
Sparse Representation of Feedback Filters
in Delta-Sigma Modulators ⋆

Masaaki Nagahara ∗ Yutaka Yamamoto ∗∗

∗ The University of Kitakyushu, Hibikino 1-1, Fukuoka, 808-0135,
JAPAN (e-mail: nagahara@ieee.org).

∗∗ Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, 606-8501,
JAPAN (e-mail: yy@i.kyoto-u.ac.jp)

Abstract: In this paper, we propose sparse representation of FIR (Finite Impulse Response)
feedback filters in delta-sigma modulators. The filter has a sparse structure, that is, only a few
coefficients are non-zero, that stabilizes the feedback modulator, and minimizes the maximum
magnitude of the noise transfer function at low frequencies. The optimization is described as an
ℓ1 minimization with linear matrix inequalities (LMIs), based on the generalized KYP (Kalman-
Yakubovich-Popov) lemma. A design example is shown to illustrate the effectiveness of the
proposed method.
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1. INTRODUCTION

Sparse representation is a recent technique of model re-
duction by sparsifying the system parameters with an
allowable performance degradation (Mallat, 2008; Elad,
2010). In sparse representation, most parameters are set
zero and only a few active parameters are used to represent
the system characteristics. To measure the sparsity, we use
the ℓ0 norm, the number of non-zero elements in a vector.
Sparse representation is done by finding a minimum ℓ0-
norm vector among admissible parameter vectors. This
formulation is also known as compressed sensing (Donoho,
2006), or compressive sampling (Candes, 2006).

The ℓ0 minimization in sparse representation (or com-
pressed sensing) is known to be NP hard as shown in
Natarajan (1995). To avoid this difficulty, the ℓ1 norm is
often adopted alternatively. Then, if the set of admissi-
ble vectors is convex, the optimization problem becomes
a convex optimization problem, which can be efficiently
solved by numerical softwares as SDPT3 (Toh et al.,
1999; Tutuncu et al., 2003) or SeDuMi (Sturm, 1999).
Sparse representation has wide applications in engineering
and science, such as magnetic resonance imaging (MRI)
(Lustig et al., 2008), black hole imaging (Honma et al.,
2016), communications systems (Hayashi et al., 2013),
optimal control (Nagahara et al., 2014, 2016; Ikeda et al.,
2017), In particular, sparse representation has been ap-
plied to FIR (Finite Impulse Response) filter design Jiang
et al. (2012); Chen et al. (2019) for sparse coefficients.

In this paper, we present a novel method for sparse rep-
resentation of the feedback filter in a delta-sigma (∆Σ)
modulator (Norsworthy et al., 1997; Schreier and Temes,
2005). A delta-sigma modulator is a feedback quantizer,
which is widely used in oversampling analog-to-digital
⋆ This research is supported in part by MEXT KAKENHI Grant
Numbers 20H02172, J19H02301, and J19H02161.

(AD) and digital-to-analog (DA) converters in, for exam-
ple, digital audio (Janssen and Reefman, 2003) and digital
communications (Gustavsson et al., 2010).

The key characteristic of delta-sigma modulation is quanti-
zation noise shaping. A delta-sigma modulator constitutes
a pre-filter, a coarse uniform quantizer, and a feedback
filter. The pre-filter defines the frequency domain char-
acteristics of the input signals to be quantized. On the
other hand, the feedback filter eliminates the in-band
quantization noise by shaping the sensitivity function of
the feedback system, called the noise transfer function
(NTF). For low-frequency input signals, the feedback filter
is designed to make the NTF a low-cut (or high-pass)
filter, which well attenuates the quantization noise at low
frequencies and push them out to the high-frequency band.
From the viewpoint of control systems, the feedback filter
can be considered as a controller for stabilization and
noise reduction for the quantizer as a controlled plant.
The stability criterion is given by the constraint on the
H∞ norm of the NTF, called the Lee criterion (Schreier
and Temes, 2005; Chao et al., 1990).

The design problem is then to obtain a feedback filter
that minimizes the frequency response gain of the NTF
in a pre-specified low frequency range with the H∞ norm
constraint for stability. This has been considered in Naga-
hara and Yamamoto (2012) assuming that the feedback
filter is assumed to be an FIR filter. The generalized
KYP (Kalman-Yakubovich-Popov) lemma rewrites the op-
timization problem into LMI (Linear Matrix Inequality)
optimization.

