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Abstract: As an effective control method for systems with time delay in the input, state
predictive control is well known. An idea of adding a single modification term to its control
law was presented recently, and it was suggested that an appropriate modification term could
contribute to improving robust stability of the control system to some parametric uncertainties.
This extended control method is called modified state predictive control. Motivated by the
preceding study, this paper considers introducing multiple modification terms into the control
law of state predictive control, aiming at improving robust stability for non-parametric
uncertainties. We first derive the characteristic equation of the modified state predictive control
systems with multiple modification terms, and give a necessary and sufficient condition for
stability. We then derive an explicit representation of the complementary sensitivity function
associated with the robust stability analysis problem for multiplicative uncertainties. Finally,
we demonstrate through numerical examples that state predictive control with appropriate
multiple modification terms could be useful in improving robust stability compared with that
with a single modification term or no such a term.

Keywords: continuous-time systems, time delay, state predictive control, robust stability,
complementary sensitivity function.

1. INTRODUCTION

As an effective control method for systems with input
delay, the Smith method (Smith, 1959) and finite spec-
trum assignment, also known as state predictive control
(Manitius and Olbrot, 1979) is well known. The key idea of
the latter method is to virtually remove the effect of input
delay from the closed-loop system by predicting the future
state x(t + h), where t is the current time and h denotes
the input delay. Recently, an idea of adding a single modi-
fication term to its control law was introduced, and such a
control method was called modified state predictive control
(Masui et al., 2017). It was then suggested that using
an appropriate modification term could improve robust
stability compared with the conventional state predictive
control. This paper considers modified state predictive
control with multiple modification terms and studies its
effectiveness in improving robust stability from a perspec-
tive different from the one taken in Masui et al. (2017).

This paper is organized as follows. As a preliminary, we
first review the conventional state predictive control as well
as modified state predictive control with a single modifi-
cation term. Then, we consider introducing multiple mod-
ification terms and derive the characteristic equation of
the closed-loop system. We next study robust stability for
the multiplicative uncertainties of the plant. To this end,
we derive an explicit representation of the complementary
sensitivity function of the nominal closed-loop system.
Finally, through numerical examples, we demonstrate that
state predictive control with appropriate multiple modifi-
cation terms could be useful in improving robust stability
compared with that with a single modification term or no
such a term.

The following notation is used in this paper. R and N
denote the set of real numbers and that of positive integers,
respectively. |·| denotes the determinant of a matrix. RH∞

denotes the set of matrices whose entries are proper stable
real-rational functions, and the H∞ norm of F (s) ∈ RH∞

is denoted by ‖F (s)‖∞.
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2. CONVENTIONAL STATE PREDICTIVE
CONTROL AND MODIFIED STATE PREDICTIVE

CONTROL WITH A SINGLE MODIFICATION TERM

This section first reviews the conventional state predictive
control method (Manitius and Olbrot, 1979). Then, to
motivate the study in the present paper, a modified state
predictive control method with a single modification term
studied in Masui et al. (2017) is reviewed. This modified
control method is based on an idea of adding a single
modification term to the input of the conventional state
predictive control so that some sort of freedom in the
locations of the closed-loop poles can be obtained.

2.1 State Predictive Control

Consider the continuous-time plant with input delay given
by

ẋ(t) = Ax(t) + Bv(t)

v(t) = u(t − h), (1)

where x(t) ∈ Rn, v(t) ∈ Rm, A ∈ Rn×n and B ∈ Rn×m,
and u(t) denotes the plant input at time t. Assuming
that the pair (A, B) is stabilizable, let F be a stabilizing
state feedback gain. A basic idea of the conventional state
predictive control is to virtually apply the state feedback
through this gain “on a future state,” i.e., to virtually
apply the control input given by

u(t) = Fx(t + h) (2)

so that the effect of input delay can be canceled and the
closed-loop system would behave virtually in the same way
as

ẋ(t) = (A + BF )x(t). (3)

Obviously, however, (2) cannot be implemented directly as
a control law even if the state is accessible, because x(t+h)
is a future state. This issue is readily circumvented by
solving the state equation (1) for x(t+h) with the (present)
state x(t) and v(τ), τ ∈ [t, t+h) (or equivalently, the past
plant input u(τ), τ ∈ [t − h, t)) as

x(t + h) = eAhx(t) +

∫ t+h

t

eA(t+h−τ)Bv(τ)dτ. (4)

This corresponds to the prediction law for x(t + h), by
which (4) leads equivalently to the control law

u(t) = F

{

eAhx(t) +

∫ t+h

t

eA(t+h−τ)Bu(τ − h)dτ

}

, (5)

which is implementable if the state is accessible. This
control method virtually removing the effect of delay by
using the above state prediction is called state predictive
control. It is well known that the characteristic equation
of the closed-loop system given by (1) and (5) is given by

|sI − A − BF | = 0 (6)

as expected by the virtual equivalence of this closed-loop
system and (3). Hence, the state predictive control system
is stable if and only if A + BF is Hurwitz.

