman and Block, 2004; Neuman and Nagy, 2008; Molloy
and Padgett, 2002) and have found broad application in
biology, and the physical sciences (Curtis et al., 2002;
Grier, 1997; Astratov et al., 2013). They are not inherently
sensitive to particle geometry, however, and are thus
limited in the precision with which they can select by
geometric features such as radius or perfectness of shape.
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The WGM is a resonance effect caused by an optical field
coupling into a cavity with a smooth structure (Strutt,
2011). The specific wavelength that resonates is a function
of both the geometry and the refractive index of the
particle and, with a sharp resonance, is very selective
with respect to that geometry. Previous work, including
some by one of the authors, (Li et al., 2013; Svitelskiy
et al., 2011), has shown that the WGM interaction can be
generated between a tapered optical fiber and micron-scale
beads, leading to directed motion of the particle along the
fiber, demonstrating that his effect can be used as the
basis for creating a highly selective microfluidic platform
for particle separation.

In this work, we explore the design of such a platform
from the control point of view. The essential idea is to
flow in beads of disperse sizes and, using the WGM effect,
control them to specific locations so they get collected in
bins. Among the challenges for control design is that the
laser power is limited and can only actuate in the direction
defined by the direction of propagation of the light field.
In addition, the beads are subject to both unknown
disturbances (due to variations in the fluid flow carrying
particles through the device) as well as random, Brownian
fluctuations (due to the size scale of the particles).

The remainder of this paper is organized as follows. We
begin in Sec. 2 with the necessary physical background
and description of the device setup and use this in Sec. 3
to develop a discrete-time state-space model of the particle
motion. To estimate the system state and the unknown
disturbance, we apply a Kalman filter and the Expectation
Maximization (EM) algorithm in Sec. 3.1 before turning to
control design in Sec. 3.2. There we consider both the ideal
setting of unlimited, bidirectional control as well as control
under the more realistic constraints of the device. The
approach is demonstrated through simulation in Sec. 4,
before providing concluding remarks in Sec. 5.

2. PROBLEM DESCRIPTION AND SYSTEM SETUP

The basic structure of a separation device based on the
WGM interaction is shown in Fig. 1. In this device, fluid
flows at a constant rate from the inlet to the output, carry-
ing particles of dispersing sizes through the system. These
particles pass over two laser waveguides, each carrying a
laser propagating in the direction shown. When a particle
of the right geometry is over a waveguide, it will feel a
force due to the WGM interaction. For simplicity, in the
remainder of this article, we limit the geometry considered
to spherical particles of different radii. The magnitude
of the optical force depends on both the wavelength and
the power of the laser. Because switching the direction of
the laser requires external optomechanical hardware, we
assume that the direction is fixed but that the wavelength
can be adjusted (to select a specific particle size) and
that the power can be varied (giving us a variable control
input). On the far side of the device is an array of catch
bins and the goal is to move beads of specific sizes into
specific bins.

When a particle is not over a waveguide it experiences
a force due to the fluid flow and, due to the micrometer
scale of the particle, a random Brownian fluctuation. As
illustrated in Fig. 1, the trajectory of the particle is broken

Fig. 1. Schematic of device for particle separation using
the WGM interaction.

down into five regimes. The particle first flows according to
the fluid motion, uncontrolled by any optical interaction.
Time t1 is defined by the moment the particle begins to
cross over the first waveguide. From t1 to t2 (defined by
when the particle leaves the first waveguide), a control
force, directed only to the left, can be applied. At the time
t3 the particles move over the second waveguide and a force
can be applied until time t4, this time directed only to the
right. For ease of exposition, we assume that the distance
from the end of the second waveguide to the catch bins is
small enough to be ignored.

With the device structure established, we now develop the
dynamic model for the particle motion. We assume that
the velocity in the y direction remains constant, though
since the controls developed in Sec. 3.2 depend on the
observed location of the particle and not on time, this
assumption is not necessary. Motion in the lateral (x)
direction is determined by the particle-fluid interaction.
The Reynolds number of this setup is given by

Re =
ρLv

η
, (1)

where ρ is the density of the fluid flow, v is a typical
velocity of the particle in the fluid, η is the dynamic
viscosity of the fluid, and L is a typical length scale in
the problem (White, 2011). Assuming the device will be
operated using water at room temperature and with beads
on the order of 10 µm in diameter, the Reynolds number is
in the range of 10−4 ∼ 10−5. This implies we are operating
in the Stokes’ region where inertia can be ignored. The
drag force experienced by the particle is then given by