This paper combines the technique of sparse modeling
with the feedback filter design in delta-sigma modula-
tors. Sparse representation in delta-sigma modulation is
very important in recent IoT (Internet of Things) systems
or cyber-physical systems (Lee and Seshia, 2017), since
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Fig. 1. Delta-sigma modulator with loop filter L(z) =
[L0(z), L1(z)] and uniform quantizer Q.

quantizers are implemented on edge sensors at the phys-
ical side, which should be compact due to the memory
size limitation on the edge computers. To achieve sparse
representation, we propose to find the sparsest FIR coef-
ficients of the feedback filter that achieves stability and
allowable performance at the same time. The problem
itself is a semi-infinite programming, which we will show
to be equivalently reduced to a finite-dimensional convex
optimization that is efficiently solvable. We will also show a
design example to illustrate merits of the proposed design
method.

Notation

We denote by RN the set of N -dimensional real vectors
and RN×N the set of N × N real matrices. For a vector
(or a matrix), we use the superscript ⊤ for the transpose.
SN is the set of N ×N real symmetric matrices, that is,

SN ≜ {X ∈ RN×N : X = X⊤}. (1)

For a symmetric matrix X ∈ SN , we write X > 0
(resp. X < 0) when X is positive definite (resp. negative
definite). For a vector c ∈ RN , the ℓ1 norm is defined by

∥c∥1 ≜
N∑

k=1

|ck|. (2)

For a stable transfer function H(z), the H∞ norm is
defined by

∥H∥∞ ≜ max
ω∈[0,π]

|H(ejω)|. (3)

For a vector a = [a1, . . . , aN ]⊤ or a sequence a =
{a1, a2, . . .}, the support set supp(a) is defined by

supp(a) ≜ {k|ak ̸= 0}. (4)

Throughout this paper, we use the following abbreviations:

FIR: Finite Impulse Response
NTF: Noise Transfer Function
STF: Signal Transfer Function
LMI: Linear Matrix Inequality
KYP: Kalman-Yakubovich-Popov

2. DELTA-SIGMA MODULATION

In this section, we briefly review the delta-sigma (∆Σ)
modulation. Figure 1 shows the general structure of a
delta-sigma modulator. In this figure, L(z) is a two-
input/single-output linear time-invariant system, called
the loop filter, with

L(z) ≜ [L0(z), L1(z)], (5)

and Q is a uniform quantizer that maps R to a finite
alphabet {−Mδ, (−M + 1)δ, . . . ,Mδ}, where δ > 0 is the
step size and M ∈ N is the number of steps.

Q
u y v
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+
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Fig. 2. Error feedback modulator
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Fig. 3. Linearized model of the delta-sigma modulator

In this paper, we consider the error feedback modulator
shown in Figure 2. In this block diagram, P (z) is the pre-
filter and F (z) is the error feedback filter. For the stability
and the well-posedness, we assume the following:

Assumption 1. P (z) is stable and causal 1 , and F (z) is
stable and strictly causal.

Comparing Figure 2 with Figure 1, we obtain

L0(z) =
P (z)

1 + F (z)
, L1(z) =

F (z)

1 + F (z)
. (6)

As shown in Figure 2, the modulator feeds back the
quantization noise n defined by

n ≜ v − y = Q(y)− y. (7)

To analyze the delta-sigma modulator, we introduce the
linearized model shown in Figure 3, where the quantization
noise n is taken as an independent disturbance added to
the signal y to be quantized. This linear model is widely
used in the literature of signal processing. For this linear
model, we define a system called the noise transfer function
(NTF) by

H(z) ≜ 1

1− L1(z)
= 1 + F (z), (8)

which is the transfer function from the quantization noise
n to the quantized output v in Figure 3.