2.2 Output Feedback Case

When the state x(t) is not accessible, we can introduce an
observer in a mostly usual fashion. Suppose that y(t) =
Cx(t) is measurable, where C ∈ Rl×n, and (C, A) is

detectable. Then, a full-order observer in the context of
state predictive control is given by

˙̂x(t) = Ax̂(t) + Bu(t − h) + L (Cx̂(t) − y(t)) , (7)

where x̂(t) ∈ Rn is the estimate of x(t), and L ∈ Rn×l is
an observer gain such that A + LC is Hurwitz. It would
be natural to consider replacing x(t) with x̂(t) in (5) when
the state is not accessible. It is well known that under
the modified control law, the characteristic equation of the
closed-loop system is given by

|sI − A − BF ||sI − A − LC| = 0. (8)

This implies that the so-called separation principle be-
tween the feedback gain and the observer gain holds also
in state predictive control.

2.3 Modified State Predictive Control with a Single
Modification Term

This section reviews the modified state predictive control
method with a single modification term studied in Masui
et al. (2017). The idea of this method corresponds to
virtually applying a modified form of (2) given by

u(t) = Fx(t + h) + M0(u(t − h) − Fx(t)), (9)

where the coefficient matrix M0 ∈ Rm×m for the modifi-
cation term is Schur for the reason stated later. The actual
control law is readily given by

u(t) = F

(

eAhx(t) +

∫ t+h

t

eA(t+h−τ)Bv(τ)dτ

)

+ M0(u(t − h) − Fx(t))

(10)

where the first term is nothing but the control law of
the conventional state predictive control. The second term
could be interpreted as reflecting (through the matrix M0)
the deviation of the past input u(t − h) from what is
considered to be desirable in the sense of (2).

Remark 1. Such a deviation arises actually by the use of
the modification term itself, but introducing the term is
considered to be useful if the coefficient matrix M0 is cho-
sen appropriately. The present paper aims at confirming
that this is indeed the case from a perspective different
from the one taken in Masui et al. (2017) (see Section 4 for
more details), and further developing extended arguments
on exploiting the freedom obtained by a more generalized
modification of the control law.

The characteristic equation of the closed-loop system given
by (1) and (10) has been studied in Masui et al. (2017) and
is given by

|sI − A − BF |
∣

∣I − M0e
−hs
∣

∣ = 0. (11)

Now, the set of the roots of
∣

∣I − M0e
−sh
∣

∣ = 0 is given by

{(1/h)ln ν : |νI − M0| = 0, ν 6= 0} . (12)

Hence, we see that the closed-loop system is stable if and
only if A + BF is Hurwitz (i.e., stable in the continuous-
time sense) and M0 is Schur (i.e., stable in the discrete-
time sense).

When a full-order observer is used, the control law is mod-
ified in an obvious fashion, in which case the characteristic
equation of the closed-loop system is given by

|sI − A − BF |
∣

∣I − M0e
−hs
∣

∣ |sI − A − LC| = 0. (13)

We see that introducing the modification term does not
affect the validity of the so-called separation principle.
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Obviously, introducing a modification term generally leads
to the presence of new closed-loop poles that were absent in
the conventional state predictive control (unless M0 6= 0 is
a nilpotent). Roughly speaking, this could be interpreted
as some of the invisible closed-loop poles at −∞ being
shifted to the right, and one might thus argue that the
use of the modification term is pointless. Instead, the
basic idea of introducing the modification term actually
lies in exploiting its ability in giving some freedom in
the locations of the closed-loop poles. The idea could be
restated as follows: with the difference in the closed-loop
poles in mind, the conventional state predictive control
might correspond to high-gain feedback whereas the mod-
ification term could possibly lead to reducing the controller
gain and thus improving some performance of the closed-
loop system while maintaining fundamental features of
state predictive control. This standpoint for the use of the
modification term motivates us to consider exploiting more
freedom, i.e., introducing multiple modification terms to
discuss further possible improvement of the closed-loop
performance.

