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Abstract: A system is needed for monitoring stroke volume (SV) and cardiac output (CO)
in unstable patients which is non-additionally invasive, reproducible and reliable in a variety
of physiological states. This study evaluates SV estimation accuracy of a non-additionally
invasive pulse contour analysis method implemented using a 3-element Windkessel model. The
model lumps the properties of the arterial system into 3 parameters: characteristic impedance
of the proximal aorta (Z ), and resistance (R) and compliance (C ) of the systemic arteries.
Parameter products ZC and RC are dynamically identified from measured femoral arterial
pressure waveforms, and Z is a static parameter obtained by calibration. The accuracy of
the model is evaluated for a cohort of 9 liver transplant patients, using thermodilution as
a reference method. Data were obtained from Vital Data Bank (VitalDB). The study thus
provides independent assessment of a pulse contour analysis, proven in animal studies, in an
uncontrolled clinical environment. The model tracked trends in SV well over the course of the
surgery. However, the 95% range for percentage error was -88% to +53%, outside acceptable
limits of ±45%. Main areas contributing to error for the model include the changing extent of
reflected waves in the arterial system, dynamic response characteristics of fluid-filled pressure
catheters, and the assumption of fixed Z parameter. Further investigation is needed to consider
the contribution of these factors to SV estimation error by the model.
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1. INTRODUCTION

Stroke volume (SV) and cardiac output (CO) are impor-
tant metrics for hemodynamic management of unstable
patients, providing information on blood flow out of the
heart beat-by-beat and on average, respectively. SV and
CO measured in real-time are useful for evaluating patient
status and response to therapy and diagnosing and manag-
ing circulatory failure (Cecconi et al. (2014); Reuter et al.
(2003); Huygh et al. (2016); Luecke and Pelosi (2005);
Busse et al. (2013)). For intensive surgeries, such as liver
transplantation, monitoring of SV and CO is necessary and
invasive CO monitoring with a pulmonary artery catheter
is standard practice (Kashimutt (2017); Rudnick et al.
(2015)).

Further work is needed to develop a non-additionally inva-
sive monitoring system for SV or CO, which is reproducible
and reliable in a variety of physiological states (Mehta
and Arora (2014)). The clinical gold standard monitoring
method for CO, pulmonary artery indicator dilution, is
invasive and intensive (Grensemann (2018); Busse et al.
(2013)). Non-additionally invasive pulse contour analysis
methods use only an arterial waveform to estimate CO.
However, current clinically available non-additionally in-
vasive devices have insufficient accuracy for monitoring pa-
tients during liver transplantation (Rudnick et al. (2015)).

The pulse contour analysis model presented by Balmer
et al. (2020) does not require any additional patient
invasion or new external devices and was able to accurately
monitor SV across changing hemodynamic state for pig
trials. This study evaluates the SV estimation accuracy of
this model for 9 liver transplantation patients.

2. METHODS

2.1 Clinical Data Selection

The data were obtained from Vital Data Bank, a pub-
lic database of clinical time-series physiological signals
(Lee and Jung (2018)). These data are time synchro-
nized recordings from anaesthesia devices made using a
data acquisition system called Vital Recorder, collected
in accordance with relevant guidelines and regulations
of the Institutional Review Board of the Seoul National
University Hospital (study H-1408-101-605) and registered
at clinicaltrials.gov (NCT02914444).

Patients were selected from the data bank which had the
following signals continuously recorded:

• Femoral arterial blood pressure waveform (Pmea)
• Central venous blood pressure waveform (Pcvp)
• Electrocardiogram (ECG)
• SV from Vigilance II system (SVmea)
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Signals were recorded with a sampling frequency of 500
Hz, with the exception of SV, which was recorded at 0.5
Hz.

The Vigilance II system (Edwards Lifescience, Irvine, CA,
USA) uses a Swan Ganz catheter and pulmonary artery
thermodilution to measure SV and CO. This approach is
considered the clinical gold standard (Majumdar (2017)),
and provides a calibration and validation SV metric for
the model.

