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Abstract: A controller-weighted multi-model predictive control (MMPC) strategy based on local model 

network (LMN) is proposed to address the nonlinearity and wide operating range of the boiler-turbine (B-

T) system with constraints. The LMN model of the nonlinear plant is identified off-line based on data-

driven modeling method. Since each local model is valid only in local regime, different local constraints 

are considered in designing local predictive controllers corresponding to different local models. The local 

controllers are run in parallel and each controller is assigned with a weight by the implicit scheduling unit. 

The weighted sum of the outputs of local controllers is taken as a global control signal and applied to the 

plant. The efficacy of the proposed MMPC is validated by simulations on a boiler-turbine system. 
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1. INTRODUCTION 

The severe nonlinearity and wide operating range of boiler-

turbine (B-T) system, which is strongly coupled and subject to 

various constraints on both inputs and outputs, bring great 

challenge to power system control engineers (Moon & Lee, 

2009).  Many attempts have been made to overcome the 

control difficulties of B-T system, of which model predictive 

control (MPC) approaches are the most prevailing, since they 

are able to handle the multivariable constrained problem 

explicitly. In view of the inability of linear MPCs in dealing 

with nonlinear problems, nonlinear MPCs were designed for 

the B-T system. A superior performance during wide range 

load variation can be achieved by nonlinear MPCs (Lee et al, 

2010; Kong, Liu & Lee, 2016), but most of them have heavy 

computational burden and are in lack of model transparency. 

Multi-model based MPCs provide an alternative way to handle 

the nonlinearity, in which a combination of several linear 

models is used to approximate the nonlinear behavior of the B-

T system (Keshavarz et al, 2010; Li et al, 2012; Wu et al, 2014). 

MMPCs are more flexible and easier to implement than other 

nonlinear control approaches, and superior control 

performance can also be attained.   

Multi-model control systems can be constructed in many 

different ways. Among them, the control system based on 

multiple weighted controllers has received widespread 

attention (Rugh & Shamma, 2000; Dougherty & Cooper, 2003; 

Li et al, 2004), due to its transparency in structure and ease in 

controller design. The scheduling mechanism is important for 

this kind of controller-weighted system. A common method is 

to use fuzzy logic to deduce and calculate the weights allocated 

to each local controller based on some scheduling variables 

that reflect the operating conditions (Moon & Lee, 2011) or 

the deviation between model output and actual output (Pi & 

Sun, 1998). But so far there is no systematic method to select 

the parameters of the membership functions and the fuzzy 

rules. It often needs trial and error based on the designer's 

experience to make the control system show satisfactory 

performance. In addition, the fact that each local model is only 

valid in a local region is often overlooked in the design of 

multi-model predictive control. However, if the control inputs 

are not limited during the long prediction horizon, the 

predicted outputs of the system may exceed the valid domain 

of some local model over time, thus the control signal obtained 

must be inaccurate and may cause the deterioration of the 

control system. 

For these reasons, in this paper controller-weighted multi-

model predictive control strategy will be designed based on a 

local model network (LMN)  to address the control problem of 

nonlinear B-T system. The proposed control strategy has the 

following novelties and advantages:  

1) with the framework of local model networks, different 

linear models are weighted to accurately represent a nonlinear 

system and couple with a set of MPC controllers; 

2) different validity regimes of local models are treated as 

constraints on the corresponding local predictive controllers to 

obtain the accurate local control signals; 

3) the optimization of control system structure and scheduling 

mechanism does not need to rely on experience. 

2. LOCAL MODEL NETWORK BASED MULTI-MODEL 

PREDICTIVE CONTROL  
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2.1 System Framework 

A basic structure of a dynamic local model network is depicted 

in Fig. 1, where each local model iLM  consists of two parts 

(Hametner & Jakubek, 2013): the dynamic model  if   and 

its validity function  i  . For a multivariable system with R 

inputs and S outputs, the output ( ) Sk Ry of LMN at current 

k-th instant can be represented as: 
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( ) ( ( )) ( ( ))
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i i
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k k f k
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where M is the number of local models; local model  if 

 1, ,i M   is defined as a function of measurement vector 

  rk R ; and the validity function  i   of the i-th local 

model is defined as a function of scheduling vector   Lk R . 

