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Abstract: Linear time-varying systems are a class of systems, the dynamics of which evolve
in time. This results in a time-varying frequency response function where each frequency has
a time-varying gain. In classical identification techniques, basis functions are employed to fit
these time-varying gains. In this paper a new method based on Gaussian process regression is
presented. The advantage of the proposed method is a more convenient model structure and
model order selection.
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1. INTRODUCTION

This paper describes methods for identifying linear time-
varying (LTV) systems. The need for modelling LTV
systems appears in diverse engineering disciplines. For
instance, in aeronautics, the resonance frequency of the
wings of an airplane depend on the flight speed and height.
Different approaches exist in order to describe LTV sys-
tems, one of them is to use recursive identification methods
as in Ljung and Söderström (1983), another way is to
model the linear ordinary differential equation with time-
varying coefficients as described in Lataire and Pintelon
(2011). In this paper, however, a frequency domain ap-
proach is used, where the time-varying frequency response
function (TV-FRF) is identified nonparametrically over
frequency and parametrically over time. For this para-
metric identification over time, classical methods (Lataire
et al., 2012) use basis function regression. However, this
method has some disadvantages regarding model structure
and model order selection. This makes the method hard
to use for non-experts in system identification. In order
to bypass this problem, a new method is proposed where
Gaussian process regression, as described in Williams and
Rasmussen (2006), is used instead of a basis function
approach. The main advantage is that a convenient model
complexity selection procedure is available. Hence, the
modelling is simplified for non-experts in system identi-
fication.

This paper is structured as follows. First, Section 2 intro-
duces the TV-FRF. Next, Section 3 explains the current
methods for the identification of linear time-varying sys-
tems in a nutshell. Further, Section 4 introduces Gaussian
process regression and applies it to a very simple regres-
sion problem. Next, Section 5 employs Gaussian process
regression for identifying the TV-FRF at a particular
frequency and Section 6 explains briefly how to obtain
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the TV-FRF with a multisine excitation, together with
results on measured data. Finally, Section 7 concludes the
Gaussian process approach by balancing the advantages
and disadvantages.

2. AN ELEMENTAL KNOWLEDGE ON LINEAR
TIME-VARYING SYSTEMS

Linear time-varying systems can be described using their
two-dimensional impulse response function g(t, τ), which
is the response of the system at time t when an im-
pulse has been applied at time τ . In contrast with linear
time-invariant systems, the impulse response is explicitly
dependent on the time at which the impulse has been
applied. The input u - output y relation is then given by
Kwakernaak and Sivan (1991)

y(t) =

∫ +∞

−∞
g(t, τ)u(τ)dτ. (1)

By transforming to the frequency domain, the latter equa-
tion yields (Zadeh, 1950)

y(t) = L−1{G(s, t)U(s)}, (2)

where U(s) is the Laplace transform of u(t) and G(s, t) is
called the time-varying transfer function and is given by
the Laplace transform of the impulse response, i.e.

G(s, t) =

∫ +∞

0

g(t, t− τ)e−sτdτ, (3)

where s is the Laplace variable. From equation (2), the
identification of the LTV system boils down to obtaining
the time-varying frequency response function (TV-FRF)
G(jω, t), which is a two-dimensional complex function. In
this paper the system will be identified nonparametrically.
This means that instead of considering both jω and t as
continuous variables, ω will be discretised and one needs
to find a continuous complex time function, which is called
a time-varying gain, for each frequency ωe ∈W, where W
is the discrete set of frequencies. An illustration of a TV-
FRF is shown in Fig. 1, with the time-varying gain at 1 Hz
indicated in red.
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Fig. 1. Illustration of a TV-FRF G(jω, t) where the time-
varying gain G(jωe, t) for ωe = 2π rad/s is indicated
in red.

