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Abstract: This paper deals with design methods of event-triggered control systems for discrete-
time linear systems. An extended plant consisting of a given plant and a dynamical filter is
considered and controlled by an event-triggered static output feedback. The triggering rule uses
only the available signals and therefore is based on the difference between the triggered and non-
triggered output signals. The paper deals with the co-design problem, that is the design of the
triggering condition, the filter, and the controller simultaneously. Sufficient theoretical conditions
are proposed in terms of linear matrix inequalities to ensure the asymptotic stability of the
closed-loop system. Convex optimizations problems incorporate these conditions in order to
optimize the closed-loop performance or to reduce the number of transmissions. Three numerical
examples illustrate the design method of the triggering conditions as well as the simultaneous
design method of the filter and controller.

Keywords: networked control system, event-triggered control, discrete-time control, convex
optimization

1. INTRODUCTION

Traditional sampled-data based control, which adopts pe-
riodic sampling to transmit the output data of the plant to
the controller, is convenient for analysis and synthesis of
control systems. Since a wired or wireless network trans-
mits the data, less energy consumption is preferable by
reducing the number of transmissions. Indeed, there is still
room to reduce the amount number of data to transfer in
the sampled-data based control system without deteriorat-
ing too much the stability and performance of the system.
In this viewpoint, several authors consider event-triggered
control (ETC) that adopts periodic or aperiodic sampling
(see, for example, Åström (2008), Heemels et al. (2012),
Tallapragada and Chopra (2012), Postoyan et al. (2015),
Tarbouriech et al. (2017), Wang and Lemmon (2011)).
Continuous or time-regularized ETC monitors the system
continuously and triggers the data transmission if an error
between the current data and the previous one exceeds a
certain amount of quantity to guarantee the stability and
performance of the closed-loop system. In contrast, peri-
odic ETC (PETC) monitors the system only at periodic
sampling times to send or not the data. Although time-
regularized ETC is capable of minimizing a waiting time
between two sampling times to enhance the stability and
performance of the system, PETC has several merits over
time-regularized ETC (see, for example, Heemels et al.
(2013), Aranda-Escolastico et al. (2015) and references

therein). One of the merits is that PETC is suitable to
implement into digital devices that keep the sampling time
to monitor the system.

Heemels et al. (2013) gave a general framework for PETC
that includes three approaches: (1) The impulsive system
approach allows the L2-gain from the error to the control
signal; (2) The piecewise linear system approach provides
conditions that are less conservativeness but computation-
ally involved; (3) The perturbed linear system approach
reduces the problems to numerically tractable conditions.
Similar to the latter approach, Wu et al. (2015) pro-
posed linear matrix inequality (LMI) conditions for given
triggering rules that provide suboptimal event-triggered
state feedback controllers. This approach derives the LMI
conditions based on a lossless S-procedure relaxation with
some approximation to avoid the conditions to be bilinear
matrix inequalities (BMIs). Meng and Chen (2014) inves-
tigated co-design problems that design the parameters in
the triggering rules and the matrices in static or dynamic
output feedback controllers simultaneously. They use a
non-lossless S-procedure relaxation to handle two different
triggering rules in one event-triggered control system. The
formulation of the problem of the static output feedback
case is a BMI, and thus a linearization algorithm is used to
solve the inequality. On the other hand, the formulation of
the dynamic output feedback case is an LMI. Zhang and
Han (2014) also investigated co-design problems with the
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aid of Lyapunov-Krasovskii functional to design dynamic
feedback controllers. However, the formulation is based on
a BMI, in which the linearization algorithm is needed again
or linearization of the non-linear terms results in an LMI
with allowing some conservativeness.

This paper investigates event-triggered control systems for
an extended plant of discrete-time linear systems with
static output feedback controllers. The extended plant
includes a given plant and a dynamic filter. The structure
of the extended plant and static output feedback controller
depends on the output error, that is the difference between
the triggered and non-triggered output signals. Thanks to
static output feedback controllers, it is not necessary to
design or assume an event detector at the input side of
the plant to solve the problems if there is a designed or
assumed event detector at the output side. Then, we can
concentrate on using the lossless S-procedure relaxation 1

to derive a co-design condition. The triggering conditions
in this paper are generalizations from those in Wu et al.
(2015), but are different from those in Meng and Chen
(2014) and Zhang and Han (2014). Similar to the purpose
in these papers, we investigate a convex structure for
co-design of the parameters in the triggering rule, the
filter, and controller to introduce dynamic elements in the
system to generalize the approach in Wu et al. (2015) to
the static output feedback case.