FDrag = −γv = −6πηrv, (2)

where r is the radius of the particle, η is the dynamic
viscosity, and v is the flow velocity relative to the object.
Finally, the fluid flow will not be oriented perfectly from
inlet to outlet. We model this by including a disturbance
d. While in practice this disturbance will depend on both
the location of the particle in the device and details such as
particle size,, we simplify the situation here by assuming
it is constant (though unknown), leading to the lateral
dynamics

γẋ = Foptical + d+ w, (3)
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where w is the process noise arising thermal fluctuations
in the fluid system and Foptical is the applied optical force.
This optical force is generated by the resonant coupling of
the evanescent optical field generated by the laser passing
through the light guide and the particle; it is this resonance
that yields the strong sensitivity to particle shape. For
a spherical particle of a radius matching a resonance,
the force depends on the laser power. Details on this
interaction can be found Li et al. (2013); for our purposes
it is enough to assume it is simply a controllable, bounded
input.

To provide feedback, the device can be observed using a
camera and a measurement of the position of the beads
extracted using image processing algorithms (Wang et al.,
2017). Because these measurements happen at discrete
intervals and provide direct, though noisy, measurements
of position, we can abstract the system to the discrete-time
model

xk+1 = xk + buk + d+ wk, (4a)

yk = xk + vk, (4b)

where wk is Gaussian white noise with wk ∼ N(0, σ2
w), vk

is Gaussian white noise with vk ∼ N(0, σ2
v), d is constant

(but unknown), and b is selected to scale the control input
so that uk ∈ U(k) where

U(k) =


[0, 1], ∆L1 < xk < ∆L1 + l,

[−1, 0], ∆L1 + l + ∆L2 < xk <

∆L1 + 2l + ∆L2,

0, otherwise.

Note that in general b may be different for each waveguide;
this is a trivial modification. For simplicity of notation, we
assume b is constant.

3. ESTIMATOR AND CONTROLLER DESIGN

In this section, we describe two different controllers to
move beads to a desired lateral position. The first ignores
all constraints and applies the Linear-Quadratic-Gaussian
formulation to establish best-case performance and pro-
vide a point of comparison for the second controller. This
second controller takes a practical point of view and re-
spects the constraints, in particular the single-sided nature
of the control.

In either case, a Kalman filter is used to estimate the state
from the noisy measurements. In addition, as described
in Sec. 3.1, either approach begins with a period where
the bead is simply observed and the unknown disturbance
d estimated using the Expectation-Maximization (EM)
algorithm (Dempster et al., 1977).

3.1 Filtering and disturbance estimation

It is well-known that the optimal (both unbiased and
minimal variance) estimator for systems of the form (4a) is
a Kalman filter (Grewal and Andrews, 2014). However, to
apply the Kalman filter requires knowledge of all system
parameters (in this case b and the noise covariances σ2

w and
σ2
v , as well as all external inputs, including the disturbance
d). Since the disturbance is not known, we use the time
period from the beginning until the particle passes over
the first waveguide (t0 to t1) to jointly filter the state and
estimate the disturbance by applying the EM algorithm.

The EM algorithm is an iterative technique for finding
Maximum Likelihood (ML) estimates of a parameter vec-
tor. The current parameter estimate is used together with
a hidden variable (here taken to be the state xk) to form
an approximation to the log-likelihood function of the
parameter given the measurements. This approximation
is optimized to get the next ML estimate and the process
is iterated. Details on the approach can be found in, e.g.,
(Gibson and Ninness, 2005).

In the context of the linear system in (4a), the EM algo-
rithm takes the form of cycling between running a Kalman
filter on the data giving the current estimate of the distur-
bance followed by a smoother to produce distributions of
the state given all the data. An estimate of the disturbance
is then given by maximizing an approximation of the joint
likelihood function over the state and observations. (Note
that tor simplicity, in this work we omitted the smoother
and worked only with the filtered state.)

The Kalman filter is a two-stage algorithm consisting of
a prediction step and an update step. The prediction is
given by

Prediction: (5a)

x̂k+1|k = x̂k|k + buk + d̂, (5b)

Pk+1|k = P̂k|k + σ2
w, (5c)

Update: (5d)

x̂k+1|k+1 = x̂k+1|k +Kk+1

(
yk − x̂k+1|k

)
, (5e)

Pk+1|k+1 = Pk+1|k(1−Kk+1)2 +K2
k+1σ

2
v , (5f)

Kk =
Pk+1|k

Pk+1|k + σ2
v

, (5g)

where x̂k+1|k is the expected value of the state at time
k + 1 given the measurements up to time k, Pk+1|k is

the corresponding covariance, and d̂ is the estimate of the
disturbance.

