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Abstract: The paper deals with active fault diagnosis of stochastic large scale systems for the cases
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1. INTRODUCTION

Complexity and degree of integration of large scale systems
(LSSs) increase their liability to faults, which are undesirable
changes in a monitored system caused by external or internal
incidents. Since the faults may cause failures of the monitored
system with catastrophic consequences, it is essential to detect
them reliably and quickly by a fault diagnosis (FD) method.

The literature recognizes two fundamental FD approaches,
which differ in the interaction with the monitored system. In the
passive approach, the decisions generated by a FD algorithm
are based on passive observations of monitored system quanti-
ties (Isermann, 2011; Blanke et al., 2016). The active approach,
in addition to processing the measurable quantities, generates
an input signal to excite the monitored system. The excitation
purpose is to obtain more information, which helps to detect
faults that may be challenging to detect using the passive FD.

In the last decade, the active FD (AFD) approach has gained in
popularity (Ashari et al., 2012; Punčochář et al., 2015; Boem
et al., 2019). For the AFD for stochastic systems, the multiple-
model framework is used almost exclusively to describe fault-
free and faulty models of the system (Blackmore et al., 2008).

Limited communication bandwidth and computational power
are two main reasons for developing special algorithms for
LSSs. In Punčochář and Straka (2019), a new AFD framework
for stochastic LSSs was introduced and three architectures –
centralized, decentralized, and distributed were proposed. The
paper Straka and Punčochář (2019) addressed the problem of
AFD for LSSs where only noisy indirect measurements were
available to the AFD nodes. The papers assumed independent
behavior of the faults of LSS subsystems, i.e., the subsystem
behavior (faulty or fault-free) does not affect behavior of other
subsystems. This may not be always true. For example, a fault
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in a transport network channel increases workload of other
channels, which are thus more susceptible to faults.

The aim of this paper is to remove such an assumption and
to design an AFD algorithm for LSSs where the faults are
conditionally dependent. In particular, two architectures, the
decentralized and the distributed will be considered.

The paper is structured as follows: Section 2 provides the LSS
description and the AFD problem formulation. The decentral-
ized and the distributed solutions are proposed in sections 3
and 4, respectively. Section 5 presents a numerical illustration.

2. PROBLEM FORMULATION

This section specifies the LSS and formulates the AFD prob-
lem. The block diagram for the AFD system is depicted in
Fig. 1.

LSS AFD nodes

observation
decision

excitation

Fig. 1. AFD block diagram.

2.1 System Specification

In principle, the AFD for an LSS can be designed in a central-
ized manner, which is not, however, computationally feasible.
A decomposition of the LSS and subsequent decentralized or
distributed design of the AFD (Punčochář and Straka, 2019)
represent a feasible concept. In this paper, the LSS is assumed
to be decomposed into weakly coupled subsystems with sepa-
rate control inputs.

The LSS Σ consists of N weakly coupled subsystems 1

nΣ, n ∈ N = {1, 2, . . . , N}.
1 The subsystem nΣ coupled due to appearance of xk in (1a) affects other
subsystems to a lesser extent than it is affected by the dynamics of nxk .
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Each subsystem is described at a time step k ∈ T =
{0, 1, 2, . . .} by a time-invariant discrete-time stochastic multiple-
model expressed in terms of a stochastic difference equation
describing the local state dynamics and a stochastic algebraic
equation describing relations between the local state and obser-
vation 2

nΣ : nxk+1 = nf (xk,
nµk,

nuk) + nF(nµk) nwk, (1a)
nyk = nh (nxk,

nµk) + nH(nµk) nvk, (1b)

where nxk ∈ R(nDx) is a continuous part of the local state
related to nΣ, nµk ∈ nM = {1, 2, . . . , nM} is a discrete part
of the local state representing an index into a set of possible
models of subsystem nΣ behavior 3 , nuk ∈ nU ⊂ R(nDu) is
an input of nΣ, nwk ∈ R(nDx) is a state noise of nΣ described
by the probability density function (PDF) pnwk , nyk ∈ R(nDy)

is the observation of both nxk and nµk and nvk ∈ R(nDy) is
an observation noise of nΣ described by the PDF pnvk . The set
of possible models includes a model for the fault-free behavior,
nµk = 1, and also several models for possible faulty behavior,
nµk ∈ {2, . . . , nM}.