A commonly chosen validity function in LMN is the 

normalized Gaussian function defined as: 
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where ic and i  are the center and width of the Gaussian 

interpolation function, respectively. The validity regime of the 

i-th local model can be described as  ,i i i e Γ c I i i ec I , 
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Fig. 1. A basic structure of local model network. 

 

The proposed controller-weighted multi-model predictive 

control system based on LMN is shown in Fig. 2, which 

contains a set of local predictive controller iMPC  and an 

implicit scheduling unit. Each local predictive controller 

iMPC  is designed based on the local model iLM  in LMN. 

According to the scheduling vector   reflecting the current 

operating condition, the scheduling unit assigns a weight 

 i   (i.e., the validity value of each local model iLM ) at 

every sampling instant for each local controller iMPC . The 

weighted sum of the outputs of each local controller is taken 

as a global control signal applied on the controlled plant.  
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Fig. 2. LMN-based multi-model predictive control system. 

2.2 Local Models 

The form of the local model depends on the design of the 

controller and generally linear models are selected for 

simplicity.  

Define a regression vector    = 1 , ,T Tk k  y

     , 1 , , 1
T

T T T

A Bk n k k n      y u u  and a parameter 

vector
1 0, , , , ,

A B

T

i i in i in
   A A B B  for the i-th local model 

iLM , where An is the number of delayed input samples and 

Bn  is the number of delayed output samples, 

, 1, ,S S

ij AR j n A  and , 0, ,S R

ij BR j n B . The 

output of iLM  can be expressed in a regression form:  

        1,2, ,T T

i i ik f k k i M  ， y     (3) 

Accordingly, the global output of the LMN is a combination 

of the output of each local model, 

      
1

M
T T

i i

i

k k k


y                        (4) 

The identification of LMN includes choosing a suitable 

scheduling variable   and determining the number of local 

models M as well as the validity function  i  and parameter 

vector i . A data-driven LMN modeling method based on 

satisfactory fuzzy clustering technique was proposed by Zhu, 

Shen and Li (2016). Since this modeling method can achieve 

high identification accuracy with less number of local models 

and lower computational burden, we will use it to identify the 

LMN model of the B-T system. For more details about the 

modeling of LMN, please refer to Zhu et al. (2016, 2019). 

The local model (3) in the identified LMN can be easily 

transformed into a controlled auto-regressive and integrated 

moving average (CARIMA) model expressed as: 

1 1 1( ) ( ) ( ) ( 1) ( ) ( ) /i i iz k z k z k     A y B u C   (5) 

where 
1z

 is the backward shift operator, 
1( )i z

A and 

1( )i z
C  are  S S  monic polynomial matrices and 

1( )i z
B is 

a S R polynomial matrix defined as:  
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The operator   is defined as 
11 z   ; ( )ky and ( )ku are 

the output vector and input vector; ( )k is the noise vector and 

is supposed to be a white noise with zero mean.  

2.3 Local Predictive Controllers 

For each local model iLM , a multivariable constrained model 

predictive controller iMPC  is designed as local controller. 

The commonly used quadratic cost function (objective 

function) of the predictive control can be formulated and used 

for calculation of the optimal control input to make each output 

in y follow the output reference 
ry  in an optimal way: 
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  (6) 

where pN  is the prediction horizon and uN  is the control 

horizon; 0
T

 Q Q  and 0
T

 R R  are symmetric 

weighting matrices of the output tracking errors and control 

input increments, respectively.  

On the basis of the model (5) and Diophantine equation, the 

predicted outputs at future instants can be described as: 

ˆ  y GΔU f                            (7) 

where ˆ ˆ ˆ ˆ[ ( 1) ( 2) ( )]T T T T

pk k k N      y y y y ;  U

[ ( ) ( 1), , ( 1)]T T T T

uk k k N      u u u ; ( 1)k Δf H u  

( )kFy which can be obtained from the known inputs and 

outputs; G , H and F  are coefficient matrices derived from 

the Diophantine equation, see e.g. (Clarke et al,1987).
 

If there are no constraints, the predictive control law can be 

obtained by minimizing the objective function (6) in the form: 

1

0 0 0( ) ( )   T T

r
U G Q G R G Q Y f                (8) 

where [ ( 1) ( 2), , ( )]T T T T

r r r pk k k N      
r
Y y y y  is the 

vector of output reference trajectory. 