To estimate the disturbance we use the sample mean of its
value, given by

d̂ =
1

N

N∑
k=1

(x̂k+1|k − x̂k|k − buk), N = 1, 2, 3, . . . (6)

Note that while here we only estimate the disturbance d,
extending to estimate the noise parameters (σ2

w and σ2
v) is

straightforward.

3.2 LQG control

In the absence of any constraints, a natural choice of
controller is the Linear-Quadratic-Gaussian (LQG) for-
mulation. The LQG controller combines a Kalman filter
(to estimate the state) with a Linear Quadratic Regular
(LQR) feedback controller. LQR is defined by the opti-
mization problem

min
u
‖x‖M1 + ‖u‖2M2

, (7a)

subject to xk+1 = xk + buk + wk (7b)

where x and u are the state and control signals and ‖ · ‖Q
is a weighted l2 norm. The optimal solution takes the form
of a state feedback controller with
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(a) Typical run (b) Position distribution. (c) Positions

Fig. 2. LQG control. (a) The trajectory of a typical run (with disturbance d = 0.0084. (b) Particle position distribution
over 400 sample runs. (c) Box plots of particle position at the start (t1) and end (t2) of the first actuation region
and at the start (t3) and end (t4) of the second actuation region.

uk = −KLQRxk + r̃, (8a)

KLQR = (S +M2)
−1
S, (8b)

where S is the solution to the discrete-time algebraic
Riccati equation and r̃ is chosen to stabilize the particle
at the desired location. This is then combined with the
Kalman filter by replacing the true state in (8) with the
current estimate x̂.

One appealing feature of the LQG framework is that, as-
suming the initial particle location is Gaussian-distributed,
the distribution on the state remains Gaussian at all times
with a variance that grows when not under LQG control
(in the intervals [t0, t1) and [t2, t3)) and is reduced towards
its minimum when under control (in the intervals [t1, t2)
and [t3, t4)).

3.3 Practical control

In practice, the applied control force is one-sided and
bounded and thus the LQG controller described above
cannot be used. We develop here an alternative controller
that seeks to constantly correct for the error as much as
possible within one time step, subject to the limitations of
the actuators. This control law is

uk =


0, t ∈ [0, t1)

or [t2, t3),

max
(
min

(
1, xd − x̂k|k − d, 0

))
, t ∈ [t1, t2),

min
(
max

(
−1, xd − x̂k|k − d, 0

))
, t ∈ [t3, t4)

(9)

As (9) represents a nonlinear control law, the resulting
distribution of the state will no longer be Gaussian. In
particular, due to the one-sided nature of the control, it is
expected that the distributions at time t2 and t4 will have
heavy tails in the uncontrolled direction.

4. SIMULATIONS AND RESULTS

To demonstrate our approach we performed 400 simulation
runs. In each run, the desired location was set to xd = 20
(arbitrary units of length), the process noise covariance
was set to σ2

w = 0.01 (length2), and the measurement
noise to σ2

v = 0.04 (length2). The disturbance for each run
was selected at random from a uniform distribution on

[0, 10−2], selected based on intuition that the disturbance
should be small relative to the achievable control force.
The total time was set to 4000 time steps (in arbitrary
time units) and the times ti evenly placed over that
time interval. The error of the EM-based estimate of the
disturbance using measurements from the first 1000 steps
was approximately −2.02 × 10−6 ± 3.30 × 10−4 (length).
The initial state x0 is set to follow a normal distribution
with zero mean and a covariance of 0.25 (length2).

4.1 LQG controller

A typical run under the LQG controller is shown in
Fig. 2a under a drift value of 0.0084. The upper plot shows
the filtered state estimate (red) and the desired location
(blue) while the bottom plot shows the estimation error
over the run. The LQG controller engages at time 1000,
immediately bringing the particle to the target position
and holds it there until it leaves the actuation region
at time 2000. Drift (with a small amount of Brownian
motion) then drives it until it reaches the second actuation
region at time 3000 where the controller once again snaps
the particle back to the desired location and holds it there
until the end.

The results of all 400 runs are shown as histograms in
Fig 2b. These histograms clearly show the Gaussian nature
of the distribution at every point in time. The distribution
is tightly centered on the desired location during both the
actuation periods but then drifts (due to the disturbance)
and grows in variance (due to the process noise) during the
non-actuated periods. This is highlighted in the box plots
in Fig. 2c which shows the particle distributions at the
key points t1 (start of the first actuation region), t2 (end
of that region), t3 (start of the second actuation region)
and t4 (end of that region).