Of the patients with the required signal recordings, pa-
tients were selected with recordings of more than 5 hours
and without ECG abnormalities. The resulting study co-
hort consisted of 9 liver transplantation patients: 8 male,
1 female; ages ranging from 37 - 71 years; and weights
ranging between 59 - 78 kg.

To test the ability of the model to track changes in SV
over the course of the liver transplantation surgery, SV
was evaluated using the model at half hour intervals over
the course of the surgery. At each interval, a 1 minute
section (∼100 heartbeats) of physiological signals was used
as input to the pulse contour analysis model.

2.2 Signal Processing

Pmea was filtered to remove high frequency noise with
a low pass Hamming filter with a cut-off frequency and
transition width of 7 Hz and 5 Hz, respectively. The filtered
Pmea signal was used for all subsequent analysis. Pcvp did
not require filtering as only the average central venous
pressures for each beat (P cvp) are used in this analysis.

2.3 Pulse Contour Analysis Model

The 3-element windkessel model is a lumped parameter
model representing the cardiovascular system, shown in
Fig 1 (Westerhof et al. (2009, 2010); Frank (1990)). It
relates pressure and flow in the large arteries by describing
arterial properties using three parameters: characteristic
impedance (Z) represents resistance to flow into the wind-
kessel / reservoir; reservoir compliance (C); and resistance
(R) to flow leaving the reservoir and and emptying into
the venous system (Westerhof et al. (2009, 2010)). The
pressure of the downstream venous system is assumed to
be constant over a given beat, and equal to the average
central venous pressure during that beat, P cvp.

The model uses an arterial pressure waveform (Pmea) as
an input, in this case measured at the femoral artery.
Pmea is divided into a reservoir pressure component (Pres)
associated with filling of the reservoir, and an excess
pressure component (Pex):

Pmea(t) = Pex(t) + Pres(t) (1)

Pex represents the pressure drop caused by ejecting blood
into the systemic circulation and is thus is directly pro-
portional to flow into the circulation (Qin) for this model:

Qin(t) =
Pex(t)

Z
(2)

Assuming this lumped parameter model adequately de-
scribes arterial dynamic properties, Qin is equivalent to

Fig. 1. Schematic representation of the 3-element wind-
kessel model. Qin is flow into the reservoir, Pmea is a
measured arterial pressure waveform, Pres is the mod-
elled reservoir pressure, and P cvp is the downstream
pressure.

flow into the aorta (Wang et al. (2003)). Hence, SV (SVest)
is estimated by integrating Equation 2 over one beat:

SVest, n =
1

Z

t0,n+1∫
t0,n

Pex(τ) dτ (3)

where the nth beat begins at the Pmea waveform foot
t0,n and ends at the following waveform foot t0,n+1. The
pressure waveform foot, which marks the beginning of
systole, is detected using a shear transform algorithm
similar to in Balmer et al. (2018).

2.4 Model parameter identification

The reservoir pressure waveform (Pres) can be calculated
from Pmea by identifying parameter products RC and ZC.
These parameter products can be identified from Pmea on
a beat-wise basis as an optimization problem by enforcing
the condition there is no flow into the aorta during dias-
tole, i.e Pex = 0 in diastole (Balmer et al. (2020)). This pa-
rameter identification method requires accurate detection
of the beginning of diastole / end of systole, found using
a weighted second derivative algorithm (Balmer et al.
(2020)) identifying end systole as a region of downward
concavity in the Pmea waveform. End systole detection,
identification of RC and ZC, and calculation of Pres is
described in full by Balmer et al. (2020). Knowing Pres,
Equation 1 can then be used to calculate Pex.