3. STATE OF THE ART: IDENTIFICATION OF
LINEAR TIME-VARYING SYSTEMS

In the literature, Lataire et al. (2012) and Pintelon et al.
(2015), the identification problem is tackled by projecting
the time-varying gain at a particular frequency ωe on a set
of basis functions bp(t), i.e. a series expansion is used,

G(jωe, t) =

Np∑
p=0

Gp(jωe)bp(t). (4)

The identification then boils down to obtaining the Np+1
complex scalars Gp(jωe). This is done for all ωe ∈ W.
This is solved in Lataire et al. (2012), where Legendre
polynomials are used as basis functions. When using
multiple periods of a multisine as an excitation for a
linear time-varying system, the effect of the time variation
can be distinguished in the output spectrum. Using this
frequency domain information, the coefficients Gp(jωe)
where p = 0, ..., Np and ωe ∈ W can be estimated using
simple regression. Withal, this method has a disadvantage:
the user of the identification tools has to choose the
number of basis functions Np needed to describe the
system optimally. This is a non-trivial problem, especially
for non-experts in system identification. In the remainder
of this paper this problem will be by-passed by using
a Gaussian process approach. To begin with, Gaussian
processes are defined and applied to a simple time domain
regression problem.

4. GAUSSIAN PROCESS REGRESSION

4.1 What are Gaussian processes?

A Gaussian process is an extension of a multivariate
Gaussian distribution, where instead of drawing vectors
from the distribution, one draws continuous functions.
This is now further formalised. The notational conventions
of Williams and Rasmussen (2006) are used.

Definition 1. Consider the stochastic process f(t) ∈ R
which depends on the continuous time variable t ∈ [0, T ].
We call f(t) a Gaussian process if any vector f, given by

f =


f(t1)
f(t2)

...
f(tN )

 t1, t2, ..., tN ∈ [0, T ], N ∈ N (5)

follows a multivariate Gaussian distribution, i.e. f ∼
N (µ,K). In other words,

p(f) =
1√

(2π)N |K|
exp

(
− 1

2
(f− µ)TK−1(f− µ)

)
, (6)

where |K| = det(K).

As this multivariate normal distribution is completely
determined by the mean vector µ and covariance matrix
K, a Gaussian process is completely determined by a mean
function, which is set to zero for simplicity,

µ(t) = E{f(t)} = 0 (7)

and covariance function

k(t, t′) = cov{f(t), f(t′)} = E{f(t)f(t′)}. (8)

One denotes the Gaussian process

f(t) ∼ GP(0, k(t, t′)), (9)

which is a distribution of continuous functions. These
Gaussian processes showcase very useful results in the
following regression problem in the presence of noise.

4.2 Usefulness of Gaussian process regression

Problem 1. (Time domain regression). Given the prior
knowledge about the signal and the noise, f(t) ∼
GP(0, k(t, t′)) and v(t) ∼ GP(0, σ2

vδ(t − t′)), given data
y(ti) = f(ti) + v(ti), find the distribution of the model
conditioned on the data y = [y(t1), ..., y(tN )]T .

This is a simple regression problem, where the data y
is for instance a vector with temperatures measured in
Brussels on a sunny day in May, shown as dots in Fig. 2.
Elegant expressions exist to solve this problem. It is shown
in Williams and Rasmussen (2006) Appendix A.2 that for
normally distributed real zero mean vectors a ∈ RN×1 and
b ∈ RN×1 with joint covariance

cov
{[

a
b

]}
=

[
E{aaT } E{abT }
E{baT } E{bbT }

]
=

[
A CT

C B

]
, (10)

the posterior distribution of model a conditioned on data
b yields

a | b ∼ N (CTB−1b, A− CTB−1C). (11)

One applies this very convenient formula to the regression
problem, and finds

cov
{[

f
y

]}
=

[
K K
K K + σ2

vI

]
, (12)

where

[K]m,n = k(tm, tn) m,n = 1, ..., N. (13)