Also, we define the signal transfer function (STF) by

T (z) ≜ L0(z)

1− L1(z)
= P (z), (9)

which is the transfer function from the input u to the
output v. The design of the delta-sigma modulator is to
synthesize the filters P (z) and F (z) so that the noise
transfer function H(z) and the signal transfer function
T (z) have desired characteristics. For simplicity, we just
1 A transfer function is said to be causal (resp. strictly causal) if the
relative degree is greater than or equal to 0 (resp. strictly greater
than 0).
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consider the noise transfer function H(z), and focus our-
selves on the design of the feedback filter F (z), assuming
that the pre-filter P (z) is the identity, that is,

P (z) ≡ 1. (10)

In this case, the signal transfer function becomes T (z) = 1
from (9). This means that we do not explicitly assume the
frequency-domain characteristic of the input signals. Note
that the design of the pre-filter is considered in Okajima
et al. (2015).

3. PROBLEM FORMULATION

Here we formulate the design problem of the feedback filter
F (z). First, for simple implementation, we assume that the
feedback filter F (z) is an FIR filter

F (z) =

N∑
k=0

ckz
−k, (11)

with
c0 = 0, (12)

since F (z) is assumed to be strictly causal (see Assumption
1).

Then the problem is to find the FIR coefficients c1, . . . , cN .
The coefficients should be carefully chosen taking account
of

(1) feedback stability,
(2) performance of quantization noise reduction,
(3) simple implementation.

In the following subsections, we formulate the design
problem to satisfy the above requirements.

3.1 Stability

It is clear from (8) that the linearized feedback system is
stable since F (z) is stable. The problem is to guarantee
the stability of the nonlinear feedback system in Figure 1
with nonlinear quantizer Q. A sufficient condition for the
stability is given by

∥H∥∞ = ∥1 + F∥∞

≤ 1

(2N + 1)δ
(M + 1 + δ − Umax),

(13)

where M and δ are respectively the number of steps and
the step size of Q, N is the order of F (z), and Umax is
the maximum value of the input u. See Nagahara and
Yamamoto (2012) for the proof of the above criterion.
Also, the well-known Lee criterion is given by

∥H∥∞ = ∥1 + F∥∞ < 1.5. (14)

Note that this is neither sufficient nor necessary for the
stability, but this is actually widely used in the real
systems. See Schreier and Temes (2005); Chao et al. (1990)
for details. In both cases, a stability condition is described
by

∥H∥∞ = ∥1 + F∥∞ < γ. (15)

From (3) and (11), this condition can be rewritten as

max
ω∈[0,π]

∣∣∣∣∣1 +
N∑

k=0

cke
−jωk

∣∣∣∣∣ < γ. (16)

|H(ejω)|

Ω π

ω

0

Fig. 4. A preferable low-cut (or high-pass) response of the
NTF H(z).

3.2 Performance

The noise transfer function from the quantization noise
n to the quantized output v plays an important role in
delta-sigma modulators. Let us assume that the highest
frequency Ω ∈ (0, π) of the input signal u is known. That
is, we assume that for any input u,

supp(û) ⊂ [0,Ω], (17)

holds where û is the Fourier transform of u. Then, we
can shift the frequency distribution of the quantization
noise in the quantizer output v to the high frequency
domain (Ω, π], by making the NTF to be a low-cut (or
high-pass) filter with cutoff frequency Ω (see Figure 4).
We then introduce an optimization problem of the NTF
to maximally attenuate the gain of the frequency response
of the NTF in the low-frequency band [0,Ω]:

min
c1,...,cN

max
ω∈[0,Ω]

|H(ejω)|. (18)

From (3) and (11), this condition can be rewritten as

min
c1,...,cN

max
ω∈[0,Ω]

∣∣∣∣∣1 +
N∑

k=0

cke
−jωk

∣∣∣∣∣ . (19)

3.3 Sparse representation

The FIR filter F (z) is often implemented on a digital
device, which is often on the edge side (or the sensor side)
of the IoT (Internet of Things) network. It is therefore
preferable to represent the filter in the simplest form.
For this purpose, we propose the sparse representation of
the filter coefficients, by minimizing the ℓ0 norm of the
coefficient vector c = [c1, . . . , cN ]⊤, defined by

∥c∥0 ≜ |supp(c)|, (20)

where |supp(c)| is the number of the elements in the
support set supp(c). That is, the ℓ0 norm is the number
of non-zero elements of c. Since the minimization of the
ℓ0 norm leads to an NP-hard problem as pointed out by
Natarajan (1995), we often adopt a convex relaxation by
minimizing the ℓ1 norm

∥c∥1 =

N∑
k=1

|ck|. (21)

It is well-known that ℓ1 minimization often promotes the
sparsity (see Elad (2010); Hayashi et al. (2013) for details),
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and hence by minimizing the ℓ1 norm, we obtain a sparse
representation of the FIR filter F (z).

