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Abstract: We propose a framework for designing observers for noisy nonlinear systems
with global convergence properties and performing robustness and noise sensitivity. Our state
observer is the result of the combination of a state norm estimator with a bank of Kalman-type
filters, parametrized by the state norm estimator. The state estimate is sequentially processed
through the bank of filters. In general, existing nonlinear state observers are responsible for
estimation errors which are sensitive to model uncertainties and measurement noise, depending
on the initial state conditions. Each Kalman-type filter of the bank contributes to improve the
estimation error performances to a certain degree in terms of sensitivity with respect to noise
and initial state conditions. A sequential processing algorithm for performance optimization is
given and simulations show the effectiveness of these sequential filters.
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1. INTRODUCTION

Design of state observers for nonlinear systems with large
domain of attraction, convergence speed performances, ro-
bustness and moderate sensitivity to (measurement) noise
is a challenging task. Intrinsic limitations to this task have
been studied for linear systems for instance in Seron et
al. (1997). We have a vast literature on observer design
for nonlinear systems (we will not reference this here
for lack of space) focusing on single such performances,
almost exclusively domain of attraction or convergence
speed performances. In most of these contributions, ro-
bustness to model uncertainties and sensitivity to noise
are not considered at all or considered only a posteriori,
evaluating the possible effects on the error performances.
An important conclusion of these works is that for high-
gain observers (HGO) it is not possible to achieve large
domains of attraction without downgrading the sensitivity
to measurement noise. Only recently robustness to model
uncertainties and sensitivity to noise have been taken into
account in the design: for feedback linearizable systems
in Khalil et al. (2014) and Prasov et al. (2013) and
bounded state teajectories in Shim et al. (2016), where
general Lyapunov-based conditions are given for observers
with quasi-Disturbance-to-Error Stability (qDES). In San-
felice et al. (2011) and in Battilotti (2009) the issue of
somewhat reducing the sensitivity of global observers to
additive measurement noise is discussed for some classes of
nonlinear systems with bounded solutions. More recently,
the work Astolfi et al. (2019) unites local observers,
which have good error performances versus measurement
noise like extended Kalman filters, with semiglobal HGO’s,
which have bad error performances. Systems with bounded
solutions are considered and the resulting observer has
a switching structure which guarantees the compromise
between bad (semiglobal) and good (local) error perfor-
mances but its correct working depends on some local

and semiglobal norm estimators together with the exact
knowledge of the domains of attraction of the local and
semiglobal observers.

In this paper we want to consider a quite general class
of nonlinear systems with model uncertainties (or state
noise) and measurement noise and design global state
observers with the primary objective to optimize the error
performances in terms of robustness and noise sensitivity.
The observer we propose in this paper consists of the
following parts: I) a state norm estimator (SN) and II)
a bank of sequential Kalman-type filters (K1, . . . , Kp)
parametrized by the SN estimator. Each K-filter updates
its gain matrix with the solution of a (differential) Riccati
equation parametrized by the SN estimator and processes
saturated estimates. One of the innovative feature of our
observer relies in the bank of K-filters, which implements
de facto a sequential optimization process of the error
performances in terms of sensitivity versus noise and
model uncertainties. Each filter Kj processes the state

estimate X̂j´1, given by the previous filter Kj´1, by
computing an estimate x̂j of the relative displacement of

the state from X̂j´1 and passing the new state estimate

X̂j :“ X̂j´1 ` x̂j to the next filter Kj`1. As shown by
the simulations, the results are impressive and can be
particularly appreciated with HGO’s which have the worst
error performances with respect to measurement noise.