And hence using (11) the posterior distribution is given by

f | y ∼ N (̂f,Kf̂) (14)

with mean vector

f̂ = K
(
K + σ2

vI
)−1

y (15)

and covariance matrix

Kf̂ = K −K
(
K + σ2

vI
)−1

K. (16)

Equations (15) and (16) give the posterior distribution
at the time instants of the drawn data. Furthermore,
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Gaussian processes also allow interpolation such that the
posterior distribution is available for a continuous time
variable t,

f(t) | y ∼ GP(f̂(t), kf̂ (t, t′)), (17)

with mean function

f̂(t) = k(t, t)
(
K + σ2

vI
)−1

y (18)

and covariance function

kf̂ (t, t′) = k(t, t′)− k(t, t)
(
K + σ2

vI
)−1

k(t, t′), (19)

where t = [t1 t2 ... tN ]
T

,

k(t, t) = [k(t, t1) k(t, t2) ... k(t, tN )] (20)

and

k(t, t′) =
[
k(t1, t

′) k(t2, t
′) ... k(tN , t

′)
]T
. (21)

This is a very useful result because the posterior dis-
tribution is still a Gaussian process with an analytical
mean function and covariance function. Note that also
uncertainty bounds can be computed

p
(
|f(t)− f̂(t)| <

√
2 erf−1(α)σf̂ (t)

)
= α, (22)

where p is the probability, erf is the error function and
σ2
f̂
(t) = kf̂ (t, t).

In the remainder of this paper these formulas are applied to
the fitting of the TV-FRF (3). Yet, the covariance function
k(t, t′) was not fixed to a particular shape, this is done in
the next paragraph.

4.3 Choice of covariance function

In this paper the squared exponential kernel is used as a
covariance function,

k(t, t′) = a exp
(
− (t− t′)2

l2

)
. (23)

Note that many other types of kernels exist. However, the
squared exponential kernel is commonly used in the case
of smooth functions. This covariance function depends on
two hyper parameters a and l, which set, respectively,
the variance and the correlation length. The higher l the
more correlation between two different time instants of the
model f(t). Now remains the question, how do the hyper
parameters a and l have to be chosen? This is solved in
the next paragraph, employing the marginal likelihood.

4.4 Hyper parameter selection via Marginal likelihood

The previous paragraphs assume that the prior knowledge
about the distribution of the model and noise are known.
Evidently, this is not the case in practice, and hence the
hyper parameters a, l and σv have to be estimated. Denote
Θ = {a, l, σv} which is the set of hyper parameters. The
distribution of the data y yields

y ∼ N (0,Ky) (24)

where Ky = K + σ2
vI. Note that this covariance matrix

depends on the three hyper parameters. One now defines
the marginal likelihood as the probability of the data y
conditioned on the hyper parameters Θ,

p(y | Θ) =
1√

(2π)N |Ky|
exp

(
− 1

2
yTK−1

y y
)
. (25)

Obviously, one chooses the hyper parameters Θ such that
the marginal likelihood is maximised. Moreover, it is

Fig. 2. Regression of temperature data in Brussels.

Dots: data y. Full line: f̂(t) = E{f(t) | y}. Area: 95 %
uncertainty bounds.

numerically advantageous to maximise the logarithm of
the marginal likelihood

log p(y | Θ) = −1

2
yTK−1

y y − 1

2
log |Ky| −

N

2
log 2π (26)

and hence

Θ̂ = arg max
Θ

log p(y | Θ). (27)

In this paper the MATLAB routine global search is used
for solving (27), this procedure minimises a cost function
under constraints. The constraints are the bounds on the
hyper parameters, l ∈ [lmin, lmax] etc. These bounds still
have to be chosen by the user. Also, initialisation values
should be chosen for the hyper parameters.

An illustration of the mean function f̂(t) with 95% uncer-
tainty bounds for temperature data in Brussels is shown
in Fig. 2. The estimated hyper parameters are l = 7.97 h,
a = 372.09◦C2 and σ2

v = 0.52◦C2.

5. IDENTIFICATION OF THE TIME-VARYING GAIN
USING GAUSSIAN PROCESS REGRESSION

5.1 Posterior distribution conditioned on windowed
frequency domain data

In this Section we want to identify the TV-FRF (3) at
a particular frequency ωe, which is called a time-varying
gain. We first formulate the problem, which is similar to
Problem 1, but more involved as the function to estimate
is complex and will be conditioned on windowed frequency
domain data.