The functions nf : R(Dx) × nM× nU 7→ RnDx , nh : R(nDx) ×
nM 7→ RnDy , nF : nM 7→ R(nDx×nDx), nH : nM 7→
R(nDy×nDy), the PDFs pnwk and pnvk , and the transition prob-
ability (2) are known. The initial condition x0 is described by a
known PDF px0

.

The indices µk , [1µk, . . . ,
Nµk] ∈ M = 1M× . . . × NM

form a discrete part of the state of Σ, which is assumed to follow
a Markov process with transition probability

Pr(µk+1|µk) (2)
with µ0 given by a known prior probability Pr(µ0).

The composition xk , [1xT
k, . . . ,

NxT
k]T ∈ RDx is a contin-

uous part of the state of Σ with Dx =
∑N
n=1

nDx, uk ,
[1uT

k, . . . ,
NuT

k]T ∈ U = 1U × . . . × NU is an input of the
LSS and the composition yk , [1yT

k, . . . ,
NyT

k]T ∈ RDy is an
observation of Σ with Dy =

∑N
n=1

nDy .

The variables xk and µk constituting the state of Σ are un-
known and are indirectly observable through yk.

The decomposition of Σ into interconnected subsystems nΣ is
assumed to satisfy the following conditions:

(i) The noises of the subsystems are white and mutually
independent,

p(1wk, . . . ,
Nwk,

1vk, . . . ,
Nvk) =

N∏
n=1

pnwk(nwk)pnvk(nvk),

(ii) The initial states nx0 and the initial model indices nµ0

are also independent and mutually independent, i.e.,
p(x0,µ0) =

∏N
n=1 pnx0(nx0)Pr(nµ0).

The assumption (i) expresses conditional independence be-
tween ixk+1 and jxk+1 given xk, uk, and µk, i.e. given the
current state and the control input of Σ, the subsystems iΣ and
2 Note that the following notation is used throughout the text. A variable
or a function with left superscript pertains to the corresponding subsystem,
whereas a variable or a function without the left superscript relates to the
whole LSS. The variable with the right subscript and superscript xj

i ,
[xT

i ,x
T
i+1, . . . ,x

T
j ]T with j > i stands for the whole sequence of variables

stacked into a column vector.
3 That is, nµk is the index of the unknown model that is active at time k on nΣ.

jΣ behave independently at the next time step. In Punčochář
and Straka (2019) and Straka and Punčochář (2019) also
the following assumption was considered Pr(µk+1|µk) =∏N
n=1 Pr(

nµk+1| nµk), which corresponds to the case when
occurrence of a fault in a subsystem does not influence proba-
bilities of occurrences of faults in other subsystems. The faults
do not spread from one subsystem to another. In this paper,
however, such assumption is abandoned and the model indices
are assumed conditionally dependent in the sense that

Pr(µk+1|µk) =

N∏
n=1

Pr(nµk+1|µk), (3)

where Pr(nµk+1|µk) 6= Pr(nµk+1| nµk).

2.2 AFD problem specification

The AFD problem is formulated as designing a function trans-
forming the complete available information to a decision about
the faults (subsystem models) and to an input excitation signal.
The role of the signal is to excite the system to improve the
detection quality 4 . The AFD system can be described as

∆ :

[
dk
uk

]
= ρk

(
Ik0
)

=

[
σk
(
Ik0
)

γk
(
Ik0
)] , (4)

where Ik0 , [(yk0)T, (uk−1
0 )T]T ∈ Ik denotes global data

observed up to k ∈ T with Ik , R(k+1)Dy × Uk, Uk ,
U × . . . × U . The vector dk , [1dk,

2dk, . . . ,
Ndk]T ∈ M

consists of the decisions ndk ∈ nM about the model indices
nµk, σk : Ik 7→ M represents the fault detector at k, and
γk : Ik 7→ U describes the input signal generator.

