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Abstract: As the amount of data stored from industrial processes increases with the demands of Industry 
4.0, there is an increasing interest in finding uses for the stored data. However, before the data can be used 
its quality must be determined and appropriate regions extracted. Initially, such testing was done manually 
using graphs or basic rules, such as the value of a variable. With large data sets, such an approach will not 
work, since the amount of data to tested and the number of potential rules is too large. Therefore, there is 
a need for automated segmentation of the data set into different components. Such an approach has recently 
been proposed and tested using various types of industrial data. Although the industrial results are 
promising, there still remain many unanswered questions including how to handle a priori knowledge, 
over- or undersegmentation of the data set, and setting the appropriate thresholds for a given application. 
Solving these problems will provide a robust and reliable method for determining the data quality of a 
given data set.  
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1. INTRODUCTION 

 In many industry plants, process information is 
continually stored in a data historian for future reference. 
Given the increasing demands on industry driven by 
environmental, governmental, and economic considerations, 
the ability to use the historical data has increased in 
importance. These data can be used in many different 
applications including system identification (Sha’aban, 2019; 
Khatisbisepehr & Huang, 2008; Mehrkanoon, et al., 2012; 
Arengas & Kroll, 2017; Yang, et al., 2019), fault detection and 
diagnosis (Ding, 2014; Ding, et al., 2013), control, especially 
model predictive control (Shardt & Brooks, 2018; Sha’aban, 
2019; Klimchenko, et al., 2019), and process monitoring 
(Shardt, et al., 2012; Huang, 2003). However, not all of the 
stored data can be used for each task. In fact, it is imperative 
to determine the quality of the data before using them. This 
will avoid using bad data to provide meaningless results. 
 Data quality assessment, that is, determining which parts 
of the given data set are useful and which ones are not, has 
often and, historically speaking, solely, been performed using 
manual methods. These manual methods include such methods 
as checking variables against thresholds or using graphs. 
However, such approaches are only useful for relatively small 
data sets and off-line use. Since current data sets can contain 
thousands if not millions of data points spread out over 
multiple variables, manually verification may not be an 
effective strategy. Furthermore, such an approach cannot be 
used for online checking of data quality before using the data 
for online modelling. 

 Therefore, there is a need to develop and implement 
methods for automatic data quality assessment. The first such 
approaches focused on determining the quality of the data for 
use in system identification. Two different approaches were 
considered: the Laguerre-model based method (Bittencourt, et 
al., 2015; Peretzki, et al., 2011) and the autoregressive model 
with exogenous input method (Shardt & Huang, 2013). Both 
methods used the invertibility of the Fisher information matrix 
as the primary metric to assess the data quality. The difference 
lies in the models assumed for the data set. The Laguerre-
model based method as its name suggests uses the Laguerre 
model as its basis. The main advantage of this approach is that 
the time delay need not be known before hand (Bittencourt, et 
al., 2015). On the other hand, the autoregressive model with 
exogenous input method uses an autoregressive model with 
exogenous input (ARX) to assess the data quality. Here, the 
time delay for the process must be known before hand. 
However, the model used for assessment is close enough to the 
real process and hence better represents the final model that 
will be considered (Shardt, 2012). As well, both approaches 
consider additional metrics, such as the variability of the input 
and output signals and the current controller modes (manual, 
automatic, and cascade). These additional metrics can help 
segment the data set better and more cleanly. 
 Nevertheless, the segmentation methods are often too 
aggressive in splitting the data into separate segments (Shardt 
& Shah, 2014) and there is a need to develop methods that can 
combine adjacent regions that could be modelled by similar 
models. Furthermore, it would be useful to know which 
regions could be represented by similar models so that large 
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data sets for modelling can be obtained. Various approaches 
involving signal entropy (Shardt & Huang, 2013; Basseville, 
1988; Basseville, 1998; Keogh, et al., 2004; Basseville & 
Nikiforov, 1993) have been proposed.  
 Another issue is how to handle multivariate data sets 
(Arengas & Kroll, 2017; Shardt & Brooks, 2018; Arengas & 
Kroll, 2019). Although the initial data quality assessment 
methods considered, univariate data sets, most, if not all, 
industrial data are better treated as multivariate data. This 
means that multiple variables need to be considered when 
implementing the assessment. It can be noted that selecting the 
appropriate set of variables is one of the key challenges, since 
some of the variable may well be correlated and thus cause the 
data quality assessment method to fail. 
 Data quality assessment has been applied in various 
industrial settings leading to new challenges and perspectives. 
Such industrial case studies include the floatation cell in a ore 
separation process (Shardt & Brooks, 2018), modelling of 
coal-fired power plants (Li, et al., 2019), large-scale thermal 
plants (Wang, et al., 2018), and various univariate control 
loops typically found in a chemical plant (Peretzki, 2010). One 
of the main challenges from an industrial perspective is the 
development of appropriate thresholds and values for the 
tuning parameters so that the approach can apply to the largest 
number of different cases. 
 Therefore, this paper seeks to present a comprehensive 
review of the data quality assessment method including a 
summative review of the different guidelines and suggestions 
for setting the thresholds and tuning parameters. As well, areas 
requiring further work will be proposed. Finally, some 
examples showing the different aspects of the data quality 
assessment will be presented.  

