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Abstract: Cholera is an acute diarrhoeal infection caused by bacteria Vibrio cholerae. The SIQRB 

(Susceptible-Infected-Quarantined-Recovered-Bacteria) epidemic model with a control function is studied 

to analyze the dynamics of cholera. The control function represents the fraction of infected individuals that 

are submitted to treatment in quarantine until complete recovery. One of the drawbacks of mathematical 

modeling is the presence of parametric uncertainties. Designing a control strategy used in accommodating 

these uncertainty factors drives the development of robust control. In this case, the sliding mode control is 

applied to handle parametric uncertainties. The sliding mode control objective is reducing the number of 

infected individuals to zero through the desired tracking scheme of a reference function. The Lyapunov 

stability theorem and Barbalat’s lemma are used to examine the success of the tracking scheme. Lack of 

apriori knowledge related to the boundedness of the parametric uncertainties is settled using an adaptive 

method by updating the switching gain of sliding mode control so that the strategy is called the adaptive 

sliding mode control. Chattering problem that often appears in the application of sliding mode control can 

be reduced. Numerical simulations show that the adaptive sliding mode control satisfies the controller 

objectives and able to handle parametric uncertainties. 

Keywords: adaptive gain, chattering, cholera, epidemiological model, parametric uncertainties, sliding 

mode control. 

 

1. INTRODUCTION 

Cholera is an acute diarrhoeal infection due to the consumption 

of food or drink that is contaminated by bacteria Vibrio 

cholerae. Cholera can kill within 24 hours if left untreated. 

Cholera transmission mostly caused by poor sanitation and 

lack of access to clean water. Researchers have estimated that 

every year, there are 1.3 to 4 million cases with 21,000 to 

143,000 deaths worldwide (Ali, Nelson, Lopez, & Sack, 

2015). Cholera is still endemic in some parts of Africa, South 

Asia, and Latin America with the latest case occurring in 

Yaman, in June 2019 with 85,681 cases in a month (World 

Health Organization, 2019).  

Since 1979, several mathematical models related to the spread 

of cholera have been proposed. Capasso and Fontana built a 

simple mathematical model consisting of infected human 

populations and bacteria V. cholerae based on the epidemic 

phenomenon of cholera in the European Mediterranean in the 

summer of 1973 (Capasso & Fontana, 1979). Then, Codeco 

developed the Cappaso and Fontana models by adding 

vulnerable human populations along with the assumption that 

there was contact between susceptible individuals and water 

sources contaminated with bacteria V. cholerae (Codeco, 

2001). Cui et al. proposed a treatment strategy in the form of 

vaccination so that individuals who are vaccinated have 

temporary immunity against cholera (Cui, Wu, & Zhou, 2014). 

According to the World Health Organization (WHO) in the 

Weekly Epidemiological Record (World Health Organization, 

2017), for the first six months after vaccination, vaccination 

provide about 85% protection, which decreases to 50% during 

the first year and after two years the level of protection 

decreases to less than 50%. Therefore, WHO recommends 

vaccination only as a companion strategy in controlling 

cholera. Lemos-P. et al. proposed a cholera epidemic model 

with optimal control using a quarantine strategy by isolating 

and treating infected individuals until they recover (Lemos-P., 

Silva, & Torres, 2017).  

The dynamics of disease transmission also have the potential 

to be accompanied by factors of uncertainty and inaccuracy. 

Therefore, the uncertainty factor also needs to be considered 

while forming the control strategy. A control strategy known 

as robust control developed to accommodate these uncertainty 

factors. However, we cannot expect one particular robust 

control method to apply to all nonlinear systems.  

Sliding mode control is one of the nonlinear control methods 

that successfully overcome the parameter uncertainty factor. 

The sliding mode control can bring the system output to the 

desired reference function through the tracking scheme and 

overcome the parameter uncertainty in the model. The 

information on the bound or range of the parameter values is 

assumed to be known for designing the sliding mode control. 