Notation: R is the set of real numbers. Rn is the set of
the real vectors of dimension n. Rn×m is the set of the
real vectors of dimension n ×m. Sn is the set of the real
symmetric matrices of dimension n× n. I and 0 represent
the identity and null matrices of appropriate dimensions,
respectively. For x ∈ Rn, ∥x∥ is the Euclidean norm. For
A ∈ Rn×n, tr(A) is the trace of A. A ≻ 0 means that
A ∈ Sn is a positive-definite matrix. For real symmetric
matrices, the following notations are often used:[

A ⋆
B C

]
=

[
A B⊤

B C

]
, B⊤A [⋆] = B⊤AB

2. PROBLEM FORMULATION

Consider the following discrete-time linear plant

xp[k + 1] = Apxp[k] +Bpu[k], (1)

y[k] = Cpxp[k], (2)

where xp ∈ Rn is the state of the plant, u ∈ Rm is the
control input, y ∈ Rp is the output. Ap, Bp and Cp are
constant known matrices of appropriate dimensions.

The event-triggered control system of interest is depicted
in Fig. 1. We augment plant (1)-(2) with the following
dynamical filter

xf [k + 1] = Afxf [k] + v1[k], (3)

u[k] = Cfxf [k] + v2[k], (4)

where xf ∈ Rn is the state of the filter, Af and Cf

are constant matrices of appropriate dimensions. Finally,
v1 ∈ Rn and v2 ∈ Rm are auxiliary inputs defined via a
static output feedback controller as follows:[

v1[k]
v2[k]

]
=

[
F1

F2

]
ŷ[k], (5)

1 The lossless S-procedure is often used in control theory to unite two
quadratic inequalities into one inequality without conservativeness
(see, for example, Boyd et al. (1994)).

Fig. 1. Event-triggered control system for extended plant
based on output error

where F1 and F2 are matrices of compatible dimen-
sions. The signal ŷ[k] is the signal issued from the event-
triggering mechanism (ETM), which follows an event-
triggering rule.

In the paper, we are interested in the following triggering
rule:

ŷ[k] :=

{
y[k], g(ŷ[k − 1], y[k], u[k]) > 0,

ŷ[k − 1], otherwise.
(6)

The function g(ŷ, y, u) is defined by

g(ŷ[k − 1], y[k], u[k]) := ∥ŷ[k − 1]− y[k]∥2

− σ2
(
µ∥y[k]∥2 + (1− µ)∥u[k]∥2

)
, (7)

where σ > 0 and µ ∈ [0, 1] are parameters to be tuned or
chosen.

The first part of condition (7) represents the error between
the triggered and non-triggered output. The meaning of
(6) is the following: If (7) holds at step k, then signal
ŷ[k] is updated to be y[k] because error ∥ŷ[k − 1] − y[k]∥
is too large to guarantee the stability and performance
of the closed-loop system with some controller. On the
other hand, if (7) does not hold at step k, then ŷ[k] is not
updated, that is, the previous one, ŷ[k− 1], is used as ŷ[k]
since the error is small enough to guarantee the stability
and performance.

The closed-loop system in the paper can be written in a
compact form as follows:

x[k + 1] = Ax[k] + Bw[k], (8)

y[k] = Cx[k], (9)

u[k] = Ex[k] + Fw[k], (10)

where x = [x⊤
p x⊤

f ]
⊤ ∈ R2n is the state, w[k] = ŷ[k] −

y[k] ∈ Rp is the output error, and the matrices are

A =

[
Ap +BpF2Cp BpCf

F1Cp Af

]
, B =

[
BpF2

F1

]
,

C = [Cp 0] , E = [F2Cp Cf ] , F = F2.

(11)

Consequently, we always have

∥w[k]∥2 ≤ σ2
(
µ∥y[k]∥2 + (1− µ)∥u[k]∥2

)
.

By rewriting the above equation with (9)-(10), we have
that
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[
x[k]
w[k]

]⊤ ([
σ2µC⊤C 0

0 −I

]
+σ2(1− µ)

[
E⊤
F⊤

]
[E F ]

)[
x[k]
w[k]

]
≥ 0. (12)

The problem we intend to solve can be summarized as
follows:

Problem 1. Design the filter (that is matrices Af and Cf ),
the feedback gains F1 and F2 and the triggering condition
(that is the parameters σ and µ) such that the closed-loop
system (8)-(10) with triggering rule (6) is asymptotically
stable.