2. THEORY 

 Before getting into the practical aspects of data quality 
assessment, it would be useful to examine the theoretical basis. 
Consider the general closed-loop system shown in Figure 1, 
where Gc is the controller transfer function, Gp is the process 
transfer function, Gl is the disturbance transfer function, yt is 
the output signal, rt is the reference signal, ut is the input signal, 
and et is the white noise disturbance signal. The theoretical 
results presented will be considered for both open-loop, that is, 
without a controller, and closed-loop, with a controller, 
conditions. 

 

Figure 1: Generic Closed-loop Process 

2.1. System Identification Background 

 For the process shown in Figure 1, we can consider the 
following situations: 

1) Open-loop data: In this case, Gc and rt are ignored 
and there is no feedback from the output to the input. 

The input signal itself is manipulated and the process 
observed. 

2) Closed-loop data: Here there two subcases to 
consider: 

a. Externally Excited Data: Here the reference signal 
is continuously changing, that is, exciting the 
process. 

b. Routine Operating Data: Here the reference signal 
is constant and the only excitations come from the 
disturbance. 

System identification using open-loop data is relatively 
straightforward (Ljung, 1999). In closed-loop identification, 
there are three different approaches that can be taken: direct, 
indirect, or joint identification. In direct identification, the 
closed-loop input, ut, and the output, yt, are used to model the 
process, while in indirect identification, the reference signal 
and the output are first used to obtain a model of the closed-
loop process that includes the controller. Subsequently, the 
plant model is determined using the controller model. In joint 
identification, both the plant and controller are simultaneously 
identified. In general, since direct identification is very similar 
to open-loop identification, it is often preferred. In certain 
cases, such as routine operating data, direct identification is the 
only approach to take. 
2.2. Data Quality Assessment and System Identification 

 When assessing the quality of a data set for system 
identification, the primary objective is to determine if the data 
is sufficiently excited for identifying the true parameter 
estimates.  
 For the purposes of the developing the theory, let us 
assume that the data set comes from a single model given as 

( ),t t i
y u   of length N, where i is the ith sampling point and the 

subscript arrows denote a vector. Should there be any reason 
to suspect that the data does not come from a single model, 
then the data should first be partitioned into regions with 
similar characteristics and then each region separately 
analysed for data quality. Finally, assume that the model of 
interest for the data set is a single-input, single-output (SISO) 
model with the following form 

( ),t ty f u θ=


 (1) 

where f is an arbitrary function and θ


 is a vector of r-
parameters, that is, 
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 Taking the derivative of Equation (1) with respect to the 
parameters gives the Jacobian, , which can be written as 
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Evaluating the Jacobian matrix, , given as Equation (3), for 
each of the inputs will give the regression matrix, , that is, 

( ) ( ) ( )
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For a linear system, that is, a system where the Jacobian matrix 
is independent of the parameters, we can write the 
identification problem as 

yθ =


  (5) 

The least-squares solution can be obtained by first multiplying 
Equation (5) by T to give 

T T yθ =


    (6) 

where T is a square matrix, and hence, satisfying one of 
the requirements for invertibility. Furthermore, it can be noted 
that T is the Fisher information matrix, , that is, 

T=    (7) 

  For the nonlinear case,  can still be calculated, however 
its value will depend on the parameter values. 
 In order to obtain unique parameter estimates, Equation 
(6) needs to be solved. In general, this implies that the inverse 
of the Fisher information matrix must be found. Therefore, the 
invertibility of this matrix will determine the uniqueness of the 
solution. 
 For an arbitrary n×n matrix, , to be invertible, any one 
of the following conditions must hold (Anton, 2000): 

1) det() ≠ 0; 
2) The eigenvalues of  cannot be zero; and  
3) rank() = n. 