The AFD seeks sequences of functions σ∞0 and γ∞0 that
minimize the following additive discounted criterion

J(σ∞0 ,γ
∞
0 ) = lim

F→∞
E

{
F∑
k=0

ηkLd(µk,dk)

}
, (5)

where E{·} is the expectation over all involved random vari-
ables, η ∈ (0, 1) is a chosen discount factor, and Ld : M×
M 7→ R+ is a detection cost function that allows different costs
to be assigned for selecting the vector of decisions dk when the
vector of model indices µk is actually in effect. If the costs are
not related across the subsystems, it is reasonable to consider

Ld(µk,dk) =

N∑
n=1

nLd (nµk,
ndk) , (6)

where nLd : nM× nM 7→ R+ penalizes discrepancy between
the model index nµk (nΣ true behavior) and the decision ndk.

3. DESIGN OF DECENTRALIZED AFD

In the decentralized AFD architecture depicted in Fig. 2, each
subsystem nΣ is monitored by an AFD node n∆, which can
access only the subsystem observations and knows only the
model describing the subsystem behavior. Since the AFD nodes
do not communicate, they can be described by

n∆ :

[
ndk
nuk

]
=

[
nσdec
k

(
nIk0
)

nγdec
k

(
nIk0
)] , (7)

where nIk0 , [(nyk0)T, (nuk−1
0 )T]T ∈ nIk denotes local data

observed up to k ∈ T by the n-th AFD node with nIk ,
4 Note that the input signal may also possess a control role, where a compro-
mise between the roles is established by the criterion.
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Fig. 2. Decentralized AFD system structure

R(k+1)(nDy) × nUk, nUk , nU × . . . × nU . The function
nσdec
k : nIk 7→ nM is the fault detector at the time step k,

and nγdec
k : nIk 7→ nU is the input signal generator at k.

To avoid the computationally complex centralized design, the
weak couplings among subsystems are neglected and the fol-
lowing approximate subsystem model is considered
n
Σ̂ : nxk+1 =

n
f̂(nxk,

nµk,
nuk) + nF(nµk) nwk, (8a)

nyk = nh (nxk,
nµk) + nH(nµk) nvk, n ∈ N , (8b)

where
n
f̂ is an approximation of nf neglecting the coupling.

The elimination of the coupling in the transition probabili-
ties (3) requires specification of the transition probabilities

Pr(nµk+1| nµk) (9)
which are given by

Pr(nµk+1| nµk) =
∑

n̄µk, n̄∈N̄

Pr(nµk+1|µk)
Pr(µk)

Pr(nµk)
, (10)

where N̄ , N \ {n}. As the infinite horizon is considered, the
term Pr(µk)

Pr(nµk) can be approximated as

Pr(µk)

Pr(nµk)
≈ lim
k→∞

Pr(µk)

Pr(nµk)
(11)

provided that the stationary probabilities exist. For such approx-
imate model (8) and (9), the AFD nodes (7) can be designed
independently for each subsystem.

The solution to the problem of the optimal AFD uses the
Bellman functional equation (Punčochář et al., 2015) for the
optimal input generation. If the state of the subsystem defined
as a composition of nµk and nxk

nsk , [(nxk)T, nµk]T ∈ nS = R
nDx × nM, (12)

is known, it would be the Bellman function argument.