Adaptive rules are applied in the sliding mode control design 

to eliminate the need for information related to these 

boundaries. As a result, the strategy is called the adaptive 

sliding mode control. Although it successfully applied in 

various engineering fields, the adaptive sliding mode control 

is still rarely applied to the epidemic models. Several studies 

related to the application of adaptive sliding mode control in 

the field of epidemiology include the general mathematical 
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model in the form of SEIR (Susceptible-Exposed-Infected-

Resistant) with vaccination control by Ibeas et al. (Ibeas, de la. 

Sen, & Quesada, 2014) as well as in the influenza epidemic 

model with vaccinations and treatment controls by Sharifi and 

Moradi (Sharifi & Moradi, 2017). Therefore, for the first time 

in this paper, an adaptive sliding mode control strategy will be 

applied to the cholera epidemic model.  

The paper consists of five sections. The first section is an 

introduction that includes background, a brief description of 

the problem, and the applied method. The cholera epidemic 

model described in the second section. The design of the 

adaptive sliding mode control to deal with disease 

transmission and parameter uncertainty of cholera epidemic 

models described in the third section. The fourth section 

discusses the numerical simulation of applying the methods 

outlined in the third section. The fifth section is the conclusion 

as a summary of the results obtained from the research written 

in this paper. 

2. CHOLERA EPIDEMIC MODEL 

The SIQRB epidemic model of cholera described by the 

following equations (Lemos-P., Silva, & Torres, 2017): 
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where control function ( )u t  represents the fraction of infected 

individuals 𝐼(𝑡) that are submitted to treatment in quarantine 

until complete recovery. The control ( )u t  takes the value in 

the closed set [0,1]  so 0u   means no control measure and 

1u   means all infected individuals are put under quarantine. 

𝛿 is the rate of infected individually to be in quarantine. 

The variables and parameters of the model are described in 

Table 1 and Table 2 as follows: 

Table 1. Variable for SIQRB model (1), (Lemos-P., Silva, & 

Torres, 2017). 

Variable Description Unit 

( )S t  Susceptible individuals at time t person 

( )I t  Infected individuals at time t person 

( )Q t  Quarantined individuals at time t person 

( )R t  Recovered individuals at time t person 

( )B t  Bacterial concentration at time t cell/ml 

Table 2. Parameter value for SIQRB model (1), (Lemos-P., 

Silva, & Torres, 2017). 

Description Parameter Value 

Recruitment rate   
24.4N(0)/365000 

(day−1) 

Natural death rate   2.2493×10−5 (day−1) 

Ingestion rate   0.8 (day−1) 

Half saturation 

constant 
  106 (cell/ml) 

Immunity waning 

rate 
  0.4/365 (day−1) 

Recovery rate   0.2 (day−1) 

Death rate (infected) 1  0.015 (day−1) 

Death rate 

(quarantined) 2  0.0001 (day−1) 

Shedding rate 

(infected) 
  10 (cell/ml 

day−1person−1) 

Bacteria death rate d  0.33 (day−1) 

3. ADAPTIVE SLIDING MODE CONTROL FOR 

CHOLERA EPIDEMIC MODEL 

Sliding mode control is a nonlinear control technique designed 

to bring the state of the system to a sliding surface and keep it 

on the sliding surface. Therefore, Liu and Wang stated that 

there are two steps in the sliding mode control design. The first 

step is designing a sliding surface so that the plant restricted to 

the sliding surface has the desired system response. The 

second step is constructing a switched feedback gains 

necessary to drive the plant’s state trajectory to the sliding 

surface (Liu & Wang, 2012). The Lyapunov stability theorem 

and Barbalat’s lemma guarantee the success of the sliding 

mode control scheme. 

3.1  Sliding Mode Control Design 

There are two advantages of the sliding mode control (Liu & 

Wang, 2012). First is the ability to adjust system behavior 

based on a particular sliding surface selection. Second, the 

response of the closed loop system can become insensitive to 

uncertainty including the uncertainty of model parameters and 

the system interference. The sliding mode control built in two 

phases. The first phase is the reaching phase when the state 

trajectory is driven towards the sliding surface while the 

second phase is the sliding phase when the state trajectory is 

moving towards the origin along the sliding surface (Shtessel, 

Edwards, Fridman, & Levant, 2010). 