All three conditions for invertibility given above are 
equivalent, that is, if one holds, then the others hold as well 
(Anton, 2000). Therefore, from a theoretical perspective, it is 
necessary and sufficient to check either the eigenvalues of  
or the determinant to determine invertibility. However, in 
addition to the theoretical constraints on invertibility, when 
dealing with a numerical problem, there is also a need to 
consider the numerical stability of the matrix, that is, how will 
small perturbations in the values effect the overall result. Such 
small perturbations often arise from such factors as 
measurement noise or unexpected disturbances in the system. 
Therefore, in addition to checking the theoretical invertibility 
of the matrix, it would be useful to check the numerical 
stability of the matrix. One such approach is the condition 
number of a matrix, K(), which is defined as 

( ) 1
p p p

K −=    (8) 

where ||·||p is some matrix norm (Quarteroni, et al., 2000; 
Quarteroni & Saleri, 2003). Practically, there are three choices 
for p, namely, p = 1, 2, or ∞. Selecting p = ∞ tends to produce 
too conservative bounds for the condition of the matrix 
(Quarteroni, et al., 2000), although the calculation is rather 
straightforward. Selecting p = 2 is preferred (Quarteroni, et al., 
2000). In this case, 

( ) ( )
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where σ() are the singular values of the matrix  (Quarteroni, 
et al., 2000). If  is a symmetric positive definite matrix, then, 
by noting that σ() = |λ()|, where λ() is an eigenvalue of , 
Equation (9) can be rewritten as (Quarteroni, et al., 2000) 
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A matrix is said to be well-conditioned if K2 is less than a given 
threshold, ε. The lower bound for K2 is 1, which will be 
achieved when both the maximum and minimum absolute 
eigenvalues are equal. The upper bound for K2 is +∞, which is 
achieved when the smallest eigenvalue is zero, and hence the 
matrix is uninvertible.  
 The threshold for the condition number is normally set to 
be 104 (Shardt & Huang, 2013). 
 Since  is a symmetric, positive definite matrix, which 
implies that its 2-norm can be calculated using Equation (10), 
it follows that the condition number given by Equation (10) 
can be used to assess the data quality. Therefore, we can define 
the data quality index, ηdata, as 

( )( )
( )( )

( )( )
( )( )

maxmax
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A data set is said to be informative enough with respect to the 
given model structure if ηdata < ε, that is, the -matrix is 
sufficiently well-conditioned for the taking of an inverse. 
Furthermore, it can be noted that a well-conditioned  -matrix 
implies that the variances obtained for the parameters will be 
reasonable and hence the results obtained will be significant.  
 Practically speaking, a threshold value of 104 works well. 
However, the thresholds can be changed depending on the 
desired properties of the model. Factors such as the desired 
accuracy of the model, the measurement noise, or model 
structure can be taken into consideration when selecting the 
threshold. 
2.3. Data Partitioning 

 It has so far been assumed that the given data set comes 
from a single operating region so that the assumption of a 
single (linear) model holds. However, in practice, most data 
sets contain multiple different regions with varying data 
structures. 
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 In fact, it is possible to use the above data quality index 
to partition a given data set. Basically, assume that initial we 
have k data points, where k is some arbitrary, small number. 
This number represents the smallest number of data points that 
we believe is necessary to obtain a good model. Note that this 
value can depend on the type of data being used, for example, 
for routine operating data, k could be larger than for open-loop 
data. For these first k values, compute the value of the data 
quality index and compare it against the threshold. If the index 
is below the threshold, add another point and repeat until it 
fails. The region until failure can be considered to be a single 
region. If the index is above the threshold, take the next k 
points and repeat. 
2.4. Model Considerations 