To calculate beat-to-beat SV from Pex via Equation 3, the
remaining model parameter Z must be identified. Z is a
lumped parameter modelling the impedance to flow in the
large conduit arteries as a resistance. In this study, Z is set
to a single constant value, obtained through calibration.
The first 1 minute section is used as a control section for
calibration of Z against the validation SV metric (SVmea),
using a rearrangement of Equation 3:

Zcontrol, n =
1

SVmea, n

t0,n+1∫
t0,n

Pex(τ) dτ (4)

Zcontrol, n values for all beats of the control section are
averaged to reduce the impact of measurement noise,
obtaining a single value Zcontrol, that is then used for
calculation of SVest for all time sections.
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2.5 Analysis

SV error (ml) and percentage error (%) are calculated
using average SVest and SVmea for each 1 minute section.
The agreement between SVmea and SVest is assessed using
Bland-Altman analysis (Altman and Bland (1983)). In this
analysis, the median bias has been used as no assumption
is made about how error is distributed.

3. RESULTS

The percentage errors in SVest for each patient are com-
pared to SVmea in the Bland-Altman plot in Fig 2. The
distribution of percentage error is shown by the cumulative
distribution function (CDF) in Fig 3. Fig 4 shows changes
in model input pressures (Pmea and Pcvp), model output
SV (SVest), and validation SV (SVmea) over the duration
of the surgery for all patients in the study. Additionally,
some examples of Pmea and Pres waveform shapes are pro-
vided in Appendix A, demonstrating variability in pressure
waveform shape within and between patients.

Fig. 2. Bland Altman analysis showing agreement between
SVmea and SVest at each time section for each patient.

Fig. 3. CDF for absolute percentage error in SVest. The
red line indicates proportion of errors falling within
45% error.

4. DISCUSSION

4.1 Hemodynamic response during surgery

Across the duration of the surgeries and 9 patients, a
range of arterial pressures and SVs were observed, provid-
ing a sufficient test for whether the model can track SV
across changing hemodynamic state. Liver transplantation
surgery is very complex and leads to numerous hemody-
namic challenges, including hemorrhage, low systemic vas-
cular resistance states, and sudden preload change when
the liver is reperfused (Kashimutt (2017)). Hence, these
data provide a rigorous test for the method. A variety of
waveform shapes were observed across and within patients
as shown in Figs A.1 - A.3. These differences result from
variation in catheter location and arterial properties be-
tween patients, and changing patient state over the course
of the surgeries.

4.2 Stroke Volume estimation performance

The model generally shows reasonable trending ability to
track changes in SV over the course of the surgery, as
shown in Fig 4. However, SVest does fluctuate somewhat
more than SVmea, following fluctuations in pulse pressure
of Pmea. The error in SVest does not tend to grow over
the course of the surgery, suggesting the model would not
require / be improved by re-calibration.

Fig 2 shows percentage errors are large in magnitude with
95% of errors falling within a range of -87% to 52.6%. This
range is outside the ±45% criteria reported by Peyton and
Chong (2010), using thermodilution as a reference method.
Fig 3 shows just over 70% of errors fall within this range.

While the model generally tracked trends well, the agree-
ment of this pulse contour method with thermodilution did
not meet suggested criteria. There are a number of limi-
tations contributing to the higher error for these clinical
data than for previous validation from pig trials (Balmer
et al. (2020)).

4.3 Limitations

Insufficient dynamic response characteristics of fluid filled
pressure catheters, used to measure Pmea, can alter the
pressure waveform shape and render the waveform un-
suitable for pulse contour analysis (Grensemann (2018);
Gardner (1981)). For example, the Patient 7 pressure
waveform shows systolic overshoot at 2.5 and 5 hours (Fig
A.3), which occurs for under-damped pressure catheters.
This behaviour leads to higher systolic pressures and more
area under the Pex waveform, and thus overestimation of
SV by the model at these times (Fig 4). Moreover, over-
or under- damping is likely to obscure the region in which
end systole occurs, leading to inaccurate calculation of the
reservoir pressure waveform.