4.2 Practical Control

A typical run under the practical controller of (9) with a
disturbance value of 0.0045 is shown in Fig. 3a. As with
the LQG controller, the particle is brought right to the
desired location when the first actuation region is reached.
However, due to the one-sided nature of the control, the
particle is now free to wander to lateral positions greater
than xd. In essence, the control enforces a lower boundary
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(a) Typical run (b) Position distribution. (c) Positions

Fig. 3. Practical control. (a) The trajectory of a typical run (with disturbance d = 0.0045. (b) Particle position
distribution over 400 sample runs. (c) Box plots of particle position at the start (t1) and end (t2) of the first
actuation region and at the start (t3) and end (t4) of the second actuation region.

on the particle which is otherwise free to drift and diffuse.
Similarly, when the particle reaches the second actuation
region, the control enforces an upper boundary. Note that
due to the sign of the drift, the particle is essentially pinned
at the desired location during the second actuation region.

The results of all 400 runs are shown as histograms in
Fig. 3a. Until time t = t1 = 1000 the particle distribution
remains Gaussian. Since the drift due to the disturbance
dominates, after time t1, the distribution quickly drifts
away from the lower boundary and begins to spread due
to the process noise, maintaining its primarily Gaussian
shape. Note that if the process noise dominated, the impo-
sition of the lower boundary would lead to a non-Gaussian
distribution. As with the LQG setting, the second actua-
tion region essentially pins the particle against the upper
boundary. While the particle is free to wander below due
to the one-sided nature of the control, the positive drift
eliminates much of that motion.

4.3 Discussion

These results show that the practical controller, despite
its limitations, can be an effective approach for particle
steering. In any device, it will be important to minimize
the distance between the actuation regions and the total
transition time to minimize the effect of the process noise.

A typical length scale of these devices is on the order of
microns, implying that the process noise variance consid-
ered was on the order of 0.01 µm2. In practice, this value
can be estimated from

σ2
w = 2D∆t,

where ∆t is the time step and D is the diffusion coefficient,
given by the Stokes-Einstein relation,

D =
kBT

6πηr
,

where kB is the Boltzmann constant, η is the dynamic
viscosity, and r is the radius of the particle. Given a
particle size on the order of 10 µm, operating in the water,
and a time step on the order of 10 ms, a typical process
noise variance is on the order of 10−5 µm2. The primary
noise source is then the observation noise from the camera-
based localization and the practical control is likely to be
effective.

While practical experiments are likely to involve small σ2
w,

the limitations of the practical control are more easily
viewed with larger process noise. To demonstrate this we
ran additional simulations with σ2

n = 0.25 (with all other
parameters unchanged). A typical run is shown in Fig. 4b
where the process noise clearly dominates. The “pinning”
action of the one-sided control is best seen in the last
actuation region.

The histograms over all 400 simulation runs are shown in
Fig. 4b. The large process noise leads to the very rapid
dispersion of the particles when uncontrolled and a clearly
non-Gaussian distribution over the last 1000 time steps.
This is highlighted in Fig. 4c where the box plots at the
same four key times are shown.

5. CONCLUSION

This paper described and investigated a possible device for
the separation of micro-scale particles based on geometric
properties using Whispering Gallery Mode forces. A prac-
tical control scheme was introduced and its performance
compared through simulation to an ideal setting based on
an LQG controller.

Ongoing and future work involves supporting these simu-
lation studies with experimental data to verify simulation
parameters and then to demonstrate the controller in a
physical setting.

REFERENCES

Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., and Chu, S.
(1986). Observation of a single-beam gradient force
optical trap for dielectric particles. Opt. Lett., 11(5),
288–290.

Astratov, V.N., Li, Y., Svitelskiy, O.V., Maslov, A.V.,
Bakunov, M.I., Carnegie, D., and Rafailov, E. (2013).
Microspherical photonics: Ultra-high resonant propul-
sion forces. Opt. Photon. News, 24(12), 40–40. doi:10.
1364/OPN.24.12.000040. URL http://www.osa-opn.
org/abstract.cfm?URI=opn-24-12-40.