 When implementing the data quality assessment 
procedure, it can be seen that the type of model selected could 
have an impact on the assessed value of a given data set. In 
general, it may not be known which model structure fits the 
data set the best and there is a need to use a generic model for 
assessing the data quality. In practice, there exist two different 
approaches that can be taken (Bittencourt, et al., 2015): 

1) ARX Models: ARX models are of the form 

t t k tAy Bu e−= +   (12) 

 where A and B are polynomials in z−1 of order na and 
nb respectively and k is the time delay. In order to 
implement this method, it is necessary to know the 
time delay k. Since it is known that any prediction 
error model can be approximated by a high-order 
ARX model, by selecting high orders for na and nb, 
the data quality for arbitrary prediction error models 
can be assessed. The main drawback of this approach 
is that the time delay must be known. 

2) Laguerre Model: A Laguerre model is based on the 
orthogonal Laguerre polynomials, which allows for 
easy removal of unnecessary model components 
without affecting the rest of the parameters. The ith 
order Laguerre basis function, Li, is 
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where α is the time constant, and z−1 is the backshift 
operator. The resulting model can then be written as 

 ( )1

1
,

gN

t i i t t
i

y L z u eθ α−

=
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where Ng is the Laguerre order of the process. The 
advantage of the Laguerre approach is that the time 
delay needs not be known in order to perform the 
partitioning. However, the final model that will be fit 
(often some type of prediction error model) is 
different from the model used for data quality 
assessment. This mismatch may lead to issues with 
the accuracy of the assessment. In practice, the 
advantage of not needing a time delay often overrides 
other considerations. 
 
 

3. DATA QUALITY ASSESSMENT PROCEDURE 

 Figure 2 shows a schematic overview of the general data 
quality assessment framework. The details regarding the steps 
are (Peretzki, et al., 2011; Bittencourt, et al., 2015; Shardt & 
Brooks, 2018): 
1) Preprocessing: Load and preprocess the data set. This will 

often mean scaling and centring the data set. 
2) Mode Changes: In many industrial systems, the overall 

system may change its behaviour in a known fashion, for 
example, operating points may change, faults may occur, 
or controller setting may be changed. In such cases, it 
makes sense to incorporate this information into the data 
quality assessment algorithm. Separating the known 
changes will mean that the final results will be better. It can 
be noted that, for example, the number of initial data points 
required can depend on the control conditions. Therefore, 
detecting the changes will improve the results. 

3) Partitioning: For each identified mode, perform the 
following steps: 
a. Initialisation: If the length of the unanalysed data for 

the given mode is greater than the minimum required 
length r, set the model counter to the current data point, 
kinit = k and then set k = k + r. Otherwise, go to the next 
identified mode. 

b. Preprocessing: For certain types of processes, it may 
be necessary to perform additional manipulations, for 
example, for an integrating process, it is necessary to 
integrate the input. 

c. Computation: Compute the required values. In most 
cases, this will include the variances of the signals and 
the condition number of the information matrix. 

d. Comparison: Compare the variances, the condition 
number of the regressor matrix, and the significance of 
the parameters against the thresholds. 
i. Failure: If any of the thresholds fail to be met go to 

the next data point, that is, k = k + 1, and go to Step 
3.a.  

ii. Success: Otherwise, set k = k + 1, and go to Step 3.b. 
The “good” data region is then [kinit, k]. 

e. Termination: The procedure stops once k equals N, the 
total number of data points in the given mode. Repeat 
Step 3 for any remaining modes. 

4) Simplification: It may be desirable to compare adjacent 
regions and determine if they could be considered to come 
from a single model. Often the segmentation algorithm will 
be a bit too strict and provide too many segments (Shardt 
& Shah, 2014). 

 In general, a recursive method can be used to compute 
the required variances, that is, the following update rule is 
used: 

( )
( )( ) ( )
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2 2
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−

−
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−
= − + −

 (15) 

where λ is the forgetting factor and σ2 is the variance of the 
given signal. The two forgetting factors,

ymλ and 
yσλ , need to 

be tuned. The variance is updated using the above formulae for 
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3 different signals, the inputs, outputs, and the regression 
matrix.  