However, almost all the actual processes are subject to certain 

physical conditions and only the control actions that satisfy 

these constraints can be truly optimal. The following hard 

constraints are the global constraints that all local models and 

controllers must satisfy. 

Constraints on the magnitude of control inputs:  

min max( + 1)k j  u u u , 1,2,..., uj N             (9) 

Constraints on the increment of control inputs:  

min max( + 1)k j     u u u , 1,2,..., uj N      (10) 

Constraints on the controlled outputs: 

 min max( + )k j y y y , 1,2,..., pj N            (11) 

In addition to the global constraints, local constraints should 

also be considered when designing the controllers, since each 

local model is locally valid. For the i-th local model, the local 

constraints are described as 

min max( + )i ik j    , 1,2,..., pj N           (12) 

where mini  and maxi  are the lower and upper bound  of the 

validity regime i  which is already obtained during the 

modeling phase. The scheduling vector is defined as

( ) [ ( 1),Tk k u ( )]T Tky , so the soft constraints of each local 

model can be rewritten as: 

min max( + 1)i ik j  u u u , 1,2,..., uj N           (13) 

min max( + )i ik j y y y , 1,2,..., pj N             (14) 

where min min min,T T T

i i i  u y   and max max max,T T T

i i i  u y  . 

Taking both global and local constraints into account, the 

constrained predictive control problem for each local model (5) 

can be described as:  
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Substituting (7) into (6), then 

   0 02
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last constant term in cost function  (17)  is independent of U , 

so obviously 0min minJ J
 


U U

. So (15) can be reformulated as 

the standard constrained quadratic optimization problem: 
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The matrixes 
1 3~L L  and vectors 

1 6~l l  are derived from (16) 

and defined as: 
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i i pk k k N    l d d  , 
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where ( ) [ ( 1), ( )]T T Tk t k k t   d u f , 1,2,..., pt N . 

The optimization problem (18) can be solved by the existing 

algorithms, such as quadprog function in MATLAB Toolbox. 

2.4 Scheduling Mechanism 

Compared with many existing multi-model control strategies, 

LMN-based multi-model control system is much simpler in 

designing scheduling criteria. The scheduling mechanism can 

be described as: first collecting the working condition 

parameters at the current instant to form a scheduling vector, 

calculating the scheduling or validity function value of each 

local model according to (2), and the obtained value of the 

function is used as the weight of the corresponding local 

controller. Since the local predictive controller is designed 

based on the local model, it is intuitive and reasonable to 

directly use the value of the scheduling function as the weight 

of the corresponding controller. Moreover, the optimization of 

the model set has been considered in the LMN modeling phase, 

that is, the number of local models/controllers and the 

parameters of the scheduling function have been optimized, 

which can avoid the blindness of selecting the number of 

controllers and scheduling criteria relying on experience. 

3. BOILER–TURBINE SYSTEM MODEL 

3.1 Nonlinear Boiler–Turbine Model 

The nonlinear dynamic model of a 160MW drum–type boiler-

turbine unit presented by Bell and Åström (1987) is adopted to 

be the controlled plant in this study. The model is described as 

follows: 

 
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where  

3 1
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2 1 1 3
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The three state variables 1x , 2x  and 3x  are drum steam 

pressure P (kg/cm2), output power E (MW) and drum/riser 

fluid density f (kg/cm3), respectively. The three outputs 1y ,

2y and 3y  are drum steam pressure P , output power E and 

drum water-level H (m), respectively. The drum water-level

H  is calculated by using two algebraic calculations, the steam 

quality s  (mass ratio) and the evaporation rate eq (kg/s). The 

three control inputs 1u , 2u  and 3u  are normalized positions 

of valve actuators that control the mass flow rates of fuel, 

steam to the turbine, and feed water to the drum, respectively. 

The control inputs are subject to magnitude and rate 

saturations as follows: 

1 2 3

1

2

3

0 , , 1

0.007 0.007

2 0.02

0.05 0.05

u u u

u

u

u

 

  

  
  

                             (20) 

The general control objective for this kind of drum-type 

boiler–turbine unit is to achieve a fast power tracking while 

keeping the steam pressure accurately following its setpoint 

and eliminating the deviation of drum water level.  

