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Abstract: This paper considers the real-time implementation of MPC tailored to voltage source
converters with inductive-capacitive filter. Previous work has shown that the nonlinear and non-
convex MPC problem can be equivalently formulated as a convex quadratically constrained
quadratic program (QCQP). We develop two tailored algorithms based on the OSQP and
HPIPM solvers to efficiently solve this QCQP. As the aforementioned solvers do not support
quadratic constraints, we extend them so that they can solve QCQPs. We provide numerical
comparison between the proposed methods and state-of-the-art solvers and show that our solvers
are suitable for embedded applications.
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1. INTRODUCTION

With the development of renewable energy, the modern
power system is undergoing significant change with ever
increasing presence of grid-connected power converters
(Parvez et al., 2016). Model predictive control (MPC) has
been applied for a wide range of converter control appli-
cations (Vazquez et al., 2016), and has shown to improve
both dynamic performance and efficiency of converters,
see e.g., Spudić and Geyer (2017); Richter et al. (2016);
Hokayem et al. (2014); Almér et al. (2013, 2015).

Application of MPC requires the solution of optimization
problems in real time. The fast control frequencies of
converters mean that the real-time optimization has to
be performed at high speed. This is a challenging problem
which has been the focus of a large body of work (Ferreau
et al., 2017). A recent theoretical result has shown that
for certain power converter topologies, the non-convex
MPC problem can be equivalently reformulated as a con-
vex quadratically constrained quadratic program (QCQP)
with a certain structure (Almér et al., 2020). This result
motivates further research into fast real-time optimization
of QCQP, which is carried out in the present paper.

The solution to MPC problems can be computed with
iterative optimization methods and solvers, e.g., Richter
et al. (2012); Domahidi et al. (2013, 2012). First-order
methods exploit first-order information of the problem to
iteratively compute an optimal solution. Operator split-
ting techniques are well-known first-order methods that
formulate the optimization problem as a problem of find-

ing a zero of the sum of monotone operators (Lions and
Mercier, 1979; Douglas and Rachford, 1956). The alter-
nating direction method of multipliers (ADMM) is a par-
ticular operator splitting method, which has been studied
extensively (Gabay and Mercier, 1976; Glowinski, 1984;
Eckstein and Bertsekas, 1992; Boyd et al., 2011). Due to
its computationally cheap iterations and good practical
convergence behavior, ADMM is well suited to embedded
applications with limited computing resources wherein
high accuracy solutions are typically not required due to
noise in the data.

Very recently, a novel operator splitting method for
quadratic programs based on ADMM was proposed (Stel-
lato et al., 2020; Banjac et al., 2017, 2019). The method
exploits a new splitting requiring the solution to a quasi-
definite linear system. The method makes no assumptions
on the problem data other than convexity. Furthermore,
it can provide primal and dual infeasibility certificates
if the problem is infeasible. Besides, warm starting can
be easily integrated to reduce the number of iterations
and if the problem matrices are time-invariant, the matrix
factorization can be cached and reused multiple times to
improve the computation time.

Another important class of optimization methods are
interior-point methods. They are second-order methods
for constrained optimization. An important method in this
class is the Mehrotra predictor-corrector method (Mehro-
tra, 1992), a primal-dual interior-point method which is
widely used in practical implementations due to the good
performance across various problems (Wright, 1997).
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Fig. 1. Two level three-phase voltage source converter with
LC filter

Recently, based on previous work (C.V.Rao et al., 1998), a
predictor-corrector method for linear MPC addressed on a
Riccati factorization was proposed (Frison and Jørgensen,
2013). An efficient implementation exists in the HPIPM
package (Frison et al., 2014), which significantly improves
performance for small to medium scale problems compared
to other implementations of interior-point methods. An
important part of the speedup comes from an optimized
linear algebra implementation called BLASFEO (Frison
et al., 2018).

This paper explores the real-time implementation of
MPC tailored to voltage source converters with inductive-
capacitive filter. Based on the previous work (Almér et al.,
2020), where an equivalent formulation of MPC as a
QCQP, we develop two tailored algorithms based on the
OSQP and HPIPM solvers to efficiently solve this QCQP.
As the aforementioned solvers do not support quadratic
constraints, we extend them so that they can solve QC-
QPs. Besides, we provide numerical comparison between
the proposed methods and state-of-the-art solvers and
show that our solvers are suitable for embedded applica-
tions.