 

Figure 2: Data Quality Assessment Framework 

3.1. Setting the Parameters for Partitioning  

 As with any method, there are a series of parameters that 
must be set in order for the method to work. Since the 
Laguerre-based approach is more commonly used, the primary 
focus will be on setting the required parameters for this 
approach. 

The Laguerre model parameters, α and Ng, are the two 
model parameters whose value needs to be set. From (Peretzki, 
2010), we have that 

 
( )log

1
2g

s

N
θ α

τ
≥ − +  (16) 

where θ is the continuous time delay and τs is the sampling 
time. Previous investigations have shown that α should be set 
between 0.80 and 0.95 (Shardt & Shah, 2014). When the exact 
time delay is not known, then an estimated upper bound can be 
used. 
 The forgetting factors in Equation (15) also need to be 
set. Previous investigations suggest that selecting a value of 
0.99 for all the forgetting factors works well (Shardt & Shah, 
2014). 
 The minimum required number of data points for 
identification r can be set based on experience and the required 
accuracy of the model. For open-loop or externally excited 
closed-loop data, a value of 20 will suffice. For routine 
operating data, the value will need to be much larger. In many 
cases setting r = 100 will work. 
 
 

3.2. Setting the Thresholds for Partitioning 

 The second important aspect is setting the appropriate 
thresholds for the partitioning. The success of failure of the 
assessment can strongly depend on the values selected for the 
different thresholds. 
 Firstly, it can be noted that many of the thresholds depend 
on the properties of the signal and the system at hand. Noisy 
or systems with large normal variation will require larger 
thresholds then systems with less noise or small variation. 
Therefore, it is important that the user take the time to 
understand the process and implement appropriate bounds. 
 Secondly, setting conservative thresholds that result in 
overpartitioning of the data set are probably better than overly 
loose thresholds that fail to detect such changes. The reason 
for this is that it is always easier to combine partitions then it 
is to try and split a partition into multiple partitions. 
 Often, the thresholds for variances for closed-loop 
control must be rather small (often on the order of 10−7) due to 
the fact that a good controller will eliminate most variation in 
the signal. On the other hand, in open-loop data, the variances 
can be higher, but even then, consideration needs to be made 
for such cases as step changes, which could be potentially used 
for system identification, but whose variance will be small, 
especially for the input signal. 
 The threshold for the condition number can be set to the 
standard value of 104. Selecting a different threshold can be 
based on the desire to vary the quality of the model obtained, 
for example, a large threshold will decrease the quality of the 
model, but could allow for identification of more difficult 
processes. 
3.3. Partition Simplification 

 The proposed data quality assessment procedure tends to 
overpartition the data set, that is, even if two adjacent regions 
actually belong to the same model, the procedure will consider 
them to be different (Shardt & Brooks, 2018). 
 Furthermore, it would be useful to identify which 
partitions, even if widely separated, are potentially the same, 
since these could then be used together for system 
identification, for example, one region could be the validation 
and the other the modelling data set. 
 One of the challenges of this step are that it should be 
more or less implemented without finding models for the 
system and comparing them. 

 One potentially interesting approach is to use an entropy-
based metric. It has been shown that the signal entropy value 
of the difference between the input and output signals can be 
used to monitor a process and determine if it changes (Shardt 
& Huang, 2013). The entropy of a signal, which measures the 
amount of information in a signal, is given as 

1
1log

N

k k
k

x x
H

N

−
=

 − 
 =
 

∑
 (17) 

where H is the entropy, N is the signal length, and x is the 
signal of interest. The difference in entropy would then be 
calculated as 

y uH H H∆ = −  (18) 
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where Hy is the entropy of the output signal and Hu the entropy 
of the input signal. Assuming that the input signal is always a 
pseudorandom signal or a white, Gaussian noise signal, then 
the difference between the input signal entropy and output 
signal entropy will be constant and equal to the model entropy. 
The advantage of this approach is that it simply requires the 
computation of a difference of values for the two signals. 
Instead of monitoring the complete signal, it is also possible to 
use a moving window approach where only the last N values 
are considered. 
 Another approach to solving this challenge is to consider 
various clustering algorithms, which can be used to compare 
the partitions and determine which ones are similar.  
3.4. Multivariate Considerations 