However, the subsystem state nsk is unknown and thus the
searching for (7) is referred to as the problem with imperfect
state information. The subsystem state will be replaced in the
Bellman function by an information state nξk (defined later)
that is obtained from the observed data by an estimation algo-
rithm. In this way, the problem with imperfect state information
is reformulated to the problem with perfect state information.
That is, instead of the propagation of the unknown state nsk,
known information about it, given by nξk obtained by the esti-
mation algorithm should be propagated.

The information state consists of the information about nsk
given nIk0 . Its dynamics is obtained by coupling the subsystem
behavior (8) and a state estimation algorithm and can be ex-
pressed as

p(nsk+1| nIk+1
0 ) = nϕ

(
p(nsk| nIk0), nuk,

nyk+1

)
, (13)

where p(nsk| nIk0) is the conditional PDF provided by the es-
timation algorithm based on the Bayesian recursive relations

(BRRs) (Bar-Shalom et al., 2001) and nϕ : L×nU×RnDy 7→ L
is the mapping that describes the evolution of the conditional
PDF of the state and L is a set of all possible PDFs. The
model (13) is denoted as the perfect state information model.
Note that the future output nyk+1 in (13) is considered to be a
random variable with the conditional PDF p(nyk+1| nIk0 , nuk).

Note that the estimation algorithm generates only an approxi-
mation of p(nsk| nIk0) in the form of a mixture PDF with a fixed
number of terms as an exact solution to the BRRs involves ex-
ponential increase of the number of mixture terms, which is not
feasible. For the purpose of keeping the number of terms fixed,
the paper utilizes the Generalized Pseudo-Bayes algorithm of
the 2nd order (GPB2) (Straka and Punčochář, 2019).

The information stored in p(nsk| nIk0) consists of nM terms
p(nxk| nIk0 , nµk), nµk ∈ nM and corresponding probabilities
Pr(nµk| nIk0) and has to be transformed to the information
state nξk. Since the model index nµk is a discrete random
variable, the conditional probability Pr(nµk| nIk0) can be rep-
resented by a column vector nπk(nIk0) ∈ nP , where nP is a
set of nM -dimensional vectors with non-negative elements that
add up to one. The unknown continuous state nxk is described
by the PDF p(nxk| nIk0 , nµk), which can be represented exactly
or approximately by a finite number of statistics. The sufficient
statistics can be the mean and the covariance matrix, if the
(extended) Kalman filter is used for estimating the continuous
part of the state (Punčochář et al., 2015) or particles and their
weights if the particle filter is used (Škach et al., 2017). Hence,
the information state nξk of the perfect state information model
can be defined as the composition of the probabilities nπk(nIk0)
and nM statistics p(nxk| nIk0 , nµk), nµk ∈ nM.

Then, at any time step k ∈ T , the perfect state information
model for the information state nξk is given as

nξk+1 = nφ (nξk,
nuk,

nyk+1) , (14)

where nφ : nG×nU×RnDy 7→ nG is a mapping representing the
composition of the subsystem (1) and the estimation algorithm.

Given the information state nξk, it suffices to consider the active
fault detector as a time-invariant system that is described as

n∆ :

[
ndk
nuk

]
=

[
nσ̄dec(nξk)
nγ̄dec(nξk)

]
, (15)

where nσ̄dec : nG 7→ nM and nγ̄dec : nG 7→ nU are
unknown. The cost function for the perfect state information
model equivalent to nLd in (6) can be shown to satisfy

n
L̄d(nξk,

ndk) =
∑
nµk

nLd(nµk,
ndk)Pr(nµk| nIk0). (16)

The reformulated problem given by (14–16) can be solved by
the Bellman functional equation (Vrabie et al., 2013).

