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Abstract: We propose a sensitivity-assisted multistage Nonlinear Model Predictive Control
strategy, called samNMPC, to address multistage stochastic programs for robust NMPC. Our
approach divides the scenario sets in the stochastic programming formulation into critical
and noncritical sets. Critical scenarios are selected by scenario generation based on worst-
case constraint determination, while stage costs for noncritical scenarios are determined by
sensitivity-based approximations. The resulting multi-stage NMPC problem leads to a first order
accurate control profile that satisfies all constraints under uncertainty. Moreover, computational
costs of this formulation scale independently of the number of disturbance variables, and only
linearly with the robust horizon and number of constraints. Our proposed approach is illustrated
on a CSTR (continuous stirred tank reactor) case study with two uncertain parameters.
Compared to competing approaches, samNMPC delivers robust performance of multi-stage
NMPC with significantly less computational cost.
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1. INTRODUCTION

Model predictive control (MPC) is a modern control con-
cept that has been popular in the refinery, chemicals, auto-
motive and aerospace industries (Qin and Badgwell, 2003).
Robust MPC has gained much attention over the past two
decades, especially for systems that require satisfaction
of stability, performance metrics and system constraints
under model variations and noise signals (Bemporad and
Morari, 1999). To meet both robust stability and perfor-
mance requirements, Bemporad and Morari classify two
ways to design a robust MPC controller: formulating an
optimal control objective and uncertainty set that leads to
robust stability, or explicitly applying robust contraction
constraints to guarantee stability. Min-max MPC (Campo
and Morari, 1987) and tube-based MPC (Mayne et al.,
2005) follow these two options, respectively. On the one
hand, min-max MPC suffers from conservatism due to the
rare occurence of the worst case. On the other hand, tube-
based MPC needs an ancillary controller that is difficult
to compute for nonlinear models.

To design a robust NMPC controller with less conser-
vatism, Lucia et al. (2013) have developed multistage
NMPC that shows advantages in constraint handling un-
der the presence of uncertainties. In addition, Yu and
Biegler (2019) prove robust stability of multistage NMPC
for both ideal and sensitivity-based constructions. How-
ever, the optimization problem size increases significantly
with respect to the number of uncertain parameters and
the length of robust horizon. To ease the online compu-
tational stress, decompositions and approximation algo-
rithms have been developed to limit the growth in prob-

lem size, while preserving the properties of multistage
NMPC. Leidereiter et al. (2015) apply a dual decompo-
sition approach that solves QPs in the inner layer and
applies a non-smooth Newton method in the outer layer.
Similarly, Krishnamoorthy et al. (2019) develop a primal
decomposition algorithm that ensures the satisfaction of
non-anticipativity constraints. Alternatively, Daosud et al.
(2019) approximate cost-to-go functions of different sce-
narios by neural networks and apply to a semi-batch reac-
tor. This approach is fast, but requires tuning of the robust
horizon. Finally, Holtorf et al. (2019) introduce an online
scenario generation method to approximate multistage
NMPC with far fewer scenarios, but only by optimizing
a worst case cost function.

This study develops a sensitivity-assisted multistage NMPC
(samNMPC) method that emulates the multistage NMPC
with scenario generation, but considers conventional stage
costs by performing a NLP sensitivity calculation. Section
2 discusses the detailed algorithm, followed by Section 3,
which presents a CSTR example and compares the perfor-
mance with other state-of-the-art robust NMPC methods.
Lastly, Section 4 summarizes the paper and outlines future
work.

2. SAM-NMPC ALGORITHM

Consider the discrete-time nonlinear dynamic model:

xk+1 = f(xk, uk, dk)

where xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu are state and
control variables at time step k, and dk ∈ D ⊂ Rnd

represents the time-varying model parameter. As a typical
choice, each element of dk can take three possible values:
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Fig. 1. Typical scenario tree where nd = 1, Nr = 1. Dashed

lines show the critical scenario Ĉ = {1}.

{max, nominal, min}. The sensitivity-assisted multistage
NMPC (samNMPC) is built upon the same scenario tree
as in conventional multistage NMPC, but combines with
a sensitivity-based approximation algorithm that avoids
the exponential growth of the online optimization problem
with respect to number of uncertain parameters. We start
by describing conventional multistage NMPC.