2. NOTATION

(N1) Rn (resp. Rnˆs) is the set of n-dimensional real
column vectors (resp. n ˆ s matrices). Rě (resp. Rą)
denotes the set of non-negative real numbers (resp. positive
real numbers). |a| denotes the absolute value of a P R, }a}
denotes the euclidean norm of a P Rn, }A} denotes the
norm of A P Rnˆn induced from } ¨ }. Let Pną be the
set of symmetric positive definite matrices A P Rnˆn.
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Moreover, σpAq denotes the spectrum of A. λWmin :“
minλPσpW qRetλu and λWmax :“ maxλPσpW qtλu, with Re
denoting the real part.

(N3) Let I,J Ă R be intervals of the form pa,`8q
(resp. ra,`8q) and let K8pI,J q be the set of functions
δ : I Ñ J such that limsÑ`8 δpsq “ `8 and dδ

ds psq ą 0

for all s ą a. By Dompδq (resp. Dompδ´1q) we denote
the domain of δ (resp. δ´1). A saturation function satl
with saturation levels l P Rną is a function satlpxq :“
psatl1px1q, . . . , satlnpxnqq

T , x P Rn, such that for each
i “ 1, . . . , n and xi P R:

satlipxiq “

"

xi xi P r´li, lis,
signpxiqli otherwise.

(1)

3. CLASS OF SYSTEMS

Consider a nonlinear system of the general form

9x“ fpx, dq, y “ hpx, dq (2)

with states x P Rn, outputs y P Rp, f and h con-
tinuously differentiable functions, and disturbances (or
exogenous inputs) d P D, the space of bounded func-
tions d : r0,`8q Ñ D Ă Rs with sup norm }d}8 :“
suptPr0,`8q }dt} uniformly bounded by a known d8 ą 0

(more generally, it is possible to split d into a state
disturbance ds and a measurement disturbance dy). We
will denote xptq, yptq and dptq by xt,yt and, respectively,
dt. More conveniently, we may represent xt (resp. yt) as
xtpx, s; dq (resp. ytpx, s; dq) to denote the value at time t
of the (unique) solution (resp. output) of system (2) with
input d and initialized at x at time s. Our problem is to
design state estimators for (2) with good performances in
terms of sensitivity to model uncertainties (represented by
state disturbances) and measurement noise. All the results
of this paper can be straightforwardly extended to systems
(2) with inputs. In our study we discard finite exit times
of the forward solutions of (2) from any bounded domain
(this is the case after a change of time scale in (2) if, for
instance, we assume suitable unboundedness observability
conditions for (2)).

(A0). (Forward completeness) The solutions xtpx, s; dq of
(2) are defined for all s P Rě, d P D and px, tq P Rn ˆ
rs,`8q.

4. STATE NORM ESTIMATORS

The first issue we want to discuss is the design of a state
norm (SN) estimator for (2). Our assumption on (2) is:

(A1) (SN estimator). There exist λv ą 0, λh, λd P

K8pRě,Rěq and continuously differentiable v : Rn ˆ
Rě Ñ R such that for all px, tq P Rn ˆ Rě

pPDIq :
Bv

Bx
px, tqfpx,dtq `

Bv

Bt
px, tq

ď ´λvvpx, tq ` λhp}hpx,dtq}q ` λdpd8q. (3)

Moreover, there exist β P K8pRě,Rq, ε0 P K8pRě,Rěq
and ε1, t ą 0 such that for all px, tq P Rn ˆ rt,`8q:

vpx, tq ě βp}x}q, (4)

λhp}hpx,dtq}q ď ε1βp}x}q ` ε0. (5)

As in Kirchman et al. (2001), the interest in the PDI (3)
is motivated by the following result which establishes the
existence of a SN estimator for (2). We assume without
loss of generality that βp0q ď 0 in such a way that
Dompβ´1q Ě Rě.