In this subsection, a sliding mode control designed for the 

cholera epidemic model (1) to asymptotically reduce the 

number of infected individuals over a certain period while 

handling parameter uncertainty. It assumed that the parameter 

uncertainty factor lies in the parameters of the ingestion rate 

( ) and the rate of disease-related death of infected 

individuals 1( ) . Therefore, the tracking error defined as: 

 ( ) ( ),( )r refe I It t t   (2) 

where ( )I t  represents the number of infected individuals at 

time t while ( )refI t  represents the reference function that 

satisfies: 

 (0) (0),refI I  (3) 

 ( ) 0,  .refI t t   (4) 
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Equation (3) states that the initial tracking error is zero 

( 0).re   Equation (4) states that the reference function 

asymptotically goes to zero. Reference functions can be 

formed as desired as long as they meet (3) and (4). Therefore, 

for simulation purposes, the following reference function is 

used: 

 ( ) ( (0) ( )) ( ),t
ref f fI t I I t e I t    (5) 

with the parameter 0   set the rate of convergence of the 

reference function, (0)I represents the initial number of 

infected individuals, and ( )fI t  represents the number of 

infected individuals at the end of the simulation. The sliding 

mode controller consists of the equivalent control ( )equ  and 

the switching control ( )swu . The equivalent control maintains 

the system in the sliding surface while the switching control 

forces the system towards the sliding surface. A sliding 

variable ( )t  which satisfies the control objective defined as: 

 ( ) ( ).rt e t   (6) 

The sliding surface which guarantees the achievement of 

control objective given by: 

 ( ) ( ) 0.rt e t    (7) 

To maintain the position of state on sliding surface, it 

necessary to apply ( ) ( ) 0.t t    Time-derivative of the 

sliding variable gives 
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 (8) 

so by substituting ( ) 0t   in (8), we get the control value 

( )u t  which is then called equivalent control equ  in the form 
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 (9) 

The uncertainty factor causes the parameters of the system 

exactly not known. Therefore for practical purposes, nominal 

parameters are used by defining: 

 

1 1

ˆ( ) ( )
ˆ( ), ( ),

( ) ( )

ˆˆ, ,

B t B t
p S t p S t

B t B t

q q

 
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 (10) 

where ̂  and 1̂  are the nominal parameters of   and 1.  

Therefore, equivalent control (9) becomes 

   
1

ˆ ˆ ˆ ( ) (0) ( .
( )

) t
eq fu p qI t I I t e

I t




     (11) 

The application of the equivalent control (11) to the system (1) 

may not fulfill the control objective since the equivalent 

control works with the assumption that the sliding surface 

achieved. Hence, the equivalent control extended by selecting 

a switching control in the form of a constant rate of 

achievement rule (Liu & Wang, 2012) as follows: 

 
( , )

sgn( ( )),
( )

sw

g x t
u t

I t



  (12) 

where sign function (sgn)  defined as: 

 

1 if   0,

sgn( ) 0 if   0,

1 if   0.

x

x x

x




 
 

 (13) 

As a result, the control law becomes 

 ˆ( ) ,eq swu t u u   (14) 

with ˆequ  in (11) and swu  in (12). The switching gain ( , )g x t  

will be determined to handle parameter uncertainty so that the 

control rules in (14) can guarantee the convergence of the 

tracking error (2). Switching gain ( , )g x t  is defined based on 

the following assumptions (Ibeas, de la. Sen, & Quesada, 

2014): 

Assumption 1 There is a state-dependent function ( , )b x t  such 

that the following upper-bounding holds: 

 ˆ ˆ( ) ( ) ( , ),  0.p p q q I t b x t t      (15) 

Assumption 2 The upper-bounding function ( , )b x t  is known. 

Assumption 3 The switching gain ( , )g x t  is selected as  

    , , ,  0.g x t b x t k k    (16) 

Assumption 1 is related to the upper bound of uncertainty in 

parameters. Note that the function ( , )b x t  exists because the 

model parameterized by certain parameters despite being 

unknown. To present it clearly, the inequality (15) can be 

rewritten as 

 

,

,

ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( ) ( ) ,

( , ),

eq true eq

eq true eq

p p q q I t I t u t I t u t

I t u t u t

b x t

 



    

 



 (17) 

where ,eq trueu  is the control function in terms of actual value, 

while equ  is the control function in terms of nominal value. 