2.1 Multistage NMPC

Multistage NMPC (Lucia et al., 2013) has been developed
at the intersection of stochastic programming and modern
control. A scenario tree is formed to represent the state
evolutions for all possible uncertain model parameters.
In practice, a robust horizon Nr (shorter than prediction
horizon N) is also applied to manage a tractable prob-
lem size. A scenario tree with robust horizon Nr = 1
can be seen as Fig. 1, where zcl , v

c
l , d

c
l denote the state,

control variables, and parameter at stage l and scenario c,
respectively. Note that the dotted bracket depicts the non-
anticipativity constraint (NAC). NACs are required within
the robust horizon to enforce the same control variable for
every scenario originating from the same node (state). To
translate Fig. 1 to an optimization problem with prediction
horizon N , the following formulation is solved for each
horizon k

JN (xk) = min
zc
l
,vc

l

∑
c∈C

pc
(
φ(zcN , d

c
N−1) +

N−1∑
l=0

ϕ(zcl , v
c
l , d

c
l )
)

(1a)

s.t. zcl+1 = f(zcl , v
c
l , d

c
l ) l = 0, ..., N − 1 (1b)

zc0 = xk (1c)

vcl = vc
′

l {(c, c′)|zcl = zc
′

l } (1d)

dcl−1 = dcl for l = Nr, . . . N − 1 (1e)

zcl ∈ X, vcl ∈ U, zcN ∈ Xf , d
c
l ∈ D (1f)

∀c, c′ ∈ C (1g)

where the objective function (1a) contains a weighted
terminal costs φ(·, ·) and the sum of stage costs ϕ(·, ·, ·)
over time. (1d) denotes the non-anticipativity constraint
(NAC) and (1e) shows the same uncertain parameter
values are used for the rest of prediction horizon beyond
robust horizon.

2.2 NLP sensitivity properties

To explore sensitivity properties for multistage NMPC
optimization problem (1), we apply a barrier NLP solver
such as IPOPT (Wächter and Biegler, 2006). We can
rewrite (1) as the following generic parametric program:

min
x

F (x; p) s.t. h(x, p) = 0, x ≥ 0 (2)

where the variable vector x includes all primal variables in
(1), and p0 and p1 represent the parameter in the current
scenario and in perturbed scenarios, respectively. IPOPT
handles the inequality constraints implicitly through a
barrier function in the objective with parameter µ, and
solves the following problem:

min
x

F (x; p)− µ
nx∑
i=1

ln(xi) s.t. h(x, p) = 0. (3)

After solving a sequence of problems (3), with µ → 0
and p = p0 the solutions of (3) approach x∗ = x(p0),
the solution of (2). To see how x∗ varies with respect to
perturbations of p, we cite the following property:

Theorem 1. (NLP Sensitivity) (Fiacco, 1976, 1983). If
f(·, ·), ϕ(·, ·) and φ(·) of the parametric NLP problem (2)
are twice continuously differentiable in a neighborhood
of the nominal (primal and dual) solution s∗(p0) and
this solution satisfies the linear independence constraint
qualifications (LICQ), strong second order sufficient con-
ditions (SSOSC) and strict complementarity (SC), then
the solution s∗(p0) is differentiable in p.

Moreover, for µ > 0 but negligibly small, the primal-
dual optimality conditions (i.e. KKT conditions) of (3)
are solved directly at p0,

∇xL(x∗, λ∗, υ∗; p0)

= ∇xF (x∗; p0) +∇xh(x∗; p0)λ∗ − υ∗ = 0

h(x∗; p0) = 0, X∗V∗e = µe (4)

with V = diag(υ),X = diag(x), and eT = [1, .., 1]. The
primal-dual solution vector is

s(µ; p)T = [x(µ; p)T , λ(µ; p)T , υ(µ; p)T ].

Applying Theorem 1 and the implicit function theorem to
differentiate (4) leads to the following linear system for
sensitivity of s.

M(s(µ; p0))∆s = −N (s(µ; p0); p) (5)

where

M(s(µ; p0)) =

∇xxL(s(µ; p0)) ∇xh(s(µ; p0)) −I
∇xh(s(µ; p0))T 0 0

V (µ; p0) 0 X(µ; p0)


is the KKT matrix, and

N (s(µ; p0); p)T = [∇xL(s(µ; p0); p)T , h(x(µ; p0); p)T , 0]

with s(0; p) = s(µ; p0) + ∆s + O(||p − p0||2) + O(µ).
When LICQ, SSOSC, and SC are satisfied at s(µ; p0),
M(s(µ; p0)) is nonsingular and the sensitivities ∆s can be
computed as ∆s = −M(s(µ; p0))−1N (s(µ; p0); p) using a
cheap backsolve if the factorized form of M(s(µ; p0)) is
available.