Problem 2. (Regression of the time-varying gain). Given
the prior knowledge about respectively the time-varying
gain and noise,

G(jωe, t) ∼ GPc(0, k(t, t′)) (28)

and

v(t) ∼ GP(0, σ2
vδ(t− t′)), (29)

given time domain measurements

y = [y(t1), ..., y(tN )]T , (30)

where y(t) = G{u(t)}+v(t), u(t) = cos(ωet), ti = (i−1)/fs
and fs is the sampling frequency of the measurement, find
the a posteriori distribution of the model conditioned on
a windowed set of data points Yw, i.e.

G(jωe, t) | Yw. (31)
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Fig. 3. Output signal of the LTV system in Fig. 1 when
excited with a sine at fe = 0.94 Hz. Left: entire
response for measurement length T = 300 s, right:
zoomed version.

Fig. 4. Input and output frequency spectrum of the LTV
system of Fig. 1 when excited by a sine at ωe =
1.88π rad/s. The windowed data Yw is indicated
as yellow dots, U(f) = Ft{u(t)}(f) and Y (f) =
Ft{y(t)}(f).

Here, Yw is a vector containing Nw = 2∆ + 1 frequency
domain output data points centered around ωe, i.e. in the
band

B = {ωw−∆, ω
w
−∆+1, ..., ω

w
∆−1, ω

w
∆}, (32)

where ωwm = ωe + 2πm
T > 0 and T = N/fs. Hence,

Yw = Fwy (33)

where Fw consists of Nw rows of the DFT matrix, viz.

[Fw]m,n =
1√
N

exp(−jωwm−(∆+1)tn) (34)

for n = 1, ..., N and m = 1, ..., Nw. As an illustration, Fig.
3 shows the output signal y(t) of the LTV system in Fig.
1 when excited by a sine at frequency ωe = 1.88π rad/s
and Fig. 4 shows Yw where Nw = 61.

Important to note is that the function to be estimated,
G(jωe, t), is complex. The following assumption ensures
that the prior is a complex Gaussian process with a real
covariance function.

Assumption 1. (Prior knowledge). The real and imagi-
nary parts of the complex function are mutually uncor-
related real zero mean Gaussian processes, i.e.[

re{G(jωe, t)}
im{G(jωe, t)}

]
∼ GP

([
0
0

]
,

[
k(t, t′)/2 0

0 k(t, t′)/2

])
,

(35)

where k(t, t′) ∈ R is the squared exponential kernel,
which is justifiable when the time-varying gain is a smooth
function in time. One then computes that

G(jωe, t) ∼ GPc(0, k(t, t′)). (36)

The initial step is to obtain an expression for Yw based
on G(jωe, t). We start from the continuous response of
an LTV system to a sinusoidal excitation. From (2), this
yields

y(t) = |G(jωe, t)| cos
(
ωet+ ∠G(jωe, t)

)
+ v(t). (37)

First, one notices that y(t) is a sinusoidal signal modulated
with the time-varying gain G(jωe, t) and hence all infor-
mation about G(jωe, t) is confined in y(t). This is clearly
visible in Fig. 3.

In order to obtain G(jωe, t) as a complex signal, we
consider the noiseless analytical signal of (37) divided by
two, which yields

ya(t) =
1

2

(
y(t) + jH(y)(t)

)
(38)

=
1

2
G(jωe, t) exp(jωet) ∈ C, (39)

where H denotes the Hilbert transform. Transforming this
analytical signal to the frequency domain yields

Ya(jω) = Ft{ya(t)}(jω) (40)

=
1

2

∫ +∞

−∞
G(jωe, t)e

−j(ω−ωe)tdt (41)

=
1

2
G(jωe, j(ω − ωe)), (42)

where G(jωe, jω) = Ft{G(jωe, t)}(jω). Hence, the noise-
less analytical output spectrum of the system is equal to
the spectrum of the time-varying gain, but shifted over ωe.
Based on (39) one can write Yw (33) as