3. MODIFIED STATE PREDICTIVE CONTROL
WITH MULTIPLE MODIFICATION TERMS

This section considers introducing multiple modification
terms into the control law of state predictive control. As
mentioned above, the modified state predictive control
with a single modification term in Masui et al. (2017) is
based on the deviation of the past control input u(t − h)
from that given by (2) with t shifted to the past by h.
The key idea in the present paper is to generalize the
modification term by considering similar deviations for
other values of the shift in the interval (0, h], and actually
to consider the corresponding multiple modification terms.

3.1 Modified State Predictive Control with Multiple
Modification Terms and the Characteristic Equation of the
Control System

First, suppose for simplicity that the state is accessible
(if this is not the case, we can employ an observer, and
such a case will also be covered later). Now, we take
N (∈ N) values of shift by which we consider shifting
t in (2) to the past. They are denoted by µih with
µ0 < µ1 < · · · < µN−1 ≤ 1. This implies that we consider
u(t− µih)− Fx(t− µih + h) in modifying the control law
(5) for the conventional state predictive control. In other
words, we consider virtually applying the control input
given by

u(t) = Fx(t + h)

+

N−1
∑

i=0

Mi {u(t − µih) − Fx(t − µih + h)}
(14)

where Mi ∈ Rm×m (i = 0, . . . , N − 1) are the coefficient
matrices satisfying the condition given later (to avoid
possible ambiguity, we basically assume that Mi 6= 0 (i =
0, . . . , N − 1) without loss of generality, while N = 0 is
allowed so that the conventional state predictive control
can be covered as a special case). However, not only the
first term but also the second term is not implementable
because x(t − µih + h) at time t (corresponding to the
left-hand side) is a future state for each i = 0, . . . , N − 2

and i = N − 1 (unless µN−1 = 1). This issue can also be
circumvented by solving the state equation (1) for x(t −
µih + h), whereby we obtain the prediction formula

x(t − µih + h) = eA(−µih+h)x(t)

+

∫ t−µih+h

t

eA(t−µih+h−τ)Bu(τ − h)dτ.

(15)

This readily leads to a generalized version of (10) corre-
sponding to an implementable form of (14).

The characteristic equation of the closed-loop system is
given by

|sI − A − BF |

∣

∣

∣

∣

∣

I −
N−1
∑

i=0

Mie
−sµih

∣

∣

∣

∣

∣

= 0. (16)

Hence, F together with Mi (i = 0, . . . , N − 1) and µi (i =
0, . . . , N − 1) must be chosen in such a way the all the
roots of this characteristic equation lie in the open-left
half plane. For general values of µi (i = 0, . . . , N − 1), it
is difficult to obtain the roots of the second factor in the
left-hand side of (16). However, when these values have
mutually rational ratios, we can determine the closed-loop
poles easily. In the following subsection, we first describe
the closed-loop poles for the case when µih (i = 0, . . . , N−
1) are equally spaced in the interval (0, h] (more precisely,
when µi = (i+1)/N (i = 0, . . . , N −1)). This corresponds
to the case when the deviations from what (2) would imply
are monitored for N equally spaced values of past t in the
interval of width h ending at the present time. The closed-
loop poles for the case when µi (i = 0, . . . , N − 1) have
mutually rational ratios can readily be obtained through
the results for this special case.

3.2 Roots of the Characteristic Equation

In this subsection, we assume that µi (i = 0, . . . , N − 1)
have mutually rational ratios and describe the roots of
the characteristic equation. We begin with the special
case with µi = (i + 1)/N (i = 0, . . . , N − 1), when the
characteristic equation leads to

|sI − A − BF |

∣

∣

∣

∣

∣

I −

N−1
∑

i=0

Mie
−s( i+1

N
)h

∣

∣

∣

∣

∣

= 0. (17)

It suffices to consider the roots of
∣

∣

∣

∣

∣

I −
N−1
∑

i=0

Mie
−s( i+1

N
)h

∣

∣

∣

∣

∣

= 0, (18)

for which we have the following theorem.