Applying NLP sensitivity to multistage NMPC problem
(1), one can rewrite (5) in the following block-bordered-
diagonal (BBD) form,
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
K0 . . . N0

K1 . . . N1

...
...

. . .
...

Kc̄ Nc̄

NT
0 NT

1 . . . NT
c̄




∆s0

∆s1

...
∆sc̄
γ

 = −


r0

r1

...
rc̄
0

 (6)

where c̄ = |C|, Kc =

[
Wc Ac

AT
c 0

]
, ∆sc =

[
∆xc

∆λc

]
,

rTc = [∇xcL(xc, dc)T , h(xc, dc)T ] for each c ∈ C. Wc =
∇xcxcL(xc, dc) + X−1

c Vc is the augmented Hessian for
scenario c. xc = [zc0, v

c
0, z

c
1, v

c
1, ..., z

c
N−1, v

c
N−1, z

c
N ]T denotes

all primal variables associated with scenario c, and λc for
all multipliers associated with scenario c.

In (6), Nc represents the NAC constraint that contains

scenario c, where Nc = [Ñc, 0]T ∈ Rn+mc × RmNAC∗nu

and n and mc are the number of primal variables and
constraints, respectively, in each scenario, and mNAC is

the number of NAC constraints. Nc and Ñc can be
generated for robust scenarios of any length, and are sparse
with nonzero elements of 1’s and -1’s that correspond
only to control variables for the NAC. Additionally, γ in
(6) is the multiplier associated with NAC (1d) with the
dimension γ ∈ RmNAC∗nu .

The linear system (6) can be solved with the Schur
Complement,∑

c∈C
(NT

c K
−1
c Nc)γ = −

∑
c∈C

(NT
c K
−1
c rc) (7)

Kc∆sc = −(rc + Ncγ), ∀c ∈ C (8)

where ∆sc is the sensitivity with scenario c ∈ C, which
can then be used to calculate a perturbed solution for that
scenario as s̃c(p) = sc(p0) + ∆sc.

The structure of multistage NMPC problems can be ex-
ploited to obtain a fast approximate solution with respect
to perturbed parameters. Solving the BBD linear system
with the help of Schur-complement can be two orders
of magnitude faster than solving a NLP problem. Fur-
thermore, it would expedite the process even more if the
factorization of the KKT matrix in (6) can be obtained.
The next section discusses an inexpensive way to do this
by solving the nominal NMPC problem.

2.3 Nominal NMPC

Standard NMPC (or nominal NMPC) considers only the
nominal model in the controller, and it solves the following
single scenario problem:

min
zl,vl

φ(zN , d̄N−1) +

N−1∑
l=0

ϕ(zl, vl, d̄l) (9a)

s.t. zl+1 = f(zl, vl, d̄l) l = 0, ..., N − 1 (9b)

z0 = xk (9c)

zl ∈ X, vl ∈ U, zN ∈ Xf (9d)

Problem (9) has a smaller problem size than Problem (1);
it is more computationally efficient, but it may violate con-
straints and perform poorly due to plant-model mismatch
(Yu and Biegler, 2019).

From the standard NMPC problem (9), one obtains the
NLP sensitivity from K0∆s0 = −r0, where ∆sT0 =

[(∆x0)T , (∆λ0)T ], r0 = [∇x0L(x0, d0)T , h(x0, d0)T ].
From the nominal NMPC problem, the solution to (9)
can be used to form the sensitivity system (6). If we
substitute the approximation Kc = K0 in (6), we can
then solve for the approximate sensitivity solution ∆sTc =
[(∆zc)T , (∆vc)T , (∆λc)T ] = [(z̄c−z0)T , (v̄c−v0)T , (λ̄c−
λ0)T ], which provides perturbed solutions for all scenarios
s̃(p). This computation is particularly efficient since the
KKT matrix of the nominal NMPC problem (K0) has
already been factored and reused in (7) and (8).