Yw = FwDGωe
+ V, (43)

where V ∼ Nc(0, σ2
V I) represents the DFT of the noise,

[D]m,n = exp(jωetm)δmn m,n = 1, 2, ..., N (44)

and

Gωe
= [G(jωe, t1) G(jωe, t2) ... G(jωe, tN )]

T
(45)

is the time-varying gain vector we want to obtain. Note
that Yw is a windowed and sampled version of Ya(jω)
defined in (42). Now, the posterior distribution Gωe

| Yw
can be computed. We start by writing down the joint
covariance of Gωe

and Yw,

cov
{[

Gωe

Yw

]}
=

[
K KDHFHw

FwDK FwDKD
HFHw + σ2

V I

]
, (46)

where

K = cov{Gωe
} and [K]m,n = k(tm, tn) m,n = 1, ..., N.

(47)

From (11), the posterior distribution is a multivariate
complex normal distribution

Gωe | Yw ∼ Nc
(
Ĝωe ,KĜωe

)
, (48)

where

Ĝωe
= KDHFHw (FwDKD

HFHw + σ2
V I)−1Yw (49)

and

KĜωe
= K −KDHFHw (FwDKD

HFHw + σ2
V I)−1FHw DK.

(50)

Continuous time estimates can be found as
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Fig. 5. Time-varying gain Ĝ(jωe, t) given by (49) condi-
tioned on frequency domain data Yw.

G(jωe, t) | Yw ∼ GPc
(
Ĝ(jωe, t), kĜωe

(t, t′)
)
, (51)

where

Ĝ(jωe, t) = k(t, t)DHFHw (FwDKD
HFHw + σ2

V I)−1Yw
(52)

and

kĜωe
(t, t′) = k(t, t′)− (53)

k(t, t)DHFHw (FwDKD
HFHw + σ2

V I)−1FHw Dk(t, t′).
(54)

Results are shown in Fig. 5, where the magnitude of
the time-varying gain is indicated in red and is in good
agreement with the envelope of the time-domain data y.
As the model is a distribution, also uncertainty bounds are
available, i.e.

p
(
|G(jωe, t)− Ĝ(jωe, t)| <

√
− log(1− α)σĜ(jωe, t)

)
= α,
(55)

where σ2
Ĝ

(jωe, t) = kĜωe
(t, t).

5.2 Hyper parameter estimation

Again, hyper parameters must be estimated for the prior
knowledge. This is done by using the marginal likelihood,
similarly to Section 4.4.

p(Yw | Θ) =
1√

(2π)Nw |Kw|
exp

(
− 1

2
Y Hw K−1

w Yw

)
, (56)

where

Kw = FwDKD
HFHw + σ2

V I. (57)

The loglikelihood yields

log p(Yw | Θ) = −1

2
Y Hw K−1

w Yw −
1

2
log |Kw| −

Nw
2

log 2π.

(58)

The hyper parameters Θ̂ are then found as

Θ̂ = arg max
Θ

log p(Yw | Θ). (59)

Note that computing the matrix product

Kf = FwDKDF
H
w (60)

is extremely time consuming when N is large. Hence, to
make the hyper parameter estimation faster we propose

to use the analytical version of this function which we
compute now. The squared exponential kernel in the
frequency domain is given by

K(jω, jω′) = cov{G(jωe, jω), G(jωe, jω
′)} (61)

=

∫ +∞

−∞

∫ +∞

−∞
k(t, t′)e−j(ωt−ω

′t′)dtdt′ (62)

= a
√
πl2 exp

(
− (

lω

2
)2
)
δ(ω − ω′), (63)

where δ represents the Dirac function. This formula shows
that there is no correlation between different frequencies
and that the variance is the highest for frequencies near
0 Hz. By all means, these continuous Fourier transforms
are only valid when infinitely long and continuous time
data is available, which is never the case in practice. Hence
it is only an approximation. Further it can be shown that

KYa
(jω, jω′) = cov{Ya(jω), Ya(jω′)} (64)

= K(j(ω − ωe), j(ω′ − ωe)), (65)

and hence Kf can be evaluated from KYa
(jω) which is

much faster than computing the matrix products, however,
an error is introduced but this can be afforded to obtain
reasonable values of the hyper parameters. Further speed
up of the matrix inversion will be investigated in future
work, for example by using reduced-rank Gaussian process
regression (Solin and Särkkä, 2014).