Theorem 1. The set of the roots of (18) is given by

{(N/h)ln ν : |νI − M | = 0, ν 6= 0} , (19)

where M is given by

M =









0 Im 0
...

. . .
0 0 Im

MN−1 MN−2 · · · M0









. (20)

It readily follows for the above special case that our
modified state predictive control system is stable if and
only if A + BF is Hurwitz and M is Schur.
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When µi (i = 0, . . . , N − 1) have mutually rational ratios,
consider the smallest positive integer N0 such that µih =
(ni/N0)α (i = 0, . . . , N − 1) for some positive constant α,
where ni ≤ N0 (i = 0, . . . , N − 1) are positive integers
and thus α ≤ h. By taking such N0, the general case here
can be viewed as a particular situation with “N = N0”
and “h = α” in the special case studied above. More
specifically, we can regard the N terms in the second
factor of (16) to be equal to N0 terms with the coefficient
matrices being zero except for N of them. More details can
be described as follows.

For each µi (i = 0, . . . , N − 1), take j =: j(i) such that
µi = (j+1)α/N0h, where 0 ≤ j ≤ N0−1. Furthermore, for
each j = 0, . . . , N0 − 1, redefine “Mj” under the situation
“N = N0” as the original Mi when j = j(i), and as 0
when none of i = 0, . . . , N −1 satisfies j = j(i). Under the
redefined “Mj (j = 0, . . . , N0 − 1)” in this way, consider
the associated M in (20). Then, the set of the roots of the
second factor in (16) is given by (19) with N/h replaced
by N0/α.

3.3 Characteristic Equation for the Output Feedback Case

It is not hard to show that when the state is not ac-
cessible, an observer may be introduced in an obvious
fashion without essentially affecting the above arguments.
Furthermore, we can readily show that the characteristic
equation of the closed-loop system is given by

|sI − A − BF |

∣

∣

∣

∣

∣

I −

N−1
∑

i=0

Mie
−sµih

∣

∣

∣

∣

∣

|sI − A − LC| = 0.

(21)

4. COMPLEMENTARY SENSITIVITY FUNCTION
AND ROBUST STABILITY OF MODIFIED STATE

PREDICTIVE CONTROL SYSTEMS

This section is devoted to establishing a theoretical frame-
work through which we can study an advantage of intro-
ducing a modification term into the control law of the
conventional state predictive control, as well as exploiting
more freedom by increasing the number of the modification
terms.

The use of a modification term was first discussed in
Masui et al. (2017), where only a single term was actually
used. In that study, the role of the term was analyzed
through a robust stability perspective of (modified) state
predictive control systems. More precisely, the plant was
assumed to have parametric uncertainties in its delay h
and (steady-state) gain. The robust stability problems
in such a situation for the conventional state predictive
control have been studied in Bao and Araki (1988) and
Furutani and Araki (1998). These studies were extended
in Masui et al. (2017) for the case of a single modification
term, and it was suggested that the modification term
could contribute to enhancing robustness with respect to
such parametric uncertainties.

The present paper adopts a somewhat different perspec-
tive to the robust stability problem of (modified) state
predictive control, where we consider non-parametric un-
certainties of the plant. More specifically, we consider the
multiplicative uncertainties in the output side of the plant.

As is well known, the associated complementary sensitivity
function of the (modified) state predictive control systems
will then be quite important in the theoretical treatment of
the robust stability problem. After quickly reviewing fun-
damentals of such an analysis method for robust stability,
this section is mainly interested in explicitly describing
the complementary sensitivity function of the modified
state predictive control systems with multiple modification
terms.

4.1 Robust Stability Radius under Multiplicative
Uncertainties

Let us consider the multiplicative uncertainties in the
output side of the nominal plant G, and suppose that the
actual plant lies in the set

G = {(I + ∆W )G : ∆ ∈ RH∞, ‖∆‖∞ ≤ 1} . (22)

Here, the weight W is a fixed stable transfer matrix such
that ∆W with ‖∆‖∞ ≤ 1 expresses the uncertainties
dependent on the angular frequencies. When the actual
plant is in the set (22), the (modified) state predictive
control system, assuming the output feedback case, can
be expressed as the block diagram in Fig. 1, where K is
the the (modified) state predictive controller (and r is the
reference).

It is well known that the associated complementary sen-
sitivity function plays a key role in the robust stability
analysis for multiplicative uncertainties (Doyle et al., 2009;
Zhou and Doyle, 1998). It corresponds to the transfer
matrix from r to y under ∆ = 0, which is given by

T (s) = (I + G(s)K(s))
−1

G(s)K(s), (23)

where G(s) and K(s) denote the transfer matrices of G
and K, respectively.