3.4 Optimization problem

Now, we summarize the design problem of the filter
coefficients c1, . . . , cN that satisfy the three requirements
mentioned in the previous subsections. The design problem
is described as an optimization problem:

minimize
c1,...,cN∈R

max
ω∈[0,Ω]

∣∣∣∣1 + N∑
k=1

cke
−jωk

∣∣∣∣+ λ

N∑
k=1

|ck|

subject to max
ω∈[0,π]

∣∣∣∣1 + N∑
k=1

cke
−jωk

∣∣∣∣ < γ, (22)

where λ > 0 is the regularization parameter that controls
the tradeoff between performance and sparsity. This is
a semi-infinite programming problem and hence hard to
solve. In the next section, we show that this problem
can be equivalently reduced to a finite-dimensional convex
optimization problem.

4. SPARSE FILTER DESIGN VIA ℓ1 OPTIMIZATION

Here we show how to efficiently solve the semi-infinite
programming problem in (22). Let us define state-space
matrices A, b, and c of the transfer function H(z) = 1 +
F (z) as

A :=


0 1 0
. . .

. . .

. . . 1
0 0

 , b :=


0
...
0
1

 ,

c⊤ := [cN , cN−1, . . . , c1],

(23)

that is,
H(z) = 1 + c⊤(zI −A)−1b. (24)

First, we show two lemmas that are the key to relaxing the
problem in (22) to a finite-dimensional convex optimiza-
tion.

Lemma 1. (KYP lemma). The inequality (15), or (16)
holds if and only if there exists a real symmetric matrix
X ∈ SN such that

Φγ(X, c) ≜

A⊤XA−X A⊤Xb c
b⊤XA b⊤Xb− γ2 1
c⊤ 1 −1

 < 0,

X > 0.

(25)

For the proof of KYP lemma, see Rantzer (1996); Naga-
hara (2011).

Lemma 2. (Generalized KYP lemma). The following in-
equality

max
ω∈[0,Ω]

∣∣∣∣1 + N∑
k=1

cke
−jωk

∣∣∣∣ < ρ (26)

holds if and only if there exist real symmetric matrices
Y, Z ∈ SN such that

Ψρ(Y, Z, c) ≜

 M1(Y, Z) M2(Y, Z) c
M2(Y, Z)⊤ M3(Y, ρ

2) 1
c⊤ 1 −1

 < 0,

Z > 0,

(27)

where

M1(Y, Z) = A⊤Y A+ ZA+A⊤Z − Y − 2Z cosΩ,

M2(Y, Z) = A⊤Y b+ Zb,

M3(Y, ρ
2) = b⊤Y b− ρ2.

The proof is found in Iwasaki and Hara (2005).

Next, we equivalently rewrite the optimization problem in
(22) as

minimize
ρ,c1,...,cN∈R

ρ+ λ

N∑
k=1

|ck|

subject to max
ω∈[0,π]

∣∣∣∣1 + N∑
k=1

cke
−jωk

∣∣∣∣ < γ,

max
ω∈[0,Ω]

∣∣∣∣1 + N∑
k=1

cke
−jωk

∣∣∣∣ < ρ. (28)

Finally, from Lemmas 1 and 2, we can equivalently relax
the optimization problem (28) into

minimize
ρ∈R,c∈RN

X,Y,Z∈SN

ρ+ λ∥c∥1

subject to Φγ(X, c) < 0,

Ψρ(Y, Z, c) < 0,

X > 0,

Z > 0. (29)

This is a convex optimization problem and can be effi-
ciently solved by e.g. SDPT3 (Toh et al., 1999; Tutuncu
et al., 2003) or SeDuMi (Sturm, 1999).