Thus, based on (17), Assumption 1 states that the difference 

between the application of quarantine with actual parameters 

and nominal parameters is bounded by a certain upper bounded 

function. This assumption is directly related to the error that 

occurs in quarantine treatment due to parameter uncertainty. 

Assumption 2 states that the upper-bounding ( , )b x t  is known. 

This is a general assumption in a sliding mode control system 

(Slotine & Li, 1991). Then, Assumption 3 defines how the 

switching gain ( , )g x t  must be chosen. 

Furthermore, Assumption 2 will be simplified in the next 

subsection, where the switching gain ( , )g x t  is adapted online 
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eliminating the required information related to the parameter 

bound values. Now, the following Theorem 1 (modified from 

(Ibeas, de la. Sen, & Quesada, 2014)) can be proven. 

Theorem 1. Consider the SIQRB epidemic model (1) with the 

control law (14). Thus if Assumptions 1, 2, and 3 hold, then 

tracking error ( ( ))re t  vanishes asymptotically. 

Proof. Using the Lyapunov stability theorem, consider the 

Lyapunov candidate function: 
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Time-derivative of (18) is calculated as 

  

 

 

1

( ) ( ) ( )

ˆ ˆ( ) ( ) (

( )
( ) ( ) ( ) ( ) ( ) ( )

.

) ( ) ( , ) sgn( ( ))

( ) ( , ) sgn( ( )) ( , ) sgn( ( ))

( n

( )

(

) sg ( ( ))

| ( )

(0) ( ))

| 0

t
f

V t t t

t p p q q I t g x t t

t b x t

B t
t S t u t

t

I t

t

t g x t

I t
B t

I

t

k t

e
B

k

I

t








  
















 










  





    

 

 







  







 

Pay attention to the use of Assumptions 1, 2, and 3 which 

indicate that the time-derivative of ( )V t  for ( ) 0V t   is 

always negative definite. Thus, according to the Lyapunov 

stability theorem (Khalil, 2002), the origin ( ( ) 0)t   is 

asymptotically stable, so that ( ) 0t   as .t   This means 

that the sliding mode control brings the tracking error ( ( ))re t  

to zero asymptotically.∎ 

In this way, ( ) ( )refI t I t  as t   so that the number of 

infected individuals also goes to zero. Thus, this theorem 

guarantees that sliding mode control can meet the control 

objective, which is reducing the cholera transmission with the 

presence of uncertainty parameters in the epidemic model. 

However, there is a drawback to this approach, given that the 

upper bound ( ( , ))b x t  must be known (Assumptions 1 and 2) 

for defining gain ( ( , ))g x t  that depends on that value 

(Assumption 3). In some cases, this information may not be 

known in advance and complicates the application of the 

proposed control. Therefore, adaptation over time to the value 

of switching gain needs to be done to avoid the required a 

priori knowledge related to the upper bound ( ( , ))b x t . 

3.2  Adapting Switching Gain of Sliding Mode Control 

In this subsection, the switching gain ( ( , ))g x t  in (12) is 

adapted online to eliminate the required information regarding 

the upper-bound ( ( , ))b x t under Assumption 2. However, 

Assumption 1 regarding the upper-bound still applied even 

though it is not used explicitly in the controller design process. 

Besides, the following Assumption 4 is an extension of 

Assumption 1 and will be used to prove the stability of the 

control scheme.  

Assumption 4 (Ibeas, de la. Sen, & Quesada, 2014) There exist 

a finite, potentially unknown, positive constant 𝑏̅ such that 

 ( , ).b b x t  (19) 

Note that Assumption 1 states that the upper-bound is a state-

depending function, while Assumption 4 states that ( , )b x t  is 

upper-bounded by a constant. From a biological perspective, 

this assumption states that the absolute error between nominal 

and actual parameters in the model bounded by a constant. 