Insufficient dynamic response characteristics of fluid filled
pressure catheters is a crucial limitation of using pulse
contour analysis models clinically because approximately
30% of arterial waveforms in ICU are either over- or under-
damped, and detecting and correcting these requires regu-
lar operator intervention (Romagnoli et al. (2014); Gard-
ner (1981)). The effect of this issue could be mitigated
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Fig. 4. Femoral arterial mean pressure (Pmea), Pcvp, modelled SV (SVest), and validation SV (SVmea) over the duration
of the liver transplantation surgery for all patients. Pressure mean, maximum, and minimum values are calculated
beat-wise, and averaged over each 1 minute time section. SVs are averaged over each 1 minute time section.
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by estimating the dynamic response characteristics of the
catheter and correcting for them, or avoided altogether by
using solid-state pressure catheters, which do not have this
limitation.

The 3-element windkessel model does not account for
changing wave reflection behaviour of the arterial system.
The forward propagating pressure pulse wave is reflected
at numerous sites, and these backward reflected waves sum
with the forward wave to give the measured pressure signal
(Avolio et al. (2009)). Wave reflection can lead to a second
pressure peak in diastole, such as in the Pmea waveform for
Patient 4, at 2.5 hrs (Fig A.3). As the model assumes an
exponential decay in diastole, a large reflected wave leads
to a poor estimate of reservoir and excess pressure wave-
form shapes, and inaccurate identification of end systole.
While model calibration can account for errors due to wave
reflection to some extent, the model will not be robust
against changes to the extent of wave reflection caused by
changing vascular tone. Future work involves investigating
incorporating changing wave reflection behaviour into the
pulse contour analysis model.

Pressure changes at the femoral artery may not fully reflect
changes at the proximal aorta. However, the femoral artery
is a central catheter location, which is commonly used
clinically, and predicts aortic pressures more accurately
than peripheral sites, such as the radial artery, in liver
surgery (Lee et al. (2015)) and patients with septic shock
(Kim et al. (2013), Galluccio et al. (2009)). Moreover,
peripheral waveforms are distorted more by wave reflection
(Westerhof et al. (2010)). Thus, given measuring pressure
at the proximal aorta is highly invasive and not clinically
feasible, the femoral artery likely represents the best
catheter location. A transfer function estimating the aortic
pressure waveform from a femoral waveform (Swamy et al.
(2009)) would partially address this issue, but accuracy
would still be limited by the limited information provided
by the input femoral pressure waveform.

In developing a clinically applicable, non additionally
invasive method, the result is a simplistic model lumping
complex arterial characteristics into only 3 parameters.
It is possible model simplicity means it cannot capture
all the necessary information required to relate the blood
pressure waveform to cardiac output with high accuracy
under the changing hemodynamic states. In particular,
fixing the Z parameter to a constant value may limit
the ability of the model to capture resistance changes
associated with conduit arteries. Investigating how the
model can be altered to capture changing vascular state,
such as low systemic vascular resistance states, represents
future work of the author.

5. CONCLUSION

This study uses a pulse contour analysis model that
has been previously validated in pigs and applies it to
human clinical data acquired from Vital Data Bank. This
provides independent validation of a pulse contour analysis
model, using measurements from an uncontrolled clinical
environment. The model qualitatively captured trends in
SV reasonably well, but accuracy fell outside required
limits. Several areas were identified that can to contribute
to error, including insufficient dynamic response of fluid

filled pressure catheters, changing extent of reflected waves
in the arterial system, and the assumption of a fixed Z
parameter. Investigating the contribution of these factors
and how they can be resolved is the future work of the
authors.
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Appendix A. ADDITIONAL RESULTS

This appendix contains examples of Pmea and Pres wave-
forms for several patients, demonstrating the variation in
waveform shapes within and between patients.

Fig. A.1. Example of Pmea and Pres waveform for a single
beat at several time points through the surgery for
Patient 1

Fig. A.2. Example of Pmea and Pres waveform for a single
beat at several time points through the surgery for
Patient 4

Fig. A.3. Example of Pmea and Pres waveform for a single
beat at several time points through the surgery for
Patient 7
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