The following theorem is well known.

Theorem 2. Suppose that the system in Fig. 1 is stable
for the nominal plant G (i.e., under ∆ = 0). Then, it is
robustly stable with respect to the plant set G if and only
if

‖WT ‖∞ < 1. (24)

On the basis of the above theorem, we consider the robust
stability radius of the perturbed closed-loop system by
introducing the set of perturbed plants

Gβ = {(I + ∆W )G : ∆ ∈ RH∞, ‖∆‖∞ ≤ β} (25)

parameterized through β > 0. The robust stability radius
βsup is then defined as the supremum of β for which the
control system is robustly stable with respect to Gβ . It
readily follows from the above theorem that

βsup = 1/‖WT ‖∞. (26)

It is often the case that the multiplicative uncertainties
mostly increase as the angular frequency increases and
thus ‖W (jω)‖ is roughly an increasing function of ω.
Hence, it is generally considered that the complementary

K -u
G q

- W - ∆

?+f-+-+r
q -

y

6
f

−

-

Fig. 1. Control system with multiplicative uncertainties
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sensitivity function with small gains in a high frequency
range mostly contributes to improving robust stability or
the robust stability radius.

4.2 Complementary Sensitivity Function of Modified State
Predictive Control Systems

In this subsection, we consider the modified state predic-
tive control system with multiple modification terms. More
precisely, we consider the output feedback case with a full-
order observer, and derive the associated complementary
sensitivity function T (s). Specifically, we give an explicit
representation of the transfer matrix K(s) of the modified
state predictive controller K (consisting of the state feed-
back gain, the full-order observer and the state prediction
mechanisms relevant to (14)) as well as that of the nominal
plant G, so that T (s) in (23) can readily be obtained.

First, it is obvious that

G(s) = C(sI − A)−1Be−sh. (27)

On the other hand, K(s) can be obtained by applying the
Laplace transformation to (7), as well as (14) and (15) with
x replaced by x̂, and computing the transfer matrix from
−Y (s) to U(s), where Y (s) and U(s) denote the Laplace
transforms of y and u, respectively. This procedure leads
to

K(s) = −Kd(s)
−1Kn(s) (28)

where

Kd(s) = I − e−shFeAh(sI − A − LC)−1B

− FZ(s)B − E(s) + e−shJ(s)B
(29)

Kn(s) = −FeAh(sI − A − LC)−1L + J(s)L (30)

with

E(s) =

N−1
∑

i=0

Mie
−sµih(I − FZi(s)B) (31)

J(s) =

N−1
∑

i=0

MiFeAh(1−µi)(sI − A − LC)−1 (32)

Z(s) = (I − eAhe−sh)(sI − A)−1

Zi(s) = (I − eAh(1−µi)e−s(1−µi)h)(sI − A)−1. (33)

Substituting (28) into (23) and rearranging the result,
we see that the complementary sensitivity function of the
modified state predictive control system is given by

T (s) = −G(s) {Kd(s) − Kn(s)G(s)}
−1

Kn(s). (34)

5. NUMERICAL EXAMPLES AIMING AT
COMPARING THE FREQUENCY RESPONSES OF

THE COMPLEMENTARY SENSITIVITY
FUNCTIONS AND ROBUST STABILITY RADII

In this section, we show the effectiveness of introducing
multiple modification terms through numerical examples
by comparing the frequency responses of the complemen-
tary sensitivity functions and the robust stability radii.

5.1 Frequency Response of the Complementary Sensitivity
Function of Modified State Predictive Control Systems

This subsection gives numerical examples showing that
introducing appropriate multiple modification terms could

contribute to reducing, over some (high) frequency ranges,
the gains of the complementary sensitivity function, com-
pared with introducing a single modification term or no
such a term.

Consider the SISO system given by

A =

[

0 1 0
0 0 1
−4 −3 −2

]

, B =

[

0
0
1

]

,

C = [3 2 3] (35)

and the delay h = 1. Let the state feedback gain F be
such that A + BF has the eigenvalues −3, −2 and −1.
Suppose that the state is not accessible and take the full-
order observer gain L such that A + LC has the same
eigenvalues as the above. In the following, we fix F and L,
and consider different modification.