However, it should be noted that the upper-bound may not be 

known explicitly in the control design and only used in the 

proof of stability. Furthermore, the switching gain adaptation 

process starts with a value of zero and then increases it until 

the sliding condition met. Therefore, the switching control (16) 

changed into 
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g t
u t

I t



  (20) 

As a result, the control law u on (14) now becomes 

 

  
1
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where ˆ ( )g t  denotes the time-varying switching gain that 

updated by the following adaptive rule: 

 
ˆ( )

ˆ( )sgn( ( )) | ( ) |,  (0) 0,
dg t

t t t g
dt

        (22) 

where   is a positive constant. 

The switching gain ˆ ( )g t  may be divergent given its derivative 

in (22) is definite non-negative all the time. The key that 

guarantees the success of tracking error towards zero is the 

positive constant b  in Assumption 4 exists despite being 

unknown. Thus, the switching gain value rises until an upper-

bound (19) reached. Then, the system converges to the sliding 

surface ( ( ) 0)t   stopping the increase of the switching gain

ˆ ( )g t . This scheme makes the control objective fulfilled as how 

the following Proposition 1 applies. 

Proposition 1. Consider the SIQRB epidemic model (1) with 

control law (21) and (22). If Assumptions 1 and 4 hold for a 

finite upper bound b that may be unknown and 0  , then 

tracking error ( ( ))re t  asymptotically goes to zero.  

Proof. Suppose Assumption 4 applies, then there is a constant 

  that satisfies b k    for each constant 0k  . Based on 

Lyapunov’s stability theorem, a Lyapunov candidate function 

defined as: 

 2 2
1

1 1
ˆ( ) ( ) ( ( ) ) ( ) .

2
V t t g t t 

 
   

 
 (23) 
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Time-derivative of (23) is 

 

 
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Thus, we get 1( )V t  positive definite and its time-derivative 

1( )V t  is semidefinite negative so according to the Lyapunov’s 

stability theorem (Khalil, 2002), the origin ( ( ) 0)t   is 

stable. The asymptotic nature cannot be shown considering 

that the derivative function of the Lyapunov candidate 

function is semidefinite negative. However, using the 

Barbalat’s lemma (Khalil, 2002), it can be shown that the 

system asymptotically converges towards the sliding surface 

( ( ) 0)t  . 

Suppose 
21

( ) ( ),
2

w t t  using Barbalat’s lemma, will be 

shown that ( ) 0w t   as .t   Time-derivative of ( )w t  

given by ( ) ( ) ( ),w t t t   since ( )t  and ( )t  bounded, 

then ( )w t  bounded so that ( )w t  uniformly continuous. Based 

on the time-derivetive of Lyapunov candidate function 1( ( ))V t  

we get 

 1( ) ( ) ( ),  2 ,V t k t kw t k k      (24) 

thus the integration of (24) from 0 to t as t   leads to 

 1 1
0

(0) ( ) lim ( ) .
t

t
V V kw d 


     (25) 

Since 1( ) 0,V t   then 1 1(0) ( ) 0.V V    As a result, 

0
lim ( )

t

t
w d 

   exist and finite. Therefore, ( ) 0w t   as 

t  , or in other words, the convergence towards the sliding 

surface ( ( ) 0)t   certainly achieved.∎ 

That is how the adaptive sliding mode control scheme 

succeeds in reducing the number of infected individuals and 

handling parameter uncertainties. 

4. NUMERICAL SIMULATION 

In this section, a numerical simulation is used to evaluate the 

performance of the proposed adaptive sliding mode control 

scheme for the cholera epidemic model. The initial values for 

each state in the model (1) takes the value of 

   (0), (0), (0), (0), 0 5750,1700,0,0,275000( )S I Q R B   with 

an observation time of 182 days, the constant 0.0005,  and 

the actual parameter values in the Table 1. The number of 

infected individuals is expected to decrease as the following 

reference function: 

  ( ) (0) exp( ) ( )) ,(ref f fI t I I t t I t     (26) 

where (0)I  is the initial number of infected individuals,   is 

the exponential convergence rate of the reference function, in 

this case 0.05,   and ( )fI t  is the the expected number of 

infected individuals by the end of simulation, which is day 

182. It is expected that at the end of the simulation no humans 

will be infected so ( ) 0fI t   is selected. The results of the 

numerical simulation for the cholera epidemic model with 

adaptive sliding mode control are given in Figure 2 as follows. 

 
Fig 2a.Numerical simulation of the number of infected individuals. 