Proposition 1. Assume there exist a continuously differen-
tiable function v : Rn ˆ Rě Ñ R, together with λv ą 0,
λd, λh P K8pRě,Rěq, β P K8pRě,Rq and t ą 0 such
that (3) and (4) hold true for all px, tq P Rn ˆ Rě and,
respectively, for all px, tq P Rn ˆ rt,`8q. For each d P D,
x0 P Rn, pv0 P R and pγ ą 0 there exists tx0,d ě t such that
for t ě tx0,d:

}xtpx0, 0; dq} ď β´1ppvtppv0, 0; yq ` pγq,

where pvtppv0, 0; yq is the solution of

9
pvt “´λvpvt ` λhp}yt}q ` λdpd8q, pv0 P R. (6)

Therefore, having (3), (4) at hand makes available an
(exponentially) converging SN estimator (6). We refer the
reader to the more detailed Battilotti (2019) for many
constructive conditions for solutions of the PDI (3) and
the uniform lower bound (4).

Remark 1. The additional condition (5) requires that the
growth of vpx, tq along the system’s trajectories is at most
exponential. Moreover, (4)-(5) imply that λhp}hpx,dtq}q ď
ε1vpx, tq ` ε0, which is a reasonable condition in view of
the fact that, under a suitable backward completeness
assumption on (2), a solution of the PDI (3) is vpx, tq “
şt

0
e´λvpt´sqλhp}hpxspx, t; dq,dsq}qds and for t ě t ą 0

vpx, tq ě e´λvt
ż t

0

λhp}hpxspx, t; dq,dsq}qds

with

lim
tÑ0`

sup
xPX

|
1

t

ż t

0

λhp}hpxspx, t; dq,dsq}qds´λhp}hpx,dtq}q|“0

for any compact X Ă Rn and ds :“ ds`t´t (see Battilotti
(2019)). Ÿ

5. K-FILTERS PARAMETRIZED BY STATE NORM
ESTIMATORS

The second task of our work is to identify canonical
classes of observers (K-filters) for (2) under quite general
assumptions and parametrized by the SN estimator of
the previous section. These K-filters will be sequentially
connected for performance optimization and, together
with the SN estimator, form the state observer which we
propose in this paper. To this aim, we consider a system
(2) in which the linear part is highlighted:

9x“ fpx, dq :“ Ax` f0px, dq,

y “ hpx, dq :“ Cx` h0px, dq (7)

with Bf0
Bx p0, dq “ 0 and Bh0

Bx p0, dq “ 0 for all d. In or-
der to identify a canonical structure for our K-filters, we
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require the following features: the observer gain matrix
is updated according to the solution of a (differential)
Riccati equation, parametrized by a SN estimator, and
the estimates processed by the observer are saturated with
saturation levels parametrized by the same SN estimator.
This parametrization is done through the action of certain
generalized families of dilations, which is one of the inno-
vative feature of our observers. Let Λ : r1,`8q Ñ Rnˆn
be the continuously differentiable solution of the following
matrix differential equation

dΛ

ds
psq “

WΛpsq

s
, Λp1q “ I, (8)

where W P Rnˆn is any diagonal matrix having all
its eigenvalues in C´ (W being diagonal is assumed
for simplicity and can be relaxed). As well known, this
solution is Λpsq :“ elnpsqW , s ě 1. We call Λ´1 (the inverse
of Λ) a family of dilations if Λ is the solution of a matrix
differential equation of the form (8). Notice that sinceW “

diagtW11, . . . ,Wnnu then Λpsq “ diagtsW11 , . . . , sWnnu

but we retain the general notation Λpsq “ elnpsqW for the
sake of generality (i.e. non diagonal W ).

5.1 Discussion of the main assumptions on (7)

The notion of family of dilations is naturally associated
with the notion of (generalized) homogeneity in the 8-
limit.

(A2) (Generalized homogeneous linearization in the 8-
limit). There exist a family of dilations Λ´1, degrees
γA, γC : r1,`8q Ñ r1,`8q and observable pair pC0, A0q

such that

lim
sÑ`8

ΛpsqAΛ´1psq

γApsq
“ A0, lim

sÑ`8

CΛ´1psq

γCpsq
“ C0.