2.4 Critical scenarios

The remaining feature of the algorithm deals with feasible
performance under uncertainty. Robustness of multistage
NMPC is often enforced by considering scenarios with
extreme-value parameters (i.e. max or min). If one can
predict which parameter values are likely to violate con-
straints, then the scenarios associated with these values
should be treated differently in (1) than in scenarios
where the chance of violating constraints is low. We call
the former critical scenarios, and the latter non-critical
scenarios. To determine critical scenarios we apply the
approach in Holtorf et al. (2019) to the following dynamic
model and constraints:

xk+1 = f(xk, uk, dk), xk ∈ X, uk ∈ U, (10)

and discretize the uncertainty description (i.e. {max,
nominal, min}) to develop a scenario tree. At the current
state of the plant xk, critical scenarios are then determined
by solving the following optimization problem:

max
dl

gj(zl, vl, dl) (11)

s.t. zl+1 = f(zl, vl, dl), l = 0, . . . , N − 1

z0 = xk

where the inequality constraints gj(·, ·, ·) represent the
state variable bounds x ∈ X and j denotes the in-
dex of inequality constraints. If a fixed trajectory of
(zl, vl)l=0,...,N−1 is used, and monotonicity is assumed, i.e.,
the reduced gradients dgj/d(dl) always have the same sign,
then the solution of (11) is easily determined by setting
dl to appropriate upper or lower bounds for each stage l
and each inequality constraint gj . Based on a reference
trajectory for (zl, vl)l=0,...,N−1, one decides the critical
value (max or min) of each uncertain parameter based on
the following criteria: For l ∈ Nr, and m = 1, ..., nd

dwc
l,m = arg maxd∈D∇dgj |Tl,(zl,vl,dl)|ref dl

=

dmin
l,m , if

d(gj)

d(dm)
|l,(zl,vl,dl)|ref ≤ 0

dmax
l,m , otherwise

(12)

Note the number of critical scenarios is bounded by the
number of active inequality constraints over the horizon,
which is generally much smaller than the full-size multi-
stage tree, which consists of 3ndNr scenarios (Holtorf et al.,
2019).

We then classify the set of scenarios C = {0} ∪ Ĉ ∪
C̄, as {0} - the nominal scenario; Ĉ - critical scenarios
where active inequalities are encountered; C̄ - non-critical
scenarios with the primal variables (z̄cl , v̄

c
l ) determined

only from NLP sensitivity, where gj(z̄
c
l , v̄

c
l ) < 0 is expected
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Fig. 2. Scenario tree with nd = 2, Nr = 1. Critical

scenarios Ĉ = {1, 8} are shown with dashed lines.

to hold. Figs. 1 and 2 illustrate how the nominal and
critical scenarios appear as part of the full multistage
scenario tree. A key feature of this framework is that
critical scenarios are dynamically updated for each horizon
k. More information on the scenario generation approach
can be found in Holtorf et al. (2019).

• If constraint gj is insensitive to uncertainty parameter

dm, i.e. | d(gj)
d(dm) | < ε, then critical scenarios associated

with this constraint need not be considered for dm.
• At each time step k in NMPC, active constraints

are reevaluated at the updated trajectory (zl, vl),
together with corresponding worst case parameter
values for that constraint.

• Based on an active constraint gj , a set of worst case
parameter values dwc is selected, and the correspond-

ing critical scenarios c ∈ Ĉ are included in NLP (13),
while non-critical scenarios c ∈ C̄ are approximated
from the sensitivity calculation in (6).

2.5 Approximate multistage problem

The resulting approximate problem is given by

min
zl,vl

∑
c∈Ĉ∪{0}

(φ(zcN , d
c
N−1) +

N−1∑
l=0

ϕ(zcl , v
c
l , d

c
l )) +

∑
c∈C̄

(φ(z0
N + ∆zcN , d

c
N−1) +

N−1∑
l=0

ϕ(z0
l + ∆zcl , v

0
l + ∆vcl , d

c
l ))

s.t. zcl+1 = f(zcl , v
c
l , d

c
l ) c ∈ Ĉ ∪ {0}, l = 0, ..., N − 1

zc0 = xk c ∈ Ĉ
vcl = vc

′

l {(c, c′)|zcl = zc
′

l } c, c′ ∈ Ĉ ∪ {0}
zcl ∈ X, vcl ∈ U, zcN ∈ Xf (13)

where Ĉ and C̄ are critical and non-critical scenarios,
respectively, and ∆zcl ,∆v

c
l are obtained from the sensi-

tivity step (6) based on the nominal scenario. The NLP

problem (13) can be considered as a partially linearized
version of problem (1), where non-critical scenarios are
no longer constrained by the equations. Instead, the state
and control variables of non-critical scenarios through sen-
sitivities in their stage costs calculated from (8) and from
NACs that are still satisfied in (6). In this way, non-critical
scenarios only appear in the objective function and do
not increase the number of variables and constraints in
the NLP problem. Nevertheless, the smaller NLP (13) still
finds first order accurate solutions for multistage NMPC.