The optimal active fault detector is determined by finding a
function nV : nG 7→ R solving the Bellman functional equation
nV (nξk) = min

nd′∈nM

n
L̄d(nξk,

nd′)

+ η min
nu′∈nU

E{nV (nξk+1)| nξk, nuk=nu′} , (17)

The Bellman function nV can be computed off-line as it
depends only on the known PDF p(nxk+1| nxk, nµk, nuk),
transition probabilities Pr(nµk+1| nµk), measurement PDF
p(nyk| nxk, nµk), cost function nLd, the discount factor η, and
the estimation algorithm. The optimal decisions and optimal
inputs can be determined on-line by solving much simpler opti-
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mization problems. The Bellman function V is not required to
determine the optimal decision

ndk = nσ̄dec∗(nξk) = arg min
nd′∈nM

n
L̄d(nξk,

nd′). (18)

On the other hand, the optimal input signal generator uses the
Bellman function V to generate inputs as
nuk =nγ̄dec∗(nξk)=arg min

nu′∈nU
E{nV (nξk+1)|nξk,nuk=nu′}.

The computational costs for the decentralized AFD are much
lower than they would be for the centralized case as the dimen-
sion of the information state for the centralized case would be
significantly higher leading to high dimension of the statistics
and larger number of modes. Moreover, the Bellman functional
equations for the decentralized case can be solved in parallel.

4. DESIGN OF DISTRIBUTED AFD

The scheme of the distributed AFD is depicted in Fig. 3. The

1Σ 2Σ 3Σ
LSS (Σ)

1∆ 2∆ 3∆

Fig. 3. Distributed AFD system structure

design of the active fault detector in the distributed architec-
ture will utilize the decentralized AFD (Punčochář and Straka,
2019). More specifically, the input generator for the distributed
AFD architecture will be designed in the form of the input
signal generator nγdec

k for the decentralized AFD architecture
and will use the information state nξk

5 . Note that designing
the input signal generator for the full model (1a) would lead to
the impractical centralized AFD (Punčochář and Straka, 2019).

On the other hand, the optimal decision generator design pro-
ceeds from the full model (1a). The state estimation being the
core of the optimal decision generator requires a communi-
cation among the AFD nodes to calculate the estimate of the
complete continuous part of the state xk and the probabilities
of the discrete part of the state µk. As a consequence, the
decentralized and the distributed AFDs differ in the estimation
algorithm.

Now, the distributed AFD algorithm steps are specified:

Filtering: 6 Suppose, the prediction PDF of the state nsk
p(nsk|Ik−1

0 , nuk−1) = p(nxk,
nµk|Ik−1

0 , nuk−1) (19)
is given by

• nM densities p(nxk|Ik−1
0 , nuk−1,

nµk−1),
• (nM)2 probabilities Pr(nµk, nµk−1|Ik−1

0 )

Then, the filtering PDF p(nsk|
n
Ĭk0) can be factorized as

5 Hence, the information state nξk dynamics for the Bellman function calcu-
lation is the same as in the decentralized AFD.
6 Note that the filtering step is simpler and the GPB2 step is unnecessary at the
first time step.

p(nsk|
n
Ĭk0) =

∑
nµk−1

p(nxk,
nµk,

nµk−1|
n
Ĭk0)

=
∑
nµk−1

p(nxk|
n
Ĭk0 ,

nµk,
nµk−1)Pr(nµk,

nµk−1|
n
Ĭk0), (20)

where the symbol
n
Ĭk0 denotes a composition of the past

global data Ik−1
0 related to the LSS Σ and present data

nyk, and nuk−1 related to the subsystem nΣ, i.e.,
n
Ĭk0 ,

[(Ik−1
0 )T, (nyk)T, (nuk−1)T]T. Individual terms in (20) are

given by

• (nM)2 densities p(nxk|
n
Ĭk−1
0 , nµk,

nµk−1),
• (nM)2 probabilities Pr(nµk, nµk−1|

n
Ĭk−1
0 ),

computed by

p(nxk|
n
Ĭk0 ,

nµk,
nµk−1) =

p (nyk| nxk, nµk) p
(
nxk|Ik−1

0 , nuk−1,
nµk−1

)
p(nyk|Ik−1

0 , nuk−1, nµk, nµk−1)
, (21)

and
Pr(nµk,

nµk−1|
n
Ĭk0) = (22)

p(nyk|Ik−1
0 , nuk−1,

nµk,
nµk−1)Pr(nµk,

nµk−1|Ik−1
0 )∑

nµk,nµk−1

p(nyk|Ik−1
0 , nuk−1, nµk, nµk−1)Pr(nµk, nµk−1|Ik−1

0 )
.