 The last area of consideration is multivariate data sets. 
Although all of the above methods easily generalise to the 
multivariate case, there are some additional challenges. 
 First, determining which of the variables should be used 
for data partitioning is a large question (Arengas & Kroll, 
2019; Shardt & Brooks, 2018). If the wrong set of variables is 
used, then it is possible that the method will fail or give an 
incorrect result. It should be noted that selecting all available 
input variables may not be efficient, since some of these inputs 
could be correlated with each, which will mean that the 
resulting Fisher information matrix is uninvertible (as it should 
be given the circumstances). However, the correlations and 
relationships between the variables can change depending on 
the mode or circumstances, so that it is now necessary to bear 
this in mind.  

4. INDUSTRIAL EXAMPLE 

 
4.1. Process Description 

Before considering the actual implementation of the data 
segmentation system, it will be useful to briefly examine the 
actual system considered. 

The data used was obtained from a section of the lead zinc 
concentrator at the Mount Isa Mines in Queensland, Australia.  
The concentrator is a complex operation, recovering both lead 
and zinc from a feed sourced from three different mines.  The 
ore is milled and is then fed to a lead removal circuit.   The 
lead is recovered in the form of a concentrate.  The reject 
stream from this unit, termed the tailings, is fed to a zinc 
flotation unit.  In this circuit, a number of banks of flotation 
cells, are used to recover the zinc.  As shown in Figure 3, these 
banks are named the roughers, scavengers and recleaners. 

The section of the circuit covered here is the zinc roughers 
(Brooks & Koorts, 2017).  The rougher tails from the upstream 
lead circuit are the feed to the zinc roughers.  As shown in 
Figure 4, this bank consists of four cells (FC23, FC24, FC25, 
FC26).  The objective of this bank is to perform a rough 
separation of zinc from the waste material. Copper sulphate 
(activator) and naphthalene sulphate (depressant) are added 
upstream. Ethyl xanthate, a collector, is added to cells FC23 
and FC25. The tails of the rougher (unfloated material) report 
downstream to the scavengers where the majority of the 
remaining zinc is floated. The concentrate (floated material) 
from the roughers reports to the recleaners.  

 

Figure 3: Zinc rougher, scavenger and recleaner circuit. 

In the rougher bank, levels are controlled per pair of cells.  
The flowrate of air can be varied on a per cell basis.  
Composition measurement by X-ray fluorescence (XRF) is 
used on all concentrate and tails streams.  In Figure 4, LC1 and 
LC2 are level PID controllers on pairs of cells, FC1 to FC4 are 
flow PID controllers on air flowrates and FC5 to FC8 are 
reagent flow PID controllers. FI1 is the volumetric feed 
flowrate.  Analysers AI1 to AI3 measure zinc percentages in 
the feed, concentrate, and tails respectively. 

 

Figure 4: Rougher Bank Showing Control Loops and 
Analysers 

4.2.  Data Set Characteristics 

The data collected for this investigation consists of two 
months of plant operation, collected at a frequency of one 
minute.  The historian’s interpolation routine is used to ensure 
the data is aligned.  No special care was used to ensure that the 
data had any particular characteristics, other than that the plant 
was running. It was reported that during this period some step 
tests had been conducted. The completed data set can be 
downloaded from https://doi.org/10.5281/zenodo.3701260.    

Forty-three variables were collected: for each of the PID 
controllers, setpoint, process value and output (SV/PV/MV) 
were recorded.  The three analysers provide measure of iron, 
lead and zinc percentages. Variables collected are listed in 
Table 1. The process was assumed to be running under control 
throughout the period of investigation. 

 The ultimate goal of the models is to design a model 
predictive controller (MPC) for the unit. The manipulated 
variables (MVs) are the air flows, levels, and the flows of the 
reagents. The outputs or controlled variables (CVs) are the 
zinc percentages in the concentrate and tailing streams. The 
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primary focus of this investigation is on the zinc percentage in 
the concentrate stream. Similar results are expected for the 
other situations. The focus is on the multivariate nature of the 
data set. 