2.6 The overall approach for samNMPC

At time step k,

(1) Solve Problem (9) to get the nominal solution and
evaluate K0.

(2) Solve (6) using Kc = K0 to get ∆zc and ∆vc.
(3) Find the worst case dwc from (12) and form the

critical scenario set Ĉ
(4) Solve (13) with explicit critical scenarios, and non-

critical scenarios represented by sensitivity solutions.

(5) Set u(k) = vc0, c ∈ Ĉ ∪ {0} and inject into the plant
(6) Set k = k + 1, and go to Step 1

2.7 Implementation

The samNMPC method is implemented in CasADi (An-
dersson et al., 2019). At each step, after solving the nom-
inal NLP using IPOPT (Wächter and Biegler, 2006), the
optimal nominal solution is stored as well as the factoriza-
tion of the nominal KKT matrix K0. In addition, sparse
matrices Nc, c ∈ C are automatically generated based
on the number of NACs. The factorization of K0 can
be reused to solve (7) and (8). Using Schur-complement
decomposition avoids forming a large linear system, by
decoupling the scenarios instead in a parallelizable man-
ner. The linear systems incurred by sensitivity calculations
are solved by MA27 from the Harwell Subroutine Library
(http://www.hsl.rl.ac.uk) and the interface to MA27 is
provided by CasADi under linear solver class linsol.

3. CASE STUDIES

The scenario generation algorithm has been applied to a
benchmark CSTR example from Klatt and Engell (1998).

dcA
dt

= F (cA0 − cA)− k1cA − k3c
2
A

dcB
dt

= −FcB + k1cA − k2cB
dTR
dt

= F (Tin − TR) +
kWA

ρcpVR
(TK − TR)−

k1cA∆HAB + k2cB∆HBC + k3c
2
A∆HAD

ρcp
dTK
dt

=
1

mKcpK
(Q̇K + kWA(TR − TK))

(14)

The system has four states [cA, cB , TR, Tk] and two con-

trols [F, Q̇K ]. The control objective is to track the set-
point of cB as cB = 0.5mol/L in the first 20 steps, and
cB = 0.7mol/L for the rest. The stage cost is computed

as ϕ =
∑

l(cB,l − crefB )2 + r1 ∗ (Fl − Fl−1)2 + r2 ∗ (Q̇K,l −
Q̇K,l−1)2. The uncertainty parameters in this case study
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are EA,3 and cA0. Note that the uncertain parameter may
change between time steps, but can only choose among a
finite set of three values. Also, Nr = 1 for all cases in this
study. Larger robust horizons will be considered in future
work.

The inequalities for this problem are the variable bounds
for the state and control variables, and the bounds on
control variables are hard constraints. From sensitivity
analysis (11) for each state bound, we observe that cB
and TK are insensitive to both uncertainties EA,3 and cA0,
which means that the perturbation of both parameters
will not affect the value of cB and TK (within the robust
horizon). On the other hand, for the first step only, cA is
sensitive to cA0 and TR is sensitive to both EA,3 and cA0.
This implies that when EA,3 is uncertain, the worst EA,3

value is determined by the sign of dTR

d(EA,3) |(xl,ul,d0
l
). When

cA0 is uncertain, the worst parameter value is determined
by the signs of both dcA

d(cA0) |(xl,ul,d0
l
) and dTR

d(cA0) |(xl,ul,d0
l
).

3.1 Single uncertain parameter: EA,3 ± 10%

For this case, the only uncertain parameter in the system
is the activation energy d = EA,3 and its three possible
values are {max,nom,min}. From the sensitivity analysis
we know that the only affected state is TR and the
sensitivity dTR

d(EA,3) |(xl,ul,d0
l
) is computed to determine the

worst case parameter value. From the case study, the sign
of dTR

d(EA,3) |(xl,ul,d0
l
) is usually negative, which renders the

worst case value for dwc = Emin
A,3 . In this case, scenario

generation multistage has only two scenarios (instead of
three scenarios in conventional multistage and min-max
problems).