The content of the present paper is as follows. We discuss
the problem setup and review the specific MPC problem in
Section 2. Section 3 presents the main result of this paper:
two efficient algorithms to determine the optimal solution.
In Section 4, we implement the proposed method and
illustrate the results by simulations. Finally, we conclude
the paper.

2. BACKGROUND

2.1 System Model

The configuration of a voltage source converter intercon-
nected to the load via an inductive-capacitive (LC) filter
is presented in Fig. 1. The system consists of the LC filter,
the load (modeled as an independent current source), and
the switching stage.

The state of the LC filter is described in stationary abc
frame with state vector and dynamics

x := [
√
LIa
√
LIb
√
LIc
√
CVa

√
CVb

√
CVc]T

ẋ(t) = Acx(t) +Bcs(t)Vdc + FcIo(t) (1)

where Ip are the inductor currents, Vp are the capaci-
tor voltages, p ∈ {a,b, c}. L, C and Vdc are the filter
inductance, capacitance and (constant) DC link voltage
respectively. Io = [Ioa, Iob, Ioc]T ∈ R3 are three-phase load
currents, and s = [sa, sb, sc]T ∈ {−1, 1}3 represents the

state of the converter switches. Expressions for the system
matrices Ac, Bc, Fc can be found in (Almér et al., 2020).

2.2 MPC Formulation

The MPC problem of controlling (1) is nonlinear and non-
convex, since the control input is confined to a discrete set.
However, it was shown in (Almér et al., 2020), that under
the assumption that the LC filter resonance frequency
c = 1/

√
LC satisfies cTs ≤ π, where Ts is the sampling

time, the nonlinear MPC problem can be equivalently for-
mulated as a QCQP. The switches sk are firstly expressed
in terms of duty cycle and phase shift, then they are
transformed into control input vp,k in another convex set
via a bijective mapping. Denote the discretized state and
load current xk = x(kTs) and Io,k = Io(kTs) respectively.

The QCQP takes the following form

min
xk,vk

∑Np

k=1(xk − rref,k)TQc(xk − rref,k)

s.t. xk+1 = Axk + FIo,k +Mvk, k ∈ 0, . . . , Np − 1
x0 = xinit

‖vp,k − r1‖2 ≤ R2

‖vp,k − r2‖2 ≤ R2

k ∈ 0, . . . , Np − 1, p ∈ a,b, c
(2)

where Qc is a positive definite matrix, Np is the predic-
tion horizon, rref,k ∈ R6 is the reference signal, vk =
[va,k, vb,k, vc,k]T ∈ R6, r1 = [0, 0.5]T ∈ R2, r2 =
0.5[sin(cTs),− cos(cTs)]

T ∈ R2 and R = 0.5. Expressions
for the system matrices A, F , M can be found in (Almér
et al., 2020).

3. PROPOSED ALGORITHMS

In this section, we introduce two algorithms based on the
solvers OSQP and HPIPM for solving MPC problem in
(2) efficiently.

3.1 Operator Splitting Method for QCQP

Recent research based on a particular version of ADMM,
proposed in (Stellato et al., 2020; Banjac et al., 2017),
shows that ADMM is effective for solving quadratic pro-
grams. Defining the variables of problem (2) as

x = [x1, . . . , xNp
, v0, . . . , vNp−1]T ∈ R12Np ,

the MPC problem (2) can be written into the following
form:

min
x

1
2x

TPx+ qTx

s.t. Ā1x = b

Ā2x ∈ B

where

P = 2

[
INp
⊗Qc

INp ⊗ 06×6

]

q = −2


Qcrref,1

...
Qcrref,Np

06Np×1

 , b =


Ax0 + FIo,0

FIo,1
...

FIo,Np−1
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Algorithm 1 Operator splitting method for QCQP.

Require: Initial points x0, z0, y0 and parameters ρ > 0,
σ > 0, α ∈ (0, 2)
repeat

(x̃k+1, z̃k+1)← argmin
Āx̃=z̃

{
1
2 x̃

TPx̃+ qT x̃+ σ
2 ‖x̃− xk‖

2
2

+ρ
2‖z̃ − zk + 1

ρyk‖
2
2

}
xk+1 ← αx̃k+1 + (1− α)xk
zk+1 ← ΠC(αz̃k+1 + (1− α)zk + 1

ρyk)

yk+1 ← yk + ρ(αz̃k+1 + (1− α)zk − zk+1)
k ← k + 1

until termination condition is satisfied

Ā1 =


I6 −M
−A I6 −M

. . .
. . .