Table 1: Test Variables 

Tag Attributes Description 
FC1 SV/PV/MV Air flow to FC23 
FC2 SV/PV/MV Air flow to FC24 
FC3 SV/PV/MV Air flow to FC25 
FC4 SV/PV/MV Air flow to FC26 
FC6 SV/PV/MV EX (reagent) to FC23 
FC7 SV/PV/MV EX (reagent) to FC25 
LC1 SV/PV/MV FC24 Level 
LC2 SV/PV/MV FC26 Level 
FC8 SV/PV/MV NS (reagent) to FC3 
FC5 SV/PV/MV CuSO4 (reagent) to FC22  
AI2 Fe/Pb/Zn Primary Rougher 

Concentrate Compositions 
AI3 Fe/Pb/Zn Primary Rougher Tailings 

Compositions 
 
 The following 3 situations will be considered: 

1) Variable Selection: which of the input variables 
should be selected for data partitioning, since not all 
of the selected variables may be independent. 

2) Reduction of Partitions: determining of some or all 
of the regions could be modelled by similar models. 

3) Model Validation: Using some of the suggested 
partitions, models will be fit and compared. 

4.3. Variable Selection 

 One of the most important issues in multivariate data 
quality assessment is determining which of the potential 
variables can or should be used for partitioning the data set. 
One of the main issues is the selecting a set of independent 
variables. In order to examine the situation, the following 3 
cases will be considered: 

1) Case 1: using all the input variables to partition the 
data set. 

2) Case 2: using a subset of variables based on 
correlation analysis. 

3) Case 3: using a subset of variables based on user 
selection. 

 For Case 1, the results are shown in Figure 5. In Figure 
5, the top figure shows the actual measured zinc concentration 
in the concentrate stream. It should be noted that for a series 
of values around 6.2×104 min, the value went to −10,000, 
which is an impossible value for concentration, suggesting that 
the process was not running at this point. Therefore, these 
extreme values have been replaced by −1 in the top figure for 
ease of display. The original values were used for the data 
partitioning part. The bottom figure shows the partitioned data. 
The programme assigns the same partition number to adjacent 
points if they are assumed to belong together. A separate 
number implies that the points do not belong together. The 
jumps in the value arise from the way the programme reacts to 

values going to zero. It is assumed that since the process at 
these points is not working properly it resets the counter. The 
goal is to find plateaus in the partitioning graph that represent 
the regions of sufficient excitation. From Figure 5, it can be 
seen that there are few if any plateaus. This implies that either 
the data itself is not sufficiently excited or that some of the 
variables used are correlated with each other. If we examine 
the correlation plot shown in Figure 6, we can quickly see that 
many of the variables are strongly correlated with each other. 
The variables are ordered the same way as in Table 1, so that 
the first variable is the air flow to FC23 and the last variable is 
CuSO4 to FC22. It should be noted that all the variables are 
strongly correlated with each other. However, some are much 
more strongly related than others, for example, variables 5 to 
10 are all correlated with a value close to 1. This suggests a 
very strong relationship between the variables. As well, note 
that variables 3 and 4 are also strongly correlated. 

 

Figure 5: Data Partitioning for Case 1: Using all Available 
Variables 

 Using the results obtained from Figure 6, the variables 
for Case 2 will be defined as variables 1, 2, and 4, that is the 
first two flow rates and the reagent to FC23. The results are 
shown in Figure 7. It can now be seen that more additional 
regions can be found and that the partitioning seems to align 
better with the actual results. 
 Finally, Case 3 will consider the case of simply using the 
first three flow rates, that is, the first three variables, for 
partitioning the data. From Figure 6, we can see that these three 
variables are also independent of each other raising the 
question if they too can provide good results. Figure 8 shows 
the results. Comparing with the previous case, we can see that 
the two results are similar. This suggests that at least for the 
example considered that the variables selected for partitioning 
do not matter as long as the variables are independent of each 
other for the given data set. 
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Figure 6: Correlation Plot for the Variables of Interest 

 

Figure 7: Data Partitioning for Case 2: Using Uncorrelated 
Variables 

 

Figure 8: Data Partitioning for Case 3: Using Only the First 
Three Air Flow Rates 

 

4.4.  Reduction of Partitions 

 Taking Case 2 from the variable selection situation, it 
now desired to investigate the impact of the reduction of 
partitions on the overall results. In the previous results, the 
number of partitions was reduced using the entropy-based 
method. Here the results with and without partition reduction 
will be compared. 
 Figure 9 shows the partitioning results for Case 2 but 
without any reduction of partitions. It can be seen that there 
are now more partitions and some of the partitions are 
separated as belong to different potential models. By 
combining adjacent partitions, it is possible to increase the 
amount of available data and create potentially better models. 
Therefore, it makes sense to determine if adjacent partitions 
could belong to the same overall model. 