Remark 1. (NTF zero). For ensuring perfect reconstruc-
tion of the DC input level, and reducing low-frequency
tones, it is preferable for the NTF to have zeros at z = 1, or
ω = 0 (Schreier and Temes, 2005). The zeros of the NTF,
H(z), can be assigned by linear constraints of c1, . . . , cN .
If we define

G(z) ≜ zNH(z) = zN +

N∑
k=1

ckz
N−k. (30)

Then, H(z) has m zeros at z = 1 if and only if

dlG(z)

dzl

∣∣∣∣
z=1

= 0, l = 0, 1, . . . ,m− 1, (31)

where
d0G(z)

dz0
= G(z).

We can combine these linear constraints with the convex
optimization (29).

Remark 2. We can use a non-uniform weight for the ℓ1

norm in the cost function (28) instead of single λ. Namely,
we can minimize

ρ+

N∑
k=1

λk|ck|,

with

λ1 > 0, λ2 > 0, . . . , λN > 0,

λ1 + λ2 + · · ·+ λN = 1.

With this cost function, the optimization is still convex.
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Fig. 5. Filter coefficients of F (z) with λ = 0 (full-coefficient
filter)

5. DESIGN EXAMPLE

In this section, we show a design example of the delta-
sigma modulator. We assume that the pre-filter P (z) = 1,
and the feedback filter F (z) to be an FIR filter of order
N = 64. The cut-off frequency Ω is chosen as π/32 ≈
0.0982 (rad/sec). We set the upper bound γ of the H∞

norm of the NTF to be 1.5, that is, we use the Lee criterion
∥H∥∞ < 1.5 for the stability.

Under these parameters, we compute three filters:

(i) The optimal filter that solves (29) with λ = 0,
combined with the zero constraint (31) with m = 1.
This is a conventional filter proposed in Nagahara and
Yamamoto (2012), which uses all 64 coefficients.

(ii) The optimal filter that solves (29) with λ = 10,
cutting very small coefficients (i.e. |ck| < 10−4) to
zero, combined with the zero constraint (31) with
m = 1. This is the proposed sparse-coefficient filter.

(iii) The truncated 15-th order FIR filter from the full-
coefficient filter computed in (i).

Figure 5 shows the filter coefficients of the full-coefficient
filter. We see that all the coefficients of this filter are
non-zero, and hence we need to implement the full 64-
tap filter. On the other hand, Figure 6 shows the filter
coefficients of the proposed filter. We can see that this filter
has very sparse coefficients. In fact, the absolute values of
49 coefficient out of 64 are zero. In other words, we have
∥c∥0 = 15 ≪ 64, and we only need to implement these 15
nonzero coefficients.

Figure 7 shows the gain of the frequency response of the
NTF. We can see that the truncated filter, which has
the same number of non-zero coefficients as the sparse
filter, shows worse response than the sparse filter at low
frequencies around ω = 0.

Remark 3. One can download MATLAB codes to run the
numerical example. See Appendix.

Fig. 6. Filter coefficients of F (z) with λ = 0.5 (sparse-
coefficient filter)

Fig. 7. Frequency response of NTF: sparse filter (solid),
dense filter (dash), truncated filter (dash-dotted)

6. CONCLUSION

In this paper, we have proposed a sparse filter design of
FIR feedback filters in delta-sigma modulators. By the
KYP and generalized KYP lemmas, and ℓ1 norm relax-
ation of ℓ0 norm, the design problem of the FIR coeffi-
cients can be written as a convex optimization problem
with LMIs, which can be efficiently solved by numerical
softwares. Future work includes the design of FIR feedback
filters for band-pass and multi-band delta-sigma modula-
tors with sparse representation.
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Appendix A. MATLAB CODES

MATLAB function NTF_sparse.m to obtain a sparse
feedback filter by the proposed method can be downloaded
from

https://nagahara-masaaki.github.io/ds.html

Here is an example to use the function:

>lam = 10; %Regularization parameter
>ord = 64; %FIR filter order
>Om = pi/32; %Cut-off frequency
>Hf = 1.5; %H-infinity norm of NTF
>m = 1; %Zero placement of NTF
>th = 1e-4; %Thresholding parameter
>[ntf, F] = NTF_sparse(lam,ord,Om,Hf,m,th);

By running the above codes, you get ntf, the transfer
function of NTF, and F, the filter coefficients of F (z).
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