. . .
−A I6 −M


6Np×12Np

Ā2 =

[
06Np×6Np I6Np

06Np×6Np I6Np

]
B := B1 × . . .×B1 ×B2 × . . .×B2 ⊆ R6Np+6Np

B1 := {v ∈ R2 | ‖v − r1‖2 ≤ R2}
B2 := {v ∈ R2 | ‖v − r2‖2 ≤ R2}.

and where ⊗ and × denote the Kronecker and Cartesian
products, respectively. Im is identity matrix and 0m×n is
zero matrix.

Note that the problem above can be written in the follow-
ing form:

min
x

1
2x

TPx+ qTx

s.t. Āx ∈ C
where

Ā =

[
Ā1

Ā2

]
and C := {b} ×B.

The formulation above matches the one in (Stellato et al.,
2020, §1.1), and thus we can employ the same splitting
method, which is summarized in Algorithm 1. In Algo-
rithm 1, the operator ΠC denotes the Euclidean projection
onto the set C. Since C is given as a Cartesian product
of multiple sets, we can evaluate ΠC(z) by computing
projections onto the singleton {b} and the balls B1 and B2.
The projection onto the ball Bi has the following closed-
form solution:

ΠBi(v) =

{
v ‖v − ri‖2 ≤ R
v−ri
‖v−ri‖2R+ ri otherwise

,

which is illustrated in Fig. 2. The termination conditions
for Algorithm 1 can be found in (Stellato et al., 2020, §3.4).

3.2 Riccati-Based Interior-Point Method for QCQP

An alternative approach to solve the quadratically con-
strained MPC problem in (2) is to extend the Riccati-
based interior-point method proposed in (Frison and
Jørgensen, 2013; Frison et al., 2014). Consider the MPC
problem in (2), we define the decision variables w =
[u0, x1, u1, ..., , uNp−1, xNp

]T ∈ R12Np , dual variable π =

[π1, π2, ..., πNp
]T ∈ R6Np associated with equality con-

straints and λ = [λ1, λ2, ..., λ6Np ]T ∈ R6Np associated with

r
R

v1

ΠB(v1)

v2 ≡ ΠB(v2)

Fig. 2. The Euclidean projection onto the ball B centered
at r and with radius R.

quadratic constraints. Furthermore, t = [t1, t2, ..., t6Np ]T ∈
R6Np are introduced as slack variables. The relaxed KKT
conditions read as

F(w, π, λ, t) =



(H̃ + Cλ)w − ǍTπ + g
−Ǎw + b

‖va,0 − r1‖2 −R2 + t1
‖va,0 − r2‖2 −R2 + t2
‖vb,0 − r1‖2 −R2 + t3
‖vb,0 − r2‖2 −R2 + t4

...
‖vc,Np−1 − r1‖2 −R2 + t6Np−1

‖vc,Np−1 − r2‖2 −R2 + t6Np

TΛe


= 0 (3)

where we define the following quantities:

H̃ + Cλ = 2


K1

Qc

. . .
KNp

Qc


12Np×12Np

Ki =



2∑
j=1

λ6(i−1)+jI2

4∑
j=3

λ6(i−1)+jI2

6∑
j=5

λ6(i−1)+jI2


i = 1, 2, .., Np

g = −2


L1

Qcrref,1

...
LNp

Qcrref,Np

 , b =


Ax0 + FIo,0

FIo,1
...

FIo,Np−1



Li =

λ6(i−1)+1r1 + λ6(i−1)+2r2

λ6(i−1)+3r1 + λ6(i−1)+4r2

λ6(i−1)+5r1 + λ6(i−1)+6r2

 , i = 1, 2, .., Np

Ǎ =


−M I6

−A −M I6

. . .
. . .