Bhagat, A.A.S., Bow, H., Hou, H.W., Tan, S.J., Han, J.,
and Lim, C.T. (2010). Microfluidics for cell separation.
Medical & Biological Engineering & Computing, 48(10),
999–1014.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2091



(a) Typical run (b) Position distribution. (c) Positions

Fig. 4. Practical control with large process noise. (a) The trajectory of a typical run (with disturbance d = 0.0035. (b)
Particle position distribution over 400 sample runs. (c) Box plots of particle position at the start (t1) and end (t2)
of the first actuation region and at the start (t3) and end (t4) of the second actuation region.

Curtis, J.E., Koss, B.A., and Grier, D.G. (2002). Dynamic
holographic optical tweezers. Optics Communications,
207(1), 169 – 175.

Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977).
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal statistical Society, 39(1),
1–38.

Gibson, S. and Ninness, B. (2005). Robust maximum-
likelihood estimation of multivariable dynamic systems.
Automatica, 41(10), 1667–1682.

Grewal, M.S. and Andrews, A.P. (2014). Kalman Filtering:
Theory and Practice with MATLAB. Wiley-IEEE Press,
4th edition.

Grier, D.G. (1997). Optical tweezers in colloid and inter-
face science. Current Opinion in Colloid And Interface
Science, 2(3), 264 – 270.

Kersaudy-Kerhoas, M., Dhariwal, R., and Desmulliez, M.
(2008). Recent advances in microparticle continuous
separation. IET Nanobiotechnology, 2, 1–13.

Li, Y., Maslov, A.V., Svitelskiy, O.V., Carnegie, D.,
Rafailov, E., and Astratov, V.N. (2013). Giant resonant
light forces in microspherical photonics. In CLEO: 2013,
CW3F.6. Optical Society of America.

Lin, Y.H. and Lee, G.B. (2008). Optically induced flow
cytometry for continuous microparticle counting and
sorting. Biosensors and Bioelectronics, 24(4), 572 – 578.

Manz, A., Harrison, D., Verpoorte, E.M., Fettinger, J.C.,
Paulus, A., Lüdi, H., and Widmer, H.M. (1992). Planar
chips technology for miniaturization and integration of
separation techniques into monitoring systems: Capil-
lary electrophoresis on a chip. Journal of Chromatogra-
phy A, 593(1), 253 – 258.

Molloy, J.E. and Padgett, M.J. (2002). Lights, action:
Optical tweezers. Contemporary Physics, 43(4), 241–
258.

Neuman, K.C. and Block, S.M. (2004). Optical trapping.
Review of Scientific Instruments, 75(9), 2787–2809.

Neuman, K.C. and Nagy, A. (2008). Single-molecule force
spectroscopy: Optical tweezers, magnetic tweezers and
atomic force microscopy.

Rieseberg, L.H. (2001). Chromosomal rearrangements and
speciation. Trends in Ecology and Evolution, 16(7), 351
– 358.

Sajeesh, P. and Sen, A.K. (2014). Particle separation and
sorting in microfluidic devices: a review. Microfluidics
and Nanofluidics, 17(1), 1–52.

Strutt, J.W. (2011). The Theory of Sound, volume 1
of Cambridge Library Collection - Physical Sciences.
Cambridge University Press.

Suresh, S., Spatz, J., Mills, J., Micoulet, A., Dao, M.,
Lim, C., Beil, M., and Seufferlein, T. (2005). Con-
nections between single-cell biomechanics and human
disease states: gastrointestinal cancer and malaria. Acta
Biomaterialia, 1(1), 15 – 30.

Svitelskiy, O., Sun, D., Darafsheh, A., Sumetsky, M.,
Lupu, A., Tchernycheva, M., and Astratov, V. (2011).
Characterization of high index microsphere resonators
in fiber-integrated microfluidic platforms. Proc SPIE,
7913, 791314.

Toner, M. and Irimia, D. (2005). Blood-on-a-chip. Annual
Review of Biomedical Engineering, 7(1), 77–103.

Vaziri, A. and Gopinath, A. (2008). Cell and biomolecular
mechanics in silico. Nature materials, 7, 15–23.

Wang, Y., Li, X., Bi, S., Zhu, X., and Liu, J. (2017).
3D micro-particle image modeling and its application in
measurement resolution investigation for visual sensing
based axial localzation in an optical microscope. Mea-
surement Science and Technology, 28.

White, F. (2011). Fluid Mechanics. McGraw-Hill series in
Mechanical Engineering. McGraw Hill.

Whitesides, G.M. (2006). The origins and the future of
microfluidics.

Zhu, G. and Trung Nguyen, N. (2010). Particle sorting
in microfluidic systems. Micro and Nanosystems, 2(3),
202–216.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2092