Next, we introduce similar assumptions (in the upper
bound) to dominate the nonlinearities via the homoge-
neous linearization.

(A3) (Generalized homogeneous domination). For all x P
Rn, d P D and s ě 1

1

γApsq

›

›

›
Λpsq

Bf0pw, 0q

Bw

ˇ

ˇ

ˇ

w“Λ´1psqx
Λ´1psq

›

›

›
ď F0pxq

1

γCpsq

›

›

›

Bh0pw, 0q

Bw

ˇ

ˇ

ˇ

w“Λ´1psqx
Λ´1psq

›

›

›
ď H0pxq

1

γApsq

›

›

›
Λpsq

Bf0pw, dq

Bd

ˇ

ˇ

ˇ

w“Λ´1psqx

›

›

›
ď γdpsqFdpx, dq

1

γCpsq

›

›

›

Bh0pw, dq

Bd

ˇ

ˇ

ˇ

w“Λ´1psqx

›

›

›
ď γdpsqHdpx, dq

where γd : r1,`8q Ñ Rą and F0p¨q, H0p¨q, Fdp¨, ¨q and
Hdp¨, ¨q are continuous nonnegative functions such that
F0p0q “ 0 and H0p0q “ 0.

Remark 2. If f0 and h0 are globally Lipschitz with observ-
able pC,Aq (A2) and (A3) are satisfied with the simple
choice W “ ´I, γApsq “ 1, γCpsq “ s and γdpsq “ 1{s. Ÿ

Next, some condition on the asymptotic behavior of the
function γd in (D2) is introduced, i.e. γd is a sufficiently
fast decreasing function.

(A4) (Asymptotic behavior of γd). There exist ν0, ν1 ą 0
such that

ˇ

ˇ

ˇ

dγd
ds
psq

ˇ

ˇ

ˇ
ď ν0

γdpsq

s
ď ν1s

´p|λWmin|`1q, @s ě 1. (9)

Finally, we require a stability margin condition for error
convergence.

(A5) (Stability margin). For each λπ ą 0 there exist
Π P Pną and c, λf ą 0 such that

Ricpc, λπ, λf ,Π,W q (10)

:“ ΠpA0 ` φW ` λπIq ` pA0 ` φW ` λπIq
JΠ

´CJ0 C0 `
1

λf
Π2 ` 2λf sup

|Xi|ď2c,
i“1,...,n

´

F 2
0 pX q `H2

0 pX q
¯

ď 0

for all

φ P r´
λv

|λWmax|
,

ε1
|λWmax|

´

1`
ε0pd8q ` λdpd8q

ε1

¯ı

.

Remark 3. Formula (10) is a Riccati inequality with un-
known Π and all bounded matrices. Notice that since
F0p0q “ 0,H0p0q “ 0, the contribution of the last two
terms in (10) can be made arbitrarily small by selecting
c arbitrarily small and λf arbitrarily large. For these
reasons, it is sufficient to solve the inequality (10) by
omitting the last two terms. On account of this, existence
of solutions Π P Pną for (10) is guaranteed for instance
when pC0, A0q is in canonical observer form and W is
diagonal or, alternatively, under detectability assumptions
on pC0, A0 ` φW ` λπIq. Ÿ

5.2 The canonical K-filter

Under the given assumptions, a K-filter for (7) is

9
pxt “ Apxt ` pf0ppxt, pzppvtqq `Kppzppvtqqpyt ´ pytq,

pyt :“Cpxt ` ph0ppxt, pzppvtqq, (11)

9
pvt “´λvpvt ` λhp}yt}q ` λdpd8q, pv0 ą 0, (12)

with

Kppzq :“
γAppzq

γ2
Cppzq

P´1ppzqCT , P ppzq :“ ΛT ppzqΠΛppzq,

pf0ppx, pzq :“ f0

´

Λ´1ppzqsatcpΛppzqpxq, 0
¯

,

ph0ppx, pzq :“ h0

´

Λ´1ppzqsatcpΛppzqpxq, 0
¯

, (13)

for some pz P K8pr1,`8q, r1,`8qq and c ą 0 (to be
specified from the design). Notice how the SN estimator
(12) updates, through the action of the family of dilations
Λ´1, both the gain matrix K and the saturated estimates
in the K-filter (11). Our main result for the single K-filter
(11) is the following.