5.3 Numerical improvements

Gaussian process regression does not scale well. When
working with long data records, i.e. when N is large, the
matrices in the equations for the posterior distribution
become very large. Hence, computing matrix products is
not recommended. For the multiplications with the DFT
matrix Fw the fast Fourier transform can be used and
note that multiplying a frequency domain kernel with
the diagonal matrix D boils down to shifting the kernel
vertically and horizontally over ke = ωeT/2π elements.

6. EXTENSION TO BROADBAND EXCITATIONS

6.1 Multisine framework

If one wants to know the time-varying gain in a discrete
set of frequencies, the usual excitation signal is a random
phase multisine, defined as

u(t) =
∑
ωk∈W

uk sin(ωkt+ ϕk), (66)

where the set {uk} are the amplitudes, {ϕk} are the
random phases and W is the discrete set of excited
frequencies. The output signal y(t) = G{u(t)} is then
computed using linearity,

y(t) =
∑
ωk∈W

uk|G(jωk, t)| sin
(
ωkt+ ϕk + ∠G(jωk, t)

)
.

(67)

Hence, the response y(t) contains the information of the
time-varying gains at all the excited frequencies ωk ∈ W.
When measuring multiple periods of the multisine, skirts
will be visible in the DFT spectrum around the excited
frequencies. Hence, one can use the method described in
Section 5 to obtain the TV-FRF, by applying it to all the
excited frequencies. Technical details will be conveyed in
future work and results are shown next.
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Fig. 6. Reconstructed output spectrum using the estimated
TV-FRF on validation data.

Fig. 7. Estimated TV-FRF Ĝ(jω, t), obtained from the
benchmark data.

6.2 Results on measurements

In this Section, results of the identification are shown
on measured benchmark data from Lataire et al. (2015).
Here, a multisine was applied to a parameter varying
electronic circuit. A sinusoidal scheduling parameter has
been applied to the system. The input and output spectra
are shown in Fig. 6. The TV-FRF is estimated using the
three excited frequencies algorithm, as briefly described
in Section 6.1, and is shown in Fig. 7. One can now
reconstruct the output signal of a validation data set
using the estimated model Ĝ(jωk, t) and (67). Fig. 6
shows this reconstructed output spectrum compared to the
measured validation output spectrum, hence showing the
model accuracy. The skirt around 0 Hz is intentionally not
modelled. The errors over frequency are reasonable, which
validates the model.

7. CONCLUSION

In this paper a new algorithm was developed in order
to identify a time-varying gain from input-output data
when a sine was used as an excitation signal. This was
done by using Gaussian process regression instead of the

classical basis function approach. This new method has
both advantages and disadvantages.

The main advantage of Gaussian process regression is
that no model order should be selected. This makes the
identification more accessible for non-experts. Another
important advantage is that the model is a distribution of
continuous functions, this means that uncertainty bounds
are available.

However, these advantages come at a price. In this Gaus-
sian process approach hyper parameters Θ = {l, a, σV }
have to be estimated. This estimation boils down to max-
imising the marginal likelihood given by (58). This is an
optimisation problem in three dimensions. Furthermore,
the marginal likelihood is not necessarily convex. Hence,
nonlinear optimisation tools must be used and finding a
global maximum is not ensured. Also, Gaussian Gaussian
processes do not scale well, which makes the identification
slow.

The described method offers a new perspective to the
identification of linear time-varying systems. The ultimate
objective is to make the model order selection automatic,
and hence to facilitate the process for the user. Still, there
is room for improvement regarding the optimisation and
the computational efficiency.
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