We first consider the conventional state predictive control
(i.e., without any modification term), for which the com-
plementary sensitivity function T (s) is denoted by T0(s).
We next consider the case of a single modification term
(i.e., N = 1) with µ0 = 1 and M0 = 0.5. This value of
M0 was taken from the range (−1, 1) (because M0 must
be Schur) as a value for which the gain of T (s) becomes
comparatively smaller than that of T0(s) defined above.
The corresponding T (s) is denoted by T1(s).

We then consider the use of multiple modification terms
with N = 3. The following two cases are considered:

(a) µ0 = 1/8, µ1 = 1/4, µ2 = 1, M0 = −0.1, M1 = 0.65,
M2 = 0.1;

(b) µ0 = 1/10, µ1 = 1/5, µ2 = 1, M0 = 0.45, M1 = 0.45,
M2 = −0.1.

In both cases, the closed-loop stability is ensured for the
nominal plant. The complementary sensitivity functions
corresponding to (a) and (b) are denoted by T2a(s) and
T2b(s), respectively.

The gain plots of the frequency responses of T0(s), T1(s),
T2a(s) and T2b(s) are shown in Fig. 2.

From Fig. 2, we see the gains of T2a(s) and T2b(s) are
smaller than those of T0(s) and T1(s) in a high frequency

10 -2 10 -1 10 0 10 1 10 2
-100

-80

-60

-40

-20

0

20

G
ai

n 
(d

B
)

 

Angular Frequency  (rad/s)

Fig. 2. Frequency responses of T0(s), T1(s), T2a(s) and
T2b(s)
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range. As mentioned in the preceding section, this feature
is generally considered to contribute to improving robust
stability. Thus, it is suggested that state predictive control
with appropriate multiple modification terms could be
useful in improving robust stability compared with that
with a single modification term or no such a term.

5.2 Improvement of the Robust Stability Radius

We next consider confirming the effectiveness of appropri-
ately introduced modification terms in a more quantita-
tive manner. More specifically, the qualitative effectiveness
suggested in the preceding subsection is reinforced by
further computing the robust stability radius numerically,
where we assume that

W (s) =
10(s + 0.1)

s + 40
. (36)

The associated gain plots for the frequency responses of
WT0(s), WT1(s), WT2a(s) and WT2b(s) are shown in
Fig. 3, by which the H∞ norms of these transfer functions
and the associated robust stability radius (given as the
reciprocals of the H∞ norms) are as shown in Table 1.

From numerical example, we can see that the robust sta-
bility radii under multiple modification terms are larger
than those without a modification term or with a single
modification term. We have thus confirmed that intro-
ducing appropriate multiple modification terms actually
contributes to improving the robust stability radius in this
numerical example.

6. CONCLUSIONS

In this paper, we first introduced multiple modification
terms into the control law of state predictive control. Next,
we derived the characteristic equation of the closed-loop

10 -2 10 -1 10 0 10 1 10 2
-100

-80

-60

-40

-20

0
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G
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Angular Frequency  (rad/s)

Fig. 3. Frequency responses of weighted complementary
sensitivity functions

Table 1. The H∞ norms of the weighted
complementary sensitivity functions and the

robust stability radii

T0(s) T1(s) T2a(s) T2b(s)

weighted H∞ norm 0.62 0.53 0.33 0.27
robust stability radius 1.61 1.89 3.03 3.70

systems and gave a necessary and sufficient condition for
its stability. We further derived the complementary sen-
sitivity function of the closed-loop system so that robust
stability for multiplicative uncertainties can be analyzed.
Finally, we demonstrated through numerical examples
that introducing appropriate multiple modification terms
could contribute to improving robust stability and the
robust stability radius compared with those with a single
modification term or no such a term. The numerical exam-
ples used multiple modification terms chosen by trial and
error, and the effectiveness of using multiple modification
terms was manifested even under such a procedure. This
would imply that optimizing the parameters of the modi-
fication terms under a given N , the number of the terms,
could lead to promising improvement of robust stability.
Unfortunately, however, this may not be an easy issue,
and further investigation on the issue remains our future
studies.

Before closing the paper, we remark that the arguments in
this paper up to the introduction of multiple modification
terms and the derivation of the characteristic equation can
be regarded as a sort of counterpart of the relevant study
for discrete-time systems with input delay (Hagiwara and
Araki, 1988). In this sense, optimization of the modifi-
cation terms is also an interesting topic for discrete-time
systems and it might be a simpler problem to start with.
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