3. MAIN RESULT

The results are based on the use of Lyapunov theory
and more especially on the use of a quadratic Lyapunov
function V(x) = x⊤Px, where P ∈ S2n is a positive
definite matrix. Indeed, we are searching for a matrix
P = P⊤ ≻ 0 such that for all x[k] ̸= 0 and w[k] satisfying
(12), the following inequality holds[

x[k]
w[k]

]⊤ (
−
[
A⊤

B⊤
]
P [A B] +

[
P 0
0 0

])[
x[k]
w[k]

]
> 0. (13)

On the basis of the above fact, we give a solution to the
problem stated in Section 2.

3.1 Design of Triggering Rule

Consider the triggering condition (7). The following result
can be stated to design the parameters σ and µ, when the
filter and the controller are assumed given.

Lemma 1. Given filter (3)-(4) and controller (5), if there
exist a positive definite matrix P ∈ S2n and positive
scalars α, β1 and β2 satisfying

P ⋆ ⋆ ⋆ ⋆
0 αI ⋆ ⋆ ⋆
PA PB P ⋆ ⋆
C 0 0 β1I ⋆
E F 0 0 β2I

 ≻ 0, (14)

then the closed-loop system (8)-(10) with the triggering
rule (6) for which the parameters are defined by

σ =

√
1

α

(
1

β1
+

1

β2

)
, µ =

β2

β1 + β2
(15)

is asymptotically stable.

Remark 1. The parameters (σ, µ) of the triggering con-
dition are characterized by the nonlinear functions in
equation (15) of the triplet decision variables (α, β1, β2)
of the LMI. The scalar α corresponds to the multiplier of
S-procedure.

3.2 Co-Design

In this section, the co-design problem is addressed, that
is in plus of designing the parameters µ and σ defined in
the triggering rule, one wants to design the filter and the
controller. At this aim, we consider that the matrix P is
defined as follows:

P =

[
X Z
Z Z

]
, (16)

where X ∈ Sn and Z ∈ Sn are positive definite matrices
so that P is a positive definite matrix. Note that the
symmetric matrix Z in the non-diagonal blocks in P does
not restrict the set of solutions to LMI (14). In fact, there is
a variable change for a general form of the Lyapunov vari-
able matrix whose non-diagonal block matrices are merely
non-symmetric ones. Such a variable change preserves the
characteristics of the controller and the Lyapunov vari-
able matrix P takes the form in equation (16). The fact
regarding the structure of the Lyapunov variable matrix
is known in the literature (See, for example, Masubutch
et al. (1998)).

Then, by expanding Lemma 1, the following result can be
stated.

Theorem 1. If there exist positive definite matrices X ∈
Sn and Y ∈ Sn, matrices W ∈ Rn×n, U ∈ Rn×p,
R ∈ Rm×n and M ∈ Rm×p, and scalars α > 0, β1 > 0
and β2 > 0 satisfying

ΞP ⋆ ⋆ ⋆ ⋆
0 αI ⋆ ⋆ ⋆
ΞA ΞB ΞP ⋆ ⋆
ΞC 0 0 β1I ⋆
ΞE M 0 0 β2I

 ≻ 0, (17)

where

ΞP =

[
X I
I Y

]
, ΞA =

[
XAp + UCp W
Ap +BpMCp ApY +BpR

]
,

ΞB =

[
U

BpM

]
, ΞC = [Cp CpY ] , ΞE = [MCp R] ,

(18)

then the closed-loop system (8)-(10) with the triggering
rule (6) with the parameters in equation (15) is asymp-
totically stable. Furthermore, the matrices in filter and
controller (3)-(5) are[

Af F1

Cf F2

]
=

[
Z XBp

0 I

]−1 [
W −XApY U

R M

] [
−Y 0
CpY I

]−1

,

(19)

with Z = X − Y −1.

Remark 2. Theorem 1 allows to design the parameters of
the triggering condition, the matrices of the filter and the
controller gains thanks to the satisfaction of LMI (17).
Thus Theorem 1 gives a solution to Problem 1. In Meng
and Chen (2014) a non-lossless S-procedure is implicitly
applied to handle two different triggering rules, while
Theorem 1 applies the lossless S-procedure. In addition,
Meng and Chen (2014) fixes the multipliers in the non-
lossless S-procedure while the multiplier α is a decision
variable in Theorem 1.