3.2 LMN Model of B-T System  

In order to fully stimulate the nonlinearity of the B-T system 

under different operating conditions, three uncorrelated 

modified pseudo-random sequences with adjustable frequency 

and amplitude are respectively applied to the three 

manipulated variables to generate identification data, as shown 

in Fig. 3. The LMN model of the B-T system is obtained by 

using the data-driven modeling method proposed in Zhu, Shen 

& Li (2016). The comparison between the model outputs and 

the actual outputs is shown in Fig. 4, where the model error  

Pe of drum steam pressure,  Ee of output power and He of 

drum water-level at each sampling instant are also shown. 

Obviously, the resulting LMN has very high prediction 

accuracy even with only three local models. 

 

Fig. 3. Excitation inputs used for model identification. 
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Fig. 4. Comparison of model outputs and real outputs. 

4. SIMULATIONS  

Based on the identified LMN model of the B-T system, a 

multi-model predictive control system similar to that shown in 

Fig. 2 is designed, which contains three local predictive 

controllers. Several simulation scenarios are presented to 

evaluate the performance of the proposed control strategy. In 

the simulations, the parameters of the three local controllers 

are chosen the same, except for the prediction model: 1sT s , 

30PN  , 5uN  , 
0 3Q I  and 0 30.5R I .  

Case 1: Wide-range step response test. Some equilibrium 

operating points of the B-T model (19) was given by Bell & 

Åström (1987).  Assume that there is a wide step disturbance 

from #1 to #7 operating point, i.e., the setpoints of 
1y ,

2y and  

3y have a step change from (75.6, 15.27, 0) to (135.4, 127, 0). 

Fig. 5 show the outputs and control inputs of the B-T system, 

respectively. Comparing the result with that of the similar tests 

in other literatures such as Wu et al. (2012) and Pan et al. 

(2015), we know that our control system has better control 

performance since it can track the setpoints more quickly and 

has less transient time, overshoot and small water-level 

fluctuation. Meanwhile, the manipulated variables meet all the 

constraints of inequalities (16).  

Case 2: Wide-range ramp tracking test in nominal case. We 

simulate the automatic generation control (AGC) mode and the 

reference tracking trajectory is chosen as: first, output power 

ramps from #4 to #7 operating point at an increasing rate of 

0.415 MW/sec; then it ramps from #7 to #1 operating point at 

a decreasing rate of 0.284 MW/sec; finally, it ramps from #1 

to #4 operating point at an increasing rate of 0.25 MW/sec. The 

reference for the drum steam pressure is changed in proportion 

to the load, while the reference for the drum water level is kept 

at zero. The output responses and control inputs for this 

tracking case are shown in Fig. 6. It can be seen that in the case 

of wide-range rapidly-changing operating conditions, the 

drum pressure and output power can accurately track their 

setpoints and the fluctuation of drum water-level is small. 

 

    

Fig. 5. Outputs and control inputs under the wide-range 

step disturbances.   

 

          
Fig. 6. Outputs and control inputs under wide-range ramp 

tracking in nominal case. 

Case 3: Wide-range ramp tracking test in the case of model 

mismatch. Assume that the coefficients of the nonlinear state 

model of the B-T system in (19) are all changed to 50% of their 

original values, which indicates the dynamic behavior of the 

system has changed significantly; and the setpoints of outputs 

are set the same as in Case 2. The outputs and control inputs 

for this tracking case with model uncertainty are shown in Fig. 

7. It can be observed that good tracking of the load demand 

and drum pressure is obtained even if the dynamic behavior of 

the B-T unit has changed and the maximum fluctuation of 

drum water level is just slightly larger than that of Case 2, 

which indicates that our control strategy has strong robustness.  
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Fig. 7. Outputs and control inputs under wide-range ramp 

tracking in the presence of model mismatch. 

5. CONCLUSIONS 

A controller-weighted multi-model predictive control strategy 

based on LMN is designed in this paper, where different valid 

regions of each local model are treated as local constraints in 

the design of the local predictive controllers. Since the number 

of local models/controllers and the parameters of scheduling 

functions have been optimized in the LMN modeling phase, 

the structure and scheduling mechanism of the control system 

are more reasonable and do not rely on experience. Simulation 

results on a drum-type B-T system demonstrate the superior 

performance of the proposed control strategy: the control and 

control-move constraints can be easily meet; the satisfied 

tracking performance can be attained over a wide operation 

range; and it has good robustness against model uncertainty. 

The proposed control strategy can also be applied in any other 

plants or processes.   
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