Theorem 1. Assume (A0)-(A5). There exist pz P K8
pr1,`8q, r1,`8qq, λL ą 0 and c ą 0 such that along
the solutions of (7), (11) and for all x0 P Rn

lim sup
tÑ`8

}xt ´ pxt} ď ρpd8, cqd8, (14)

where
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ρps, cq :“

d

2

λminpΠqλL

Φps, cqν1

ν2
, (15)

Φps, cq :“ sup
|r|ďs
|wi|ďc
i“1,...,n

pFdpw, rq `Hdpw, rqq.

Remark 4. The asymptotic bound (14) has many impli-
cations. For example, the noise sensitivity in (14) can
be reduced to any degree in the case Fdp0, dq “ 0 and
Hdp0, dq “ 0 for all d (multiplicative state and measure-
ment disturbances) by choosing c (the saturation level of
the saturated estimates) smaller and smaller and therefore
reducing the magnitude of the term Φpd8, cq in (14). On
the other hand, if Hdp0, dq ‰ 0 (additive measurement
disturbances) this kind of noise sensitivity reduction is
possible only up to a certain degree. Moreover, the asymp-
totic bound (14) does not depend on the initial state x0

or the magnitude of xt or its bound pzt (as it happens
mostly: see for instance Battilotti (2009), Sanfelice et
al. (2011)) but only on the disturbance magnitude d8.
Therefore, the error performances (in term of robustness
and noise sensitivity) of the K-filter (11) are good even for
large state initial conditions. Ÿ

5.3 Sensitivity to measurement noise

The achievement of the asymptotic bound (14), and con-
sequently also of good performances in terms of sensi-
tivity to measurement noise, strongly depends on the
compatibility between the last conditions in (A2) and
(A3), on one hand, and the right inequality in (A4),
on the other, which may not hold at the same time for

example when limsÑ`8 γCpsqs
´|λWmin| “ 0. This happens,

for instance, for typical HGO’s and feedback linearizable
systems (Khalil et al. (2014), Andrieu et al. (2017),
Prasov et al. (2013), Khalil (2017), Esfandiari et al.
(2019)) where the matrix W of the family of dilations
Λ´1 has monotonically increasing real eigenvalues: for this
reason the function γCpsq (which satisfies (A2) and (A3))
may have a slower behavior at infinity in comparison with

s|λ
W
min|. As a result, in these cases the estimation error

bound is very sensitive to measurement noise. The aim
of the next section is to optimize this bound through se-
quential K-filters by reducing the asymptotic gap between

the functions γCpsq and s´|λ
W
min|. On the other hand, this

reduction corresponds to reduce uniformly the gap among
the (real parts of the) eigenvalues of W . As a matter of
fact, the ideal situation is the one for which the eigenvalues
of W are all equal and real, a typical situation when f0 and
h0 are globally Lipschitz (see remark 2).

6. SEQUENTIAL K-FILTERS FOR ERROR BOUND
PERFORMANCES OPTIMIZATION

When one single estimator (11) shows bad performances
in terms of sensitivity to noise for the above mentioned
reasons, in order to improve performances we sequentially
process the estimate, given by (11), using multiple K-
filters (11). In what follows, we denote pzppvtq simply by
pzt. By perfomance optimization via sequential processing