The measurement prediction PDF in (21) and (22) is

p(nyk|Ik−1
0 , nuk−1,

nµk,
nµk−1) =∫

p (nyk| nxk, nµk) p
(
nxk|Ik−1

0 , nuk−1,
nµk−1

)
d nxk (23)

Note that p (nyk| nxk, nµk) is obtained from (1b).

GPB2: The GPB2 algorithm is used to prevent the increase
of the number of terms of the state estimate PDF p(nsk|

n
Ĭk0)

caused by considering multiple models. Essentially, the sum in
the filtering pdf (20) is merged to a single term for each nµk.

Then, the filtering PDF is approximated by

p(nsk|
n
Ĭk0) = p(nxk,

nµk|
n
Ĭk0) ≈

p(nxk|
n
Ĭk0 ,

nµk)Pr(nµk|
n
Ĭk0), (24)

given by

• nM densities p(nxk|
n
Ĭk0 ,

nµk),
• nM probabilities Pr(nµk|

n
Ĭk0),

Decision generation: The optimal decision generator is
ndk = nσ̄dis∗(nξk) = arg min

nd′∈nM

n
L̄d(nξk,

nd′), (25)

where the information state nξk is constructed from the esti-
mates p(nxk|

n
Ĭk0 ,

nµk) and Pr(nµk|
n
Ĭk0).

Input generation: The input signal generator is equal to the
signal generator of the decentralized AFD
nuk=nγ̄dis∗(ξk)=arg min

nu′∈nU
E {nV (nξk+1) | nξk, nuk=nu′} ,

where nξk+1 is calculated by the perfect information model for
the distributed architecture.

Fusion: To calculate the prediction PDF p(nsk+1|Ik0 ,uk) us-
ing the model dynamics (1a) and (2), the AFD nodes must
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communicate their filtering estimates. For this reason, the AFD
node n∆ sends its filtering estimate, i.e., the PDF p(nsk|

n
Ĭk0) to

all other AFD nodes. The estimates received by the AFD node
n∆ from all other nodes 7 are fused to obtain p(sk|Ik0). Now,
the fusions of the PDFs and the probabilities will be discussed
separately.

The fusion must respect the fact, that the local states nxk
for n ∈ N and k > 0 given by the PDF p(nxk|

n
Ĭk0 ,

nµk)
are conditionally dependent but the degree of dependence is
unknown. If the estimates are represented by the means and
covariance matrices, the unknown dependency issue can be
solved by the covariance intersection technique (Julier and
Uhlmann, 1997). Such fusion then leads to an estimate of xk.
As a result of the fusion, each node contains the estimate of the
full continuous state p(xk|Ik0 ,µk).

Calculation of the probability of the system model indices
Pr(µk|Ik0) is ambiguous as the dependency of the model in-
dices is unknown for k > 0. This paper will approximate the
conditional probability Pr(µk|Ik0) by

Pr(µk|Ik0) ≈
∏
n∈N

Pr(nµk|
n
Ĭk0). (26)

Note that such approximation maximizes the Shannon entropy
of Pr(µk|Ik0).

Prediction: The prediction PDFs p(nxk+1|Ik0 , nuk,µk) and
probabilities Pr(nµk+1,µk|Ik0) are calculated from

p(nxk+1|Ik0 , nuk,µk) =∫
p(nxk+1|xk, nuk, nµk)p(xk|Ik0 ,µk)dxk (27)

and

Pr(nµk+1,µk|Ik0) = Pr(nµk+1|µk)Pr(µk|Ik0). (28)

Note that p (nxk+1|xk,uk, nµk) is obtained from (1a).