3.3 Controller and Filter Design

By fixing σ and µ, we can design only the filter and
controller gains stated in the following corollary derived
from Theorem 1.

Corollary 1. For given scalars σ > 0 and µ ∈ [0, 1] in
condition (7), system (8)-(10) with triggering rule (6)
is asymptotically stable if there exist positive definite
matrices X ∈ Sn and Y ∈ Sn, matrices W ∈ Rn×n,
U ∈ Rn×p, R ∈ Rm×n and M ∈ Rm×p, and a scalar α > 0
satisfying
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

ΞP ⋆ ⋆ ⋆ ⋆
0 αI ⋆ ⋆ ⋆
ΞA ΞB ΞP ⋆ ⋆

αΞC 0 0
α

σ2µ
I ⋆

αΞE αM 0 0
α

σ2(1− µ)
I

 ≻ 0, (20)

where matrices ΞP , ΞA, ΞB, ΞC and ΞE are defined in
(18). Then, matrices of the filter and controller (3)-(5) are
obtained from (19) with Z = X − Y −1.

Remark 4. Relation (20) is not an LMI due to the product
of some decision variables with α, but if we fix α, condition
(20) becomes an LMI condition. Thus in order to solve
condition (20), we can use a line search algorithm in α,
while finding the other decision variables.

Remark 5. Corollary 1 allows to expand the results of Wu
et al. (2015), in which the closed-loop system does not
include filter (3)-(4) and approximation to manage the
inequality conditions leading to a certain conservatism are
considered.

4. OPTIMIZATION ISSUES

In this section, we consider two optimization problems:
the first one is related to the event-triggering rule and the
number of data transmission; The second one is related to
a certain level of performance for the closed-loop system.

4.1 Maximizing σ

To decrease the number of communication between the
plant and controller, increasing the sensor inter-event
interval is necessary. We can expect to increase the interval
by maximizing σ, which allows a big difference between
the triggered output and current output, in condition (7).
From relation (15) it appears that σ can be written as
a function of the triplet (α, β1, β2), which are decision
variables in LMI (14). Then, we would like to maximize
the following function

f(α, β1, β2) =
1

α

(
1

β1
+

1

β2

)
.

However, the above function is nonlinear in the decision
variables α, β1, β2. A solution is to consider a first-order
approximation around a triplet (α∗, β∗

1 , β
∗
2) by the trun-

cated Taylor series expansion such that

f(α∗, β∗
1 , β

∗
2) +

∑
s∈{α,β1,β2}

∂f(α, β1, β2)

∂s

∣∣∣∣∣
(α∗,β∗

1 ,β
∗
2 )

(s− s∗)

= g0(α
∗, β∗

1 , β
∗
2) + g1(α, β1, β2),

where g0 is constant and g1 is a linear function of the
triplet (α, β1, β2) such that

g1(α, β1, β2) = −
1

α∗

{(
1

β∗
1

+
1

β∗
2

)
α

α∗ +
β1

(β∗
1)

2
+

β2

(β∗
2)

2

}
.

Then, we can design a sub-optimal triggering condition
that maximizes σ in the case of given the filter, the
controller and an initial triplet (α∗, β∗

1 , β
∗
2). The proposed

design is provided by Algorithm 1 through Lemma 1. To
find a set of the filter and controller with a set of the initial
parameters, for example, we can use Theorem 1.

Algorithm 1 Maximize σ for Lemma 1

Require: Matrices in (3)-(5)
Require: (α0, β0

1 , β
0
2) that stabilizes (8)-(10) with (6)

Construct σ0 from (α0, β0
1 , β

0
2) by (15)

(α, β1, β2)← (α0, β0
1 , β

0
2)

σ ← σ0, σ∗ ← 0
ε← a small number
while σ − σ∗ > ε do

(α∗, β∗
1 , β

∗
2)← (α, β1, β2), σ

∗ ← σ
Maximize g1(α, β1, β2) subject to (14) to obtain
(α, β1, β2)
Construct σ from (α, β1, β2)

end while

4.2 LQ Cost Optimization

Consider the quadratic cost

J∞ =

∞∑
k=0

∆J (k), (21)

where

∆J (k) =
[
x[k]
u[k]