−A −M I6


6Np×12Np
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T =

t1 . . .
t6Np

 , Λ =

λ1

. . .
λ6Np

 , e =

1
...
1


6Np

Furthermore, we define the barrier parameter µ ≥ 0 and
centering parameter σ ∈ [0, 1]. The values of µ and σ define
the central path, which is a trajectory towards the solution
of the problem as µσ tends to zero. Applying Newton’s
method to (3), at each iteration k, we have that

H̃ + Cλk
−ǍT CTuk

−Ǎ
Cuk

I6Np

Tk Λk


∆wk

∆πk
∆λk
∆tk

 =

−rH̃k

−rπk

−rλk

−rtk

 (4)

where

Cu = 2

U1 06×6

. . .
UNp 06×6


6Np×12Np

Ui =


(va,i−1 − r1)T

(va,i−1 − r2)T

(vb,i−1 − r1)T

(vb,i−1 − r2)T

(vc,i−1 − r1)T

(vc,i−1 − r2)T


6×6

i = 1, 2, .., Np

rH̃ = (H̃ + Cλ)w − ǍTπ + g

rπ = −Ǎw + b

rλ =



‖va,0 − r1‖2 −R2 + t1
‖va,0 − r2‖2 −R2 + t2
‖vb,0 − r1‖2 −R2 + t3
‖vb,0 − r2‖2 −R2 + t4

...
‖vc,Np−1 − r1‖2 −R2 + t6Np−1

‖vc,Np−1 − r2‖2 −R2 + t6Np


rt = TΛe− µσe.

Finally, we can define the primal residuals εprim and dual
residual εdual as,

εprim = ‖[rπ, rλ]T ‖∞ (5)

εdual = ‖rH̃‖∞. (6)

Now we can rewrite (4) into symmetric KKT system by
Schur complement, i.e.,[
H + Cλk

+ CTuk
(Tk)−1ΛkCuk

−ǍT
−Ǎ

] [
∆wk
∆πk

]
= −

[
ˆrHk

rπk

]
,

(7)

where

ˆrHk
= rHk

− CTuk
(Tk)−1rtk + CTuk

(Tk)−1Λkrλk

∆tk = −rλk
− Cuk

∆wk

∆λk = −T−1
k (rtk + Λk∆tk).

Next, the decision variables are rewritten in

∆ = [∆u0,∆π1,∆x1, . . . ,∆uNp−1,∆πNp
,∆xNp

]T ,

the corresponding perturbed KKT system (7) consist
of the band-diagonal matrix Kband and right-hand side

Algorithm 2 Riccati-based interior-point method for
QCQP.

Require: (w0, π0, λ0, t0) with (λ0, t0) ≥ 0;
for k = 1, 2, . . . do

(w, π, λ, t)← (wk, πk, λk, tk)
(∆waff ,∆πaff ,∆λaff ,∆taff)← solve (8) with σ = 0 in
Alg.3
µ← λTk tk/(6Np)
α̃aff ← max{α ∈ [0, 1] | (λk, tk)+α(∆λaff ,∆taff) ≥ 0}
µaff ← (λk + α̃aff∆λaff)T (tk + α̃aff∆taff)/(6Np)
σ ← (µaff/µ)3

(∆w,∆π,∆λ,∆t)← solve (8) in Alg.3
Choose τk ∈ (0, 1)
αprim
τk
← max{α ∈ [0, 1] | tk + α∆t ≥ (1− τk)tk}

αdual
τk
← max{α ∈ [0, 1] | λk + α∆λ ≥ (1− τk)λk}

α̃← min(αprim
τk

, αdual
τk

)
(wk+1, πk+1, λk+1, tk+1) ← (wk, πk, λk, tk) +
α̃(∆wk,∆πk,∆λk,∆tk)

Update εprim
k and εdual

k , check termination conditions.
end for

vector rband, whose structure coincides with the uncon-
strained one in (Frison and Jørgensen, 2013),

Kband∆ = rband (8)

where

Kband =



R0 MT

M −I6

−I6 Q1 ST1 AT

S1 R1 MT

A M −I6

−I6 Q2

. . .
. . .

. . . −I6

−I6 P


rband = −[s̃0, b̃0, q̃1, . . . , s̃Np−1, b̃Np−1, q̃Np

]T .

We describe the full predictor-corrector algorithm in Algo-
rithm 2. The linear system solution by backward Riccati
factorization is listed in Algorithm 3. Note that ‘Chol’
denotes Cholesky factorization and β and Θ are lower
triangular matrices. Notice that, at submission time, the
support for QCQPs has been added to HPIPM indepen-
dently of our work.