Now, the terms in (27) and (28) related to the remaining
nodes n̄Σ can be eliminated by marginalization and subsequent
merging to conserve computational costs similarly to the GPB2
step as

p(nxk+1|Ik0 , nuk, nµk)≈
∑
n̄µk

n̄∈N̄

p(nxk+1|Ik0 , nuk,µk)Pr(µk|Ik0)

and

Pr(nµk+1,
nµk|Ik0) ≈

∑
n̄µk

n̄∈N̄

Pr(nµk+1,µk|Ik0).

5. NUMERICAL ILLUSTRATION

To conserve space, the decentralized and distributed architec-
tures are compared by means of a simple numerical example
only 8 . Let us consider the system Σ that consists of two weakly
coupled multiple-model linear subsystems

7 If the information from all other nodes is not available to a node (e.g. for
the reason of missing communication), the node must utilize the approximate
subsystem models used in the decentralized AFD design.
8 Note that the system is linear for simplicity even though the AFD algorithm
was proposed for a general nonlinear system.

1Σ : 1xk+1 = 1A(1µk)xk + 1B(1µk) 1uk + 1G(1µk) 1wk,
1yk = 1C(1µk) 1xk + 1H(1µk) 1vk

2Σ : 2xk+1 = 2A(2µk)xk + 2B(2µk) 2uk + 1G(2µk) 2wk,
2yk = 2C(2µk) 2xk + 2H(2µk) 2vk

where both subsystems have two modes with
1A(1) = [0.98 0.01], 1B(1) = 0.01, 1G(1) =

√
0.003,

1A(2) = [0.92 0.03], 1B(2) = 0.08, 1G(2) =
√

0.003,
2A(1) = [0.02 0.93], 2B(1) = 0.07, 2G(1) =

√
0.002,

2A(2) = [0.01 0.93], 2B(2) = 0.09, 2G(2) =
√

0.002.

Both modes of each subsystem have the same observation
models, 1C(1) = 1C(2) = 1, 1H(1) = 1H(2) = 0.01,
2C(1) = 2C(2) = 1, 2H(1) = 2H(2) = 0.01. The transi-
tion probabilities of the modes for each subsystem are given
in Table 1. Note that occurrence of a faults at a subsystem
corresponds to increased probability of fault occurring in the
other subsystem.

Table 1. Transition probabilities of the modes.

[1µk,
2µk]

[1,1] [1,2] [2,1] [2,2]

1µk+1
1 0.99 0.9 0.1 0.02
2 0.01 0.1 0.9 0.98

2µk+1
1 0.99 0.05 0.9 0.01
2 0.01 0.95 0.1 0.99

The state noises 1wk and 2wk have both standard Gaussian
PDF p1wk = p2wk = N{0, 1}. The initial condition x0 has
Gaussian PDF N{0, 0.01 · I} and initial µ0 has probability
P (µ0 = [1 1]T) = 1, which means that each subsystem starts
from mode 1 (i.e., fault-free behavior). The admissible inputs
of subsystems are 1U = 2U = {−1, 0, 1}. The detection cost
function nLd is the zero-one function nLd(nµk,

ndk) = 1 −
δnµk,ndk where δi,j is the Kronecker delta. The discount factor
is η = 0.9.

The system faults were detected within both decentralized and
distributed architectures by a passive FD (PFD) approach and
the proposed AFD approach. The continuous part of the state
nxk was estimated in all cases using the Kalman filter (KF).
Hence, the statistics in the information state were given by the
mean and covariance matrix.

The PFD used the excitation input generated by the function
sin(0.2k) quantized to values {−1, 0, 1}, while the excitation
input for the AFD was calculated using the Bellman function
obtained off-line by the value iteration algorithm.