]⊤
Q
[
x[k]
u[k]

]
and 0 ⪯ Q ∈ S2n+m is the weighting matrix to be chosen.
To evaluate control performance for system (8)-(10) with
triggering rule (6), we consider the inequality

V(x[k + 1])< V(x[k])−∆J (k) (22)

that holds for all x[k] and w[k] satisfying equation (12). By
summing up equation (22) from k = 0 to ∞, we have that
J∞ < x[0]⊤Px[0] < tr(P)∥x[0]∥2. If we assume xf [0] = 0,
then we have an upper bound of J∞ as tr(X)∥xp[0]∥2.
Thus we may solve the optimization problem to minimize
cost (21) as follows:

min
X,Y,W,U,R,M,α

tr(X) subject to (23)

M (X,Y,W,U,R,M,α) ⋆

(Q) 1
2

[
Π⊤

P 0
ΞE M

]
0 0 0
0 0 0

I 0
0 I

 ≻ 0

withM (X,Y,W,U,R,M,α) is the matrix of the left-hand
side of relation (20) and

ΠP =

[
I 0
Y −Y

]
. (24)

Remark 6. If α is fixed, then the last condition in prob-
lem (23) becomes an LMI. One can use the line search
algorithm in α to solve this.

To choose a reasonable weighting matrix Q of cost (21),
we introduce a continuous-time setting of the plant such
that

ẋp(t) = Apxp(t) +Bpu(t), (25)

y(t) = Cpxp(t), (26)

where xp(t) and u(t) represent the state and control input
of the plant, respectively, that satisfy xp(kT ) = xp[k] and
u(kT ) = u[k] for the sampling period T . Matrices Ap and
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Bp have compatible dimensions. The quadratic cost for
plant (25)-(26) can be written as follows:∫ ∞

0

[
xp(s)
u(s)

]⊤ [
Qp 0
0 R

] [
xp(s)
u(s)

]
ds (27)

=

∞∑
k=0

∆J (k),

where 0 ⪯ Qp ∈ Sn and 0 ≺ R ∈ Sm are the weighting
matrices, and tk = kT . Then, we can choose Q as follows:

Q =

∫ T

0

 Â(δ)⊤QpÂ(δ) 0 Â(δ)⊤QpB̂(δ)
0 0 0

B̂(δ)⊤QpÂ(δ) 0 B̂(δ)⊤QpB̂(δ) +R

 dδ,

where Â(δ) = eApδ and B̂(δ) =
∫ δ

0
eApsdsBp. Then,

the matrices of discrete-time counterpart of plant (1) are

Ap = Â(T ) and Bp = B̂(T ). Consequently, we can obtain
(Ap, Bp) and Q from (Ap,Bp) and (Qp,R) with T . One
can cite a reference on the general framework on sampled-
data systems as for example Chen and Francis (1994).

5. NUMERICAL EXAMPLES

5.1 Data

Consider the continuous-time system (25)-(26) where

Ap =

0 1 0 0
0 −1.001 −0.5117 0
0 0 0 1
0 2.916 30.05 0

 , Bp =

 0
0.8455

0
−2.461

 .

By using the sampling period T = 0.01, we obtain the
discrete-time system (1) and matrices

Ap =

1 0.01 0 0
0 0.99 −0.0051 0
0 0.0001 1.0015 0.01
0 0.0290 0.3006 1.0015

 , Bp =

 0
0.0084
−0.0001
−0.0245

 .

The parser and solver to solve the problems are YALMIP
(Löfberg (2004)) and MOSEK 9.0 (MOSEK ApS (2019)),
respectively. We commonly use the initial states of the
plant and filter such that xp[0] = [0.3 0 0.3 0]⊤ and
xf [0] = [0 0 0 0]⊤, respectively.

5.2 Example 1 (Co-Design):

Assume in (2) or (26) that

Cp =

[
1 0 0 0
0 0 1 0

]
.

For the set of (Ap, Bp, Cp), a feasible solution to LMI (17)
in Theorem 1 is as follows:

(α, β1, β2) = (221.3, 296.65, 636.0),

[
Af F1

Cf F2

]
=


0.346 0.010 −0.023 0.000 −0.654 −0.023
−0.132 1.052 −0.083 0.078 −0.165 −0.496
−0.026 −0.002 0.228 0.008 −0.025 −0.762
−0.221 −0.158 −1.601 0.768 −0.119 −0.648

−1.304 −7.431 −8.298 −9.315 2.710 41.826

.
Then, from (15), one gets (σ, µ) = (0.0047, 0.6819).