4. IMPLEMENTATION

We now discuss numerical results and compare the perfor-
mance of different algorithms, including some commercial
solvers. The implementation focuses on small to medium
size problems. All the demos are tested on an Intel Core
i7 6700HQ @2.6GHz processor, the compiler is Visual
Studio C++ on Linux 64 bit. The system parameters are
summarized in Tab. 1.

As it can be seen in Algorithm 1, we need to choose
parameters ρ, σ, α for the splitting method. As suggested
in (Stellato et al., 2020), we set σ = 10−6 and α = 1.6. In
addition, we obtain good numerical performance for ρ = 5.

In the primal-dual interior point method, the only parame-
ter we need to determine is τ . We could choose an adaptive
τk that approaches 1 as the iterates approach the solution
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Algorithm 3 Backward Riccati for solving KKT system.

Require: KKT system and Np;
Set βNp ← Chol(P )
for n = Np − 1→ 1 do

Σ← βTn+1 [M A]
if n = 0 then

S0 = 06×6,Q0 = 2Qc

end if

M← ΣTΣ +

[
Rn Sn
STn Qn

]
[
Θn

LTn βn

]
← Chol(M)

end for

Set pNp ← q̃Np

for n = Np − 1→ 0 do

ln ← (ΘT
n )−1(s̃n +MT (βTn+1βn+1b̃n + pn+1))

pn ← q̃n +AT (βTn+1βn+1b̃n + pn+1)− LTn ln
end for

for n = 0→ Np − 1 do
∆un ← −(ΘT

n )−1(Ln∆xn + ln)

∆xn+1 ← A∆xn +M∆un + b̃n
∆πn+1 ← LTn+1Ln+1∆xn+1 + pn+1

end for

Table 1. Simulation settings.

System parameters Values

Inductance of coil L 0.736 p.u.
Capacitance C 3.336 p.u.

Nominal DC voltage Vdc 0.727 p.u.
Nominal load current amplitude Io 0.591 p.u.
Sampling (and Control) period Ts 310 µs

Prediction horizon Np 2
Penalties in Qc for inverter current error 1/30
Penalties in Qc for capacitor voltage error 10/30

or directly set it to a constant value τk ∈ [0.9, 1]. We
record the averaged number of iterations for high accuracy
solution over 100 random initial points. The results are
shown in Fig. 3, the choice of adaptive τk, i.e.,

τk = 1− 0.01e−(k−1), k = 1, 2 . . . (9)

speeds up convergence.

Next, we perform the comparison with other commercial
interior point solvers GUROBI 7.5.1, MOSEK 8.0 and
open-source solvers SDPT3 4.0 and ECOS. We execute
all the methods with default settings. The fast gradient
method for real-time MPC (Richter et al. (2012)) is not
considered here since it requires approximation of the
ellipsoidal constraints by boxes and cannot obtain exact
solution.

For each solver, the averaged computation time is com-
puted for 1000 random initial points under different accu-
racies. As shown in Fig. 4, the proposed operator splitting
method and Riccati method are suitable for the case of
low-accuracy applications like embedded control (e.g. tol-
erances of 10−3 to 10−4 in Fig. 4) and outperform the
competing solvers, while Riccati method performs better
than all others when a high accuracy is required.

Finally, warm-starting can significantly improve computa-
tion times in MPC. In particular, we initialize the iterates
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Fig. 3. The number of iterations reaches tolerance with
different values of τ .
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Fig. 4. Computation time vs solution accuracy for pro-
posed methods and solvers.

of our methods to the solution of the previous problem and
compute the averaged computation time. The obtained
speedup is shown in Fig. 5.
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Fig. 5. Comparison of warm-start performance given low
accuracy.

5. CONCLUSION

Motivated by a new formulation of a power electronics
MPC problem, we presented two tailored optimization al-
gorithms for real-time control using QCQP. In the ADMM
framework, inspired by a novel operator splitting method,
the quadratic constraints and the linear dynamics are
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reformulated into an easy-to-project set. The other for-
mulation based on the primal-dual interior-point method
uses a Riccati-type factorization to solve the KKT system
efficiently. We present several simulation results of an
MPC tracking problem and show that our tailored QCQP
algorithms outperform off-the-shelf solvers. In a future
study, techniques like preconditioning and heuristic meth-
ods could be integrated into OSQP to further reduce the
number of iterations. Furthermore, a real-world embedded
control setup is envisaged.

REFERENCES

Almér, S., Frick, D., Torrisi, G., and Mariéthoz, S. (2020).
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