 
Fig 2b.Graph of tracking error. 

 
Fig 2c. Graph of adaptive switching gain 𝑔̂. 

Fig 2. Numerical simulation for cholera epidemic model with 

adaptive sliding mode control. 

Table 1. Comparison of the average number infected individuals 
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Average number of infected 

human for 182 days (person) 

without control 2539 

0 50 100 150
0

1000

2000

3000

4000

5000

6000

time (days)

n
u

m
b

er
 o

f 
in

d
iv

id
u

al
s

 

 

infected individuals without control (I)

infected individuals with control (I)

reference function (I
ref

)

0 50 100 150
0

500

1000

1500

2000

2500

time (days)

tr
a
c
k

in
g

 e
rr

o
r 

(e
r)

0 50 100 150
0

10

20

30

40

50

60

time (days)

sw
it

c
h

in
g

 g
a
in

 (
g

)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

16317



 

 

     

 

with adaptive sliding mode 

control 
778 

In Figure 2a, it appears that in the end, the number of 

individuals infected with cholera ( ( ))I t  drops towards zero 

following the reference function ( ( ))refI t , which also drops 

towards zero. From Figure 2a and Table 3 it appears that the 

application of the proposed control scheme reduces the 

number of infected individuals. The use of adaptive sliding 

mode control reduces the average number of infected 

individuals by 69.4% compared to the uncontrolled treatment. 

The number of infected individuals with and without control 

treatment has the same behavior as to how they initially rise to 

a certain maximum value. However, using quarantine 

treatment, this maximum value is decreased, from 5374 on the 

20th day to 3414 on the 7th day. As a result of a decrease in 

the number of infected individuals, there is a decrease in 

contact between infected individuals and the water source that 

is potentially contaminated by bacteria V. cholerae. In other 

words, the number of recruiting bacterial concentrations has 

decreased, whereas there are still mortality factors in bacterial 

subpopulation. Thus, the potential for cholera transmission 

decreased. Then in Figure 2b we see how the tracking error 

goes to zero so that the control objective is fulfilled, which is 

to reduce the number of infected humans through the tracking 

function of a reference function. As a result, the sliding surface 

( ( ) 0)t   begins to reach and the switching gain ˆ( ( ))g t  

starts to stop increasing, as shown in Figure 2c.  

Next, we will examine the effect of selecting the convergence 

rate ( )  of the reference function ( ( ))refI t  on adaptive 

sliding mode control effort, tracking error, and infected 

individuals’ dynamics ( ( ))I t . Therefore, we variate the rate of 

convergence of the reference function as 0.01   and 

0.05  . Here is the numerical simulation of the cholera 

epidemic model with adaptive sliding mode control for the 

selected convergence rates in the reference function. 

 
Fig 3a.Control rules with variation on the convergence rate ()  of the 

reference function (Iref). 

 

Fig 3b. Number of infected individuals with variation on the 

convergence rate ()  of the reference function (Iref). 

 

Fig 3c.Graph of tracking error with variation on the convergence 

rate ()  of the reference function (Iref). 

Fig 3. Numerical simulation for cholera epidemic model 

with variation on the convergence rate of the reference 

function. 

In Figure 3a, the faster the reference function converges to 

zero, the greater the control effort given. Besides, with the 

rapid convergence of the reference function, the decrease in 

the number of infected people is faster, as shown in Figure 3b. 

The faster the number of infected individuals decreases does 

not mean that the faster tracking error goes to zero, as shown 

in Figure 3c.  

The chattering phenomenon is a problem that often 

encountered in the implementation of sliding mode control 

(Slotine & Li, 1991) as seen in the system for the reference 

function with a convergence rate of 0.01  . The chattering 

phenomenon is seen in the switching or on/off behavior of the 

control (Figure 3a)) when the sliding surface begins to reach 

on the 74th day. In ideal sliding mode control, once the 

trajectory of the infected individuals touching the reference 

function, it should slide on the reference function, so it no 

longer cuts the reference function creating zig-zag motion 

(oscillation). However, in Figure 3b, there is an oscillation of 

the trajectory of the infected individuals around the reference 

function. This oscillation is known as chattering.  