we mean that if pX
pkq
t is some estimate of xt for which the

estimation error pe
pkq
t :“ xt´ pX

pkq
t is (asymptotically) norm

bounded by some Ωpkqppztq, then an estimate px
pk`1q
t of pe

pkq
t

is designed by processing pX
pkq
t in such a way that the error

pe
pk`1q
t :“ pe

pkq
t ´ px

pk`1q
t is (asymptotically) norm bounded

by some Ωpk`1qppztq which shows nicer properties than

Ωpkqppztq, say lim suptÑ`8
Ωpk`1q

ppztq
Ωpkqppztq

ă 1. In this sense,

the state estimate pX
pk`1q
t :“ px

pk`1q
t ` pX

pkq
t has better

error performances than the state estimate pX
pkq
t and the

processing is repeated until significant improvements can
be obtained.

Definition 1. If pX
pkq
t and pX

pk`1q
t are two state estimates

such that:

lim sup
tÑ`8

}xt ´ pX
pkq
t }

Ωpkqppztq
“ 0, lim sup

tÑ`8

}xt ´ pX
pk`1q
t }

Ωpk`1qppztq
“ 0, (16)

then we say that pX
pk`1q
t outperforms pX

pkq
t by p1 ´ ρq

(ˆ100) % if lim suptÑ`8
Ωpk`1q

ppztq
Ωpkqppztq

:“ ρ ă 1.

By iterating this sequential process for a certain number
of times, we optimize the estimation error performances.
This corresponds to the design of a bank of sequential K-
filters : the k-th filter is responsible for the state estimate
pX
pkq
t which is sequentially processed by the pk`1q-th filter

for computing the outperforming state estimate pX
pk`1q
t .

6.1 A recursive algorithm

In this section we give a recursive algorithm for sequential
processing in the specific situation for which (A4) cannot
be satisfied together with (A2) and (A3) (bad error
performances) and state a somewhat general result for
error bound optimization. This algorithm corresponds to
design a suitable bank of canonical K-filters, each one
processing the estimate given by the previous one.

Initialization step. Let

cp´1q :“ c, cp0q :“ Φpd8, cq

d

2

λminpΠq
,

Πp0q :“ Π, W p0q :“W, Λp0qpsq :“ Λpsq,

γ
p0q
A psq :“ γApsq, γ

p0q
C psq :“ γCpsq, γ

p0q
d psq :“ γdpsq,

with Φ as in (15), Π as in (A5) and Λpsq, γApsq, γCpsq and
γdpsq are as in (A2) and (A3). Moreover,

e
p´1q
t :“ xt, pe

p´1q
t :“ pxt, e

p0q
t :“ et “ e

p´1q
t ´ pe

p´1q
t ,

where pxt is the estimate of xt, obtained as pointed out
in theorem 1, and et the state estimation error. From the
proof of theorem 1 (see Battilotti (2019) for details), we
have

lim sup
tÑ`8

}Λp0qpζtqe
p´1q
t } ď c, (17)

lim sup
tÑ`8

}Λp0qpζtqe
p0q
t }

γ
p0q
d pζtq

ď cp0q. (18)

Let

σpW p0qq “ tλ
p0q
0 , p1` h0qλ

p0q
0 , . . . , p1` h0pn´ 1qqλ

p0q
0 u
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for some λ
p0q
0 ă 0, h0 ą 0 and γ

p0q
d psq “ s´k

p0q

d for some

k
p0q
d P p0, |λW

p0q

min |q (i.e. condition (A4) fails).