 

Figure 9: Data Partitioning for Case 2: Using Uncorrelated 
Variables and No Reduction of Partitions 

4.5. Model Validation 

 Using the data segmentation results from above, the 
different, the following regions will be considered: 

• S1: 17,079−18,631 
• S2: 18,645−20192 
• S3: 20,2017−21,650 
• S4: 21,670−23,112 
• S1′: 14,038−28,738 
• S2′: 17,079−23,112 

S1, S2, S3, and S4 are the initial subpartitions of S1′ and S2′. 
The difference between S1′ and S2′ lie in exactly which 
endpoints are considered and the exact reduction values are 
used. 
 The data for each section was modelled using a 
commercial package that uses canonical variate analysis 
(CVA) (Larimore, 1990; Zhao, et al., 2006). Multiple input, 
single output models with a settling time of 60 min were 
obtained for the zinc percentage in the concentrate. 
 Table 2 shows the results for the different sections. It can 
be noted that in the development of models for use in model 
predictor control, it is the gains that are considered to be 
important. Therefore, the focus is on the accuracy of the gains. 
Furthermore, it should be noted that these models are to be 
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used as seed models for providing the initial model parameters 
for subsequent online identification. 
 From Table 2, it can be seen that the models for the larger 
partitions S1′ and S2′ compare well, although the fits are not 
particularly good.  Partitions S3 and S3 have the same signs 
for the gains, although the negative gain for the feed zinc is 
physically unrealistic.  Partition S1, although having the 
highest correlation coefficient, has a positive gain for total 
xanthate, which is not what is found in practice. The practical 
issue is that the sample sets lengths of around 24 hours for S1 
to S4 are too short to derive reliable linear time invariant 
models.  Set S1′ is 240 hours, and S2′ 100 hours, so that the 
CVA produces better models in these cases. It is very 
encouraging for the method that the set S2′, which is a section 
of S1′, produces very similar models.  It would appear that for 
the purposes of dynamic model identification heuristics need 
to be added to the algorithm specifying a minimum dataset 
length. Thus, the ability to combine adjacent partitions is an 
important aspect of any data segmentation method. 

Table 2: Comparison of Models for Different Partitions 

Partition S1 S2 S3 S4 S1′ S2′ 

G
ai

n 

Total 
xanthate 0.83 0.01 −0.29 −1.05 −0.34 −0.31 

Feed flow −0.02 0.001 −0.01 −0.01 −0.002 −0.004 
Feed zinc 0.34 −0.31 −0.15 −0.10 0.11 0.11 

Feed 
percent 
solids 

−0.16 −0.21 −0.03 −0.07 −0.10 −0.11 

Mean 
Squared 

Error 
1.11 0.76 1.30 0.62 1.26 1.04 

R2 0.84 0.19 0.69 0.49 0.06 0.29 
    

5. CONCLUSIONS 

 This paper has examined the field of data quality 
assessment and its recent successes. A general data quality 
assessment algorithm was proposed and the details of setting 
its parameters examined. Previous work has shown that 
selecting appropriate thresholds can impact the accuracy and 
speed of the resulting algorithm. Furthermore, extending the 
results to them multivariate situation introduces new 
challenges including how best to select the variables for 
segmentation. Selecting the wrong subset of variables can lead 
to issues with collinearity between the variables.  

The proposed data quality assessment algorithm was 
validated using data extracted from a historian for a zinc 
flotation cell. It was shown that the partitioning depended 
strongly on the variables selected and the methods used to 
reduce the number of partitions.  

Future work will focus on generalising the results to the 
multivariate case and providing better methods for combining 
adjacent partitions. 
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