The decentralized architecture ignored the coupling between
the subsystems in the dynamic matrices. Also, the conditional
dependency of the model indices between the subsystems was
ignored using (10) with (11).

Ignoring the coupling degraded the accuracy of conditional
mode probabilities, nevertheless it made the Bellman function
calculation for the AFD feasible. Two independent input signal
generators were designed and thus the information state was
only five-dimensional for each input signal generator, i.e. nξk ∈
R5, n = 1, 2. It consisted of the scalar mean E[nxk|Ik0 ] and
variance var[nxk|Ik0 ] provided by the KF for both models and
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the probability of the first model. Hence, the value iteration
algorithm was performed over the grids given as [−1 : 0.2 : 1]×
[−1 : 0.2 : 1] × [0 : 2 · 10−5 : 2 · 10−4] × [0 : 2 ·
10−5 : 2·10−4]×[0 : 0.02 : 1] with 732 050 discrete states. The
decentralized architecture ignored the coupling during both the
off-line Bellman function calculation and the on-line detection
generation.

Within the AFD distributed architecture, the on-line detection
generation considered the full model and the algorithm oper-
ated as described in Section 4. As mentioned in Section 4,
the input signal generator was the same as the input signal
generator of the decentralized architecture. Hence, the value
iteration algorithm was performed over the same grid with
732 050 discrete states. Note that the online memory require-
ments for storing the Bellman function, which was computed in
the off-line part of the AFD algorithm, were 12 [MB] for both
architectures. If the input signal generator were computed for
the distributed architecture without neglecting the subsystem
coupling, it would lead to a 22-dimensional information state.
This would make the Bellman function calculation extremely
difficult. Note that such computation would correspond to the
AFD with centralized architecture.

The performance of the decentralized and distributed AFD
was evaluated using the 105 Monte Carlo (MC) simulations
where each MC simulation was run over the finite time horizon
F = 400. The estimate Ĵ of the criterion obtained by the MC
simulations and time requirements Ton-line of a single run of the
algorithm (i.e. the on-line decision generation) 9 are given in
Table 2.

Table 2. Performance of decentralized and dis-
tributed PFD and AFD architectures.

architecture Ĵ Ton-line

PFD
decentralized 1.46 0.27
distributed 1.29 0.42

AFD
decentralized 1.41 0.36
distributed 1.22 0.51

From the table, it follows that the AFD achieves lower criterion
value than the PFD for both architectures. The price paid is
slightly higher computational costs of the AFD in comparison
with the PFD, which is caused by selecting the optimum excita-
tion input from the table representing the Bellman function by
the AFD whereas the PFD only calculates the quantized sine
function value.

When comparing the AFD architectures, the distributed archi-
tecture achieves significantly lower criterion value than the de-
centralized architecture. The reason is the fact that the decision
generation of the distributed architecture does not neglect the
coupling between the subsystems and its individual nodes have
more information due to their communication. Naturally, this
leads to higher computational costs due to the fusion step,
which is not present in the decentralized architecture and the
prediction step, which involves full coupling between the sub-
systems.

9 All the numerical simulations in the paper were performed using the R2019a
version of Matlab® software running on the PC equipped with Intel® CoreTM
i7–4790 CPU (3.60 [GHz]).

6. CONCLUSION

The paper dealt with active fault diagnosis of large-scale
stochastic systems within the multiple-model framework. The
aim was to respect possible influence of the faults among the
subsystems. For this purpose, the paper considered condition-
ally dependent faults. First, the decentralized architecture was
considered, which neglects the coupling among the subsys-
tems. For this architecture, the design of the optimal active
detector consisting of the input signal generator and the fault
detector was illustrated. Then, the AFD within the distributed
architecture was proposed and its fault detector algorithm was
described in detail. The simple numerical example illustrated
better performance of the distributed architecture in comparison
with the decentralized architecture.
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