Step k ě 0. Consider the error system

9e
pkq
t “Ψppe

pk´1q
t , 9

pe
pk´1q

t q `Ae
pkq
t ` f

pkq
0 ppe

pk´1q
t , e

pkq
t ,dtq,

y
pkq
t “Ce

pkq
t ` h

pkq
0 ppe

pk´1q
t , e

pkq
t ,dtq, (19)

with

e
pkq
t :“ e

pk´1q
t ´ pe

pk´1q
t , y

pkq
t :“ yt ´ Cpe

pk´1q
t ,

f
pkq
0 pR,S,Dq :“ f0pR` S,Dq,

h
pkq
0 pR,S,Dq “ h0pR` S,Dq (20)

and let

lim sup
tÑ`8

}Λ
pkq´1

pζtqΛ
pkqpζtqe

pk´1q
t } ď cpk´1q (21)

with Λ
pkq
psq :“ elnpsqW

pkq

and

σpW
pkq
q “ tλ

pkq

0 , p1` h0qλ
pkq

0 , . . . , p1` h0pn´ 1qqλ
pkq

0 u

for some λ
pkq

0 P r´
k
pkq

d

1`h0pn´1q , 0q. Define the new family of

dilations

Λpk`1qpsq :“ elnpsqW pk`1q

“ Λ
pkq´1

psqΛpkqpsq

with

σpW pk`1qq

“ tλ
pk`1q
0 , p1` h0qλ

pk`1q
0 , . . . , p1` h0pn´ 1qqλ

pk`1q
0 u

where λ
pk`1q
0 :“ λ

pkq
0 ´ λ

pkq

0 . Define the new functions

γ
pk`1q
A psq :“

´

γ
pkq
A psq

¯

λ
pk`1q
0

λ
pkq
0 , γ

pk`1q
C psq :“

´

γ
pkq
C psq

¯

λ
pk`1q
0

λ
pkq
0 ,

γ
pk`1q
d psq :“

´

γ
pkq
d psq

¯

λ
pk`1q
0

λ
pkq
0 . (22)

Let pe
pkq
t be the estimate of e

pkq
t in (19), obtained with the

canonical K-filter

9
pe
pkq

t “Ψppe
pk´1q
t , 9

pe
pk´1q

t q `Ape
pkq
t

` pf
pkq
0 ppe

pk´1q
t ,pe

pkq
t , ζtq `K

pk`1qpζtqpy
pkq
t ´ py

pkq
t q,

py
pkq
t “Cpe

pkq
t ` ph

pkq
0 ppe

pk´1q
t ,pe

pkq
t , ζtq, (23)

where

Kpk`1qpZq :“
γ
pk`1q
A pZq

γ
pk`1q
C

2
pZq

P pk`1q´1
pZqCJ

P pk`1qpZq :“ Λpk`1qJpZqΠpk`1qΛpk`1qpZq,

pf
pkq
0 pR,S, Zq :“f

pkq
0 pΛpk`1q´1

satcpkq`cpk´1qtΛpk`1qpZqRu,

Λpk`1q´1
pZqsatcpkqtΛ

pk`1qpZqSu, 0q,

ph
pkq
0 pR,S, Zq :“h

pkq
0 pΛpk`1q´1

satcpkq`cpk´1qtΛpk`1qpZqRu,

Λpk`1q´1
pZqsatcpkqtΛ

pkqpZqSu, 0q (24)

and Πpk`1q P Pną and λ
pk`1q
π , λ

pk`1q
f ą 0 be such that

Ric
´3cpkq ` cpk´1q

2
, λpk`1q
π , λ

pk`1q
f ,Πpk`1q,W pk`1q

¯

ď 0.(25)

Set

cpk`1q :“ Φpd8, 2c
pkq ` cpk´1qq

d

2

λminpΠpk`1qq
(26)

and, finally, set

px
pkq
t :“ px

pk´1q
t ` pe

pkq
t ,

e
pk`1q
t :“ e

pkq
t ´ pe

pkq
t “ xt ´ px

pkq
t

and k
pk`1q
d :“

λ
pk`1q
0

λ
pkq
0

k
pkq
d . From the proof of theorem 1

lim sup
tÑ`8

}Λpk`1qpζtqe
pk`1q
t }

γ
pk`1q
d pζtq

ď cpk`1q. (27)

Goto step k ` 1.