Table 1 provides an overall performance comparison for
different robust NMPC schemes by averaging 10 random
parameter realizations in the plant. The objective function
(Obj.) is the sum of the stage costs over time. The CPU
seconds are recorded as wall time for each algorithm. Fig.
3 plots trajectories of state and control variables, and
objective functions for different NMPC controllers in one
sample run.

Fig. 3 shows a close resemblance of tracking perfor-
mance between multistage and sensitivity-assisted multi-
stage (samNMPC), especially in terms of state trajecto-
ries and objective values where two lines overlap almost
entirely. This observation is also supported by the simi-
lar objectives (sum of stage costs) for conventional and
approximate multistage in Table 1 for the one parameter
case. At the same time, samNMPC requires less computa-
tional than conventional multistage NMPC. In particular,
the sensitivity step, obtained by solving a linear system,
only comprises 3% of the total computational time and
presents a very light computational footprint compared to
solving NLPs.

For the other two control schemes, nominal NMPC seems
to have a lower tracking error on average along with fast
computing, but under uncertainty, it often suffers non-
robust control performance and constraint violations. For
instance, Fig. 3 shows that both cA and TR violate the
upper bound of states constraints. On the other hand, min-
max NMPC is able to stay feasible, but performs more
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Fig. 3. Trajectories for state and controls for different
robust NMPC schemes with d = EA,3.

conservatively, which is also corroborated by the objective
(stage cost) trajectories shown in Fig. 3.

Table 1. Average performance (10 random
runs) of robust NMPC schemes with robust
horizon Nr = 1, d = [EA,3 ± 10%] (top) and

d = [cA0 ± 30%, EA,3 ± 10%] (bottom).

min-max multistage nominal samNMPC

3c Obj. 0.08467 0.03080 0.00655 0.03085
CPUs 0.367 0.251 0.0611 0.178

9c Obj. 0.13794 0.04223 0.01876 0.01679
CPUs 0.839 0.926 0.0806 0.366

3.2 Two uncertain parameters: EA,3 ± 10%, cA,0 ± 30%

For this section, both uncertainties are considered, which
renders a scenario tree of 9 scenarios. Similarly, the sen-
sitivity analysis leaves the problem size of sensitivity-
assisted multistage (samNMPC) the same as with 3 sce-
narios. For the min-max and multistage formulation, the
problem size is as large as 6500 variables due to the
consideration of all 9 scenarios, so that the computational
time is relatively large.

For the case of two uncertain parameters, samNMPC
and conventional multistage perform closely in terms of
state and control trajectories. Most importantly, samN-
MPC achieves a robust tracking performance with only a
fraction of computational resources (again, linear algebra
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Fig. 4. Trajectories for state and controls for different
robust NMPC schemes with d = EA,3, cA0.

calculations only cost 0.023 second, which contributes to
less than 10% of the total computational time).

The performance comparison of the four NMPC controllers
can be seen in Figure 4. Not surprisingly, nominal NMPC
suffers large constraint violations, while min-max NMPC
delivers a conservative control policy with constraints
satisfied. Better performance can be seen from multi-stage
NMPC and samNMPC because the scenarion tree allows
recourse control variables. In fact, the random sampling
of input disturbances allows samNMPC to report an even
better objective than multi-stage NMPC.

4. CONCLUSIONS

We construct a sensitivity-assisted multistage NMPC
(samNMPC) strategy that closely approximates robust
multi-stage NMPC performance but requires far less com-
putation. The conventional multi-stage NMPC problem
size grows exponentially with respect to the number of
uncertain parameters and robust horizon; hence it be-
comes difficult to solve online. By separating all scenarios
into critical and non-critical categories, one limits the
growth of the optimization problem. Only critical scenarios
are added to the problem and non-critical scenarios are
represented by sensitivity corrections from the nominal
scenario. In this way, the size of the NLP is determined
by the number of critical scenarios, which is bounded by
the number of inequalities and the robust horizon length.
Thus, the NLP (13) is much smaller than the traditional

multistage formulation (1). We apply this approximation
strategy to a CSTR benchmark problem, where two case
studies with one and two uncertain parameters are ex-
plored. samNMPC achieves robustness and similar track-
ing performance with respect to conventional multistage
NMPC, but with only a fraction of computational effort.
Future research directions include extending the approx-
imate multistage NMPC algorithm to many more uncer-
tainty parameters, where conventional multistage NMPC
becomes intractable.
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