The ratio of events is 88.31% from t = 0 to 10 in the time
evolution.

5.3 Example 2 (Design of Triggering Rule):

For the set of (Ap, Bp, Cp) in Example 1 with (Af , Cf ) and
(F1, F2) that come from the solution to LMI (17) in Theo-
rem 1, we apply Algorithm 1 with Lemma 1 and ε = 10−6

to maximize σ. The initial triplet (α0, β0
1 , β

0
2) also comes

from the solution to (17) in Example 1. After 4 iterations,
we have that (α, β1, β2) = (44.5485, 45.9587, 202.9852),
that is, (σ, µ) = (0.0245, 0.8154). The time evolution of
the closed-loop system for extended plant based on output
error is shown in Fig. 2 where the bottom sub-figure shows
the sensor inter-event interval. The figure illustrates that
the closed-loop system is asymptotically stable while the
maximum interval is 28 at t = 0.34. Then, the ratio of
events is 32.77% from t = 0 to 10. Evolution with zoomed
time scale of Fig. 2 from t = 0.2 to 0.8 is shown in Fig. 3.
Since the output signal is not triggered from t = 0.34 to
0.62, the auxiliary input signal is constant while the input
signal of the plant is not constant due to the filter.

Fig. 2. Example 2 - Time evolution of event-triggered
control system for extended plant based on output
error

5.4 Example 3 (Controller and Filter Design):

Assume in (2) or (26) that Cp is the identity matrix, Cp =
I. That is, we use state feedback control. For given pair
(σ, µ) in condition (7), we design the filter and controller
simultaneously based on problem (23), which minimizes
the LQ cost. The weighting matrices (Qp,R) of cost (27)
is diag(1, 1, 0.5, 0.5) and 1, respectively. To compare this
design method with Theorem 3.1 in Wu et al. (2015),
we fix µ to be 1. The performance of the both methods
are shown in Table 1 for several σ. In the table, J∞ is
the lower bound of cost J∞ that comes from the time
evolution from t = 0 to 10, and xp[0]

⊤Xxp[0] is the upper
bound of J∞ in problem (23) while J∞ and xp[0]

⊤Pxp[0]
are the lower and upper bounds of J∞, respectively, in
Theorem 3.1 in Wu et al. (2015). Rrevent denotes the
ratio of events in the time evolution. The last row in
Table 1, no ETC, represents that there is no triggering
action, that is, standard LQ control, which indicates a
limitation of control performance. For each σ, the solution
to problem (23) has a better performance than that to
the conventional problem. For larger σ, the conventional
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Fig. 3. Example 2 - Evolution with zoomed time scale of
Fig. 2

Table 1. Example 3 - LQ performance for state
error case

Problem σ J∞ xp[0]⊤Xxp[0] Revent

(23) 0.005 10.49 10.92 93.61

(23) 0.010 10.50 11.17 53.25

(23) 0.020 10.58 12.17 36.76

(23) 0.050 11.15 19.29 20.98

(23) 0.100 13.26 40.32 17.68

Problem σ J∞ xp[0]⊤Pxp[0] Revent

Th. 3-1 0.005 10.51 11.08 95.25

Th. 3-1 0.010 10.62 12.18 63.86

Th. 3-1 0.020 11.48 17.56 47.46

Th. 3-1 0.050 — — —

Th. 3-1 0.100 — — —

no ETC — 10.51 10.51 100

method does not have feasible solutions while problem (23)
have feasible solutions. However, for too small σ, problem
(23) tends to be numerically unstable to solve.

6. CONCLUSION

This paper clarified the structure of an extended plant
(that is the plant + the filter) in order to address the
event-triggered control problem of discrete-time systems.
Theoretical conditions in emulation and co-design contexts
were described by LMI conditions, allowing to obtain the
matrices of the dynamic filter and static output feedback
controller as well as the parameters of the triggering rule.
The triggering rule considered was based on the output
signal of the plant. The effectiveness of our approach was
illustrated to compare with the conventional approach
from an optimization viewpoint.

The results open the door for future works. In particular,
it could be interesting to generalize the class of controller
to be designed together with the kind of triggering rule,
which could depend on the input.
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