Chattering that occurs in sliding mode control is acceptable, 

but in practice, it would be better if chattering does not exist 

(Slotine & Li, 1991). This is necessary to avoid extreme 

control performance, such as spontaneous switching. In this 
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case, we can not eliminate chattering, however, we can reduce 

it without changing the control scheme that established before. 

Therefore, without loss of generality, the sign function in the 

switching control ( )swu  can be approximated using the 

sigmoid function, in this case, the hyperbolic tangent function  

used.  

The following are the numerical simulation in reducing the 

chattering effect on the cholera epidemic model for reference 

function with the convergence rate of 0.01  . 

 
Fig 4a. Comparison on the adaptive sliding mode control with sgn  

and tanh function. 

 
Fig 4b. Comparison on the adaptive sliding mode control to sgn  and 

tanh function on day 170 to 173. 

 
Fig 4c. Comparison on the number of infected individuals between 

control to sgn  and tanh function. 

Fig 4. Numerical simulation on the approximation of sign 

function using hyperbolic tangent function in reducing the 

effect of chattering. 

In Figure 4a and Figure 4b, we can see that the approximation 

of the sign function with the hyperbolic tangent function  

reduces chattering in the application of adaptive sliding mode 

control. As a result, changes in control values no longer occur 

spontaneously (extreme) in the range of [0,1] but only around 

[0,0.1]. Besides, the use of the hyperbolic tangent function 

does not affect the proposed control scheme so that the control 

objective still met. Furthermore, there is no significant 

difference between tracking the reference function for controls 

with the sign  function or with the hyperbolic tangent function 

as shown in Figure 4c.  

Thus, even though we cannot eliminate chattering, we can 

reduce it so that the control works efficiently in meeting the 

tracking scheme. Besides, the approximation using the 

hyperbolic tangent function still applies following the sliding 

mode control design scheme that built previously.  

Furthermore, we apply some variation on the uncertainty 

percentage of the parameters of the cholera epidemic model to 

see the performance of the adaptive sliding mode control 

scheme in handling parameter uncertainty. Uncertainty 

percentage defined as the percentage of error relative to the 

nominal parameter against the actual parameter denoted as  

and formulated as: 

 
ˆ

100%
 



 
   

 
 (27) 

with ̂  represents nominal parameters, and   represents 

actual parameters with the value given in Table 1. We assume 

| | 1  , which means that the relative error percentage of 

nominal parameters and actual parameters is no more than 

100%. As in the control scheme (14) that we built before, the 

parameter uncertainty factor lies in the parameters of the 

ingestion rate   and the rate of disease-related death of 

infected individuals 
1.  

Then, for simulation purposes, the uncertainty percentages  

that we used are 20%, 40%, 60%, and 80%. The following are 

numerical simulation results for the variation of the 

uncertainty percentages on the application of adaptive sliding 

mode control for cholera epidemic model. 
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Fig 5a. Control rules for different values of parameter uncertainty. 

 
Fig 5b. Number of infected individuals for different values of 

parameter uncertainty. 

 

Fig 5c. Graph of tracking error for different values of parameter 

uncertainty. 

Fig 5. Numerical simulations for cholera epidemic model 

with variation of parameter uncertainty. 

In general, the variation of uncertainty percentage  results in 

system dynamics that are not much different from each other. 

In Figure 5a, we can see the control law  for the given variation 

of uncertainty percentage. Even though there is a parameter 

uncertainty factor, the control scheme in Figure 5c is still able 

to fulfill the control objective, which is to reduce the number 

of infected individuals by tracking the reference function, as 

shown in Figure 5b. Then, in Figure 5c, we can see how the 

tracking error for each variation of uncertainty percentage still 

goes to zero. In other words, the adaptive sliding mode control 

can perform well in handling the parameter uncertainty. 

5. CONCLUSIONS 

Based on the simulation results, it appears that the adaptive 

sliding mode control strategy can reduce the number of 

individuals infected with cholera through a reference function 

tracking scheme despite the existence of the parameter 

uncertainty. Adaptive sliding mode control with the desired 

reference function can suppress the average number of 

infected individuals and with a percentage of 69.4% compared 

to the uncontrolled treatment. 
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