Remark 5. Each step k of the above algorithm can be
completed upon (21) being satisfied. At each step k the
stronger condition

lim sup
tÑ`8

}Λpkqppztqe
pk´1q
t } ď cpk´1q (28)

is guaranteed by the previous step k ´ 1. However, by

increasing λ
pkq

0 P r´
k
pkq

d

1`h0pn´1q , 0q it is reasonably expected

that, on account of (28), also (21) becomes satisfied. We

can also try a larger cpk´1q ě cpk´1q for which (21)
becomes satisfied. In this case, we desaturate the estimate

pe
pk´1q
t in F

pkq
0 and H

pkq
0 (see (24)) and let Πpk`1qptq be

the solution of a suitable differential Riccati equation (a
suitable modification of Ric in (25)) parametrized by

pe
pk´1q
t . A modified algorithm overcoming this problem is

under study. Ÿ

The main result of this section on error performances
optimization is based on the above recursive algorithm.

Proposition 2. Assume (A0)-(A3) and (A5). For each
k ě 0 if

lim sup
tÑ`8

1

pz∆pk`1q

t

cpk`1q

cpkq
:“ ρpk`1q ă 1, (29)

∆pk`1q :“ p1´
|λW

pk`1q

min |

|λW
pkq

min |
qp|λW

pkq

min | ´ k
pkq
d q, (30)

the state estimate px
pk`1q
t outperforms the state estimate

px
pkq
t by p1´ ρpk`1qq ( ˆ100) %.

Remark 6. Notice that 0 ă ∆pkq since |λW
pkq

min | ą |λ
W pk`1q

min |

and k
pkq
d ă |λW

pkq

min |. Condition (29) depends on how the

term pz∆pkq

t ąą 1 is large enough to dominate the other

term cpk`1q

cpkq
. The reason for which at a certain step the

algorithm stops is because of condition (29): this condition
fails at a certain step because the weight of the term

pz∆pk`1q

t decreases at each step k while the weight of the

other term cpk`1q

cpkq
increases. For the very first steps of the

algorithm and for large initial state conditions, the first

term is dominant over the second: if Bf0pv,rq
Br and Bh0pv,rq

Br
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Fig. 1. Sequential estimates of x1 and x2

are uniformly bounded then Φpd8, 2c
p0q ` cq “ Φpd8, cq.

Moreover, if 3cp0q`c
2 « c then Πp1q « Πp0q condition

(29) is largely satisfied at step k “ 0. In this case from

the estimate px
p1q
t we expect a large improvement in the

error performances with respect to the estimate px
p0q
t (see

simulations in the next section). Ÿ

6.2 Simulations

Consider the noisy Duffing oscillator

9x1,t “ x2,t, 9x2,t “ x1,t ´ x3
1,t ` d1,t, yt “ x1,t ` d2,t (31)

The model disturbance d1,t is assumed to be constant with
values in r´1, 1s, while for the measurement disturbance
d2,t we consider the scenario in which it is a sinusoidal
disturbance with frequency ω P r10, 20s and amplitude
ď 2. We assumed initial state conditions x0 “ p´3, 5qT .

The state xt and its state estimate pxt, obtained from
the first K-filter (11), are shown versus time in Fig. 1
(black and light green lines). Notice that since (A4) is not
guaranteed, the estimate pxt is very sensitive with respect
to measurement noise d2,t and, at the same time, state
magnitude }xt} (in particular, compare x2,t and px2,t in
Fig. 1 (black and light green lines).

The second sequential state estimate pX
p1q
t is shown versus

time in Fig. 1, light blue lines. As you see, pX
p1q
t outper-

forms pxt by « 45%. In particular, notice how the estimate
of x2,t (light blue and light green lines) benefits of a more
significant improvement than the estimate of x1,t, (light
blue and light green lines). The third sequential state

estimate pX
p2q
t is shown versus time in Fig. 1 (magenta

lines). pX
p2q
t outperforms pX

p1q
t by « 60%.
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