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Abstract: A model predictive control strategy for flexible multibody structures undergoing
large deformations is presented. The dynamics of such structures are highly nonlinear, with local
effects introduced by the joint constraints and distributed effects arising from the structure’s
increased flexibility, from which arbitrary large deflections and rotations can be expected. A
modal-based nonlinear reduced order model of an intrinsic description (based on velocities and
strains) of geometrically-exact beams is used to underpin the internal model. This low-order
model, constructed using the linearised eigenfunctions of the constrained structures, is a set of
nonlinear ordinary differential equations in time (i.e. no algebraic equations are present) thus
facilitating analysis and demonstrating successful control. Numerical examples are presented
based on a very flexible hinged two-link manipulator.
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1. INTRODUCTION

Very flexible structures can undergo arbitrarily large de-
formations and rotations and hence linear models might no
longer be accurate enough to describe their dynamics. In
the case of flexible beams, where only one of the structure’s
dimensions is of relevance, the dynamics are governed
by a set of nonlinear partial differential equations, as in
geometrically-exact beam theories (GEBT, Simo (1985);
Reissner (1981)). Here, a particular GEBT description
using velocities and strains as primary variables, referred
to as an intrinsic formulation (Hodges (2003)), is used to
model the three-dimensional structural dynamics.

Joints and hinges are common in applications such as
robotics, where arm manipulators are usually modelled by
several beam segments attached in different configurations.
The joints, displaying wide ranges of motion, are often
the main (if not unique) source of nonlinearity, since arm
segments are modelled as infinitely rigid links or described
by linear models such as Euler-Bernoulli or Timoshenko
beam theories, with very few attempts to use nonlinear
models, as in Macchelli et al. (2007). However, most of
the work focusing on control of such flexible manipulators
and structures still relies on assuming linearity in displace-
ments (Le Gorrec et al. (2014); Walsh and Forbes (2015)).

An understanding (and control of) geometrical nonlin-
earities would facilitate much more complex designs in
problems where now linearity is assumed. For instance,
control of structures such as satellite foldable antennae
(formed by slender, very flexible hinged rods) or cutting-
edge gust-alleviating mechanisms in aircraft (consisting of
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a hinged wing tip segment that can become loose when the
vehicle encounters a gust, Castrichini et al. (2016)) would
certainly benefit from considering nonlinear effects arising
from the increased flexibility.

In the case of spacecraft applications, a relevant control
problem might consist in stabilising the structure after
having been struck by space debris, while in the second
application example, the goal might be to maximise load
alleviation by acting on the wing’s free section. In either
case, the amplitude of the joints is likely to remain small,
or at least, minimising it will be a desirable outcome of
the control strategy. Hence, nonlinear effects will primarily
emerge from large deformations rather than from joint
constraints, which are particularly well captured by our
low-order model.

The paper is organised as follows. The intrinsic structural
model and the technicalities involved in simulating multi-
body dynamics are discussed in § 2 while the reduced order
model, similar to the one portrayed in Artola et al. (2019b)
but adapted to account for joints within the structure,
is shown in § 3. Nonlinear Model Predictive Control is
chosen as our control strategy for its flexibility in handling
constraints and accounting for nonlinear dynamics, and
a brief description of its implementation is given in § 4.
Finally, numerical examples on the simulation and control
of multibody structures using the intrinsic formulation are
shown in § 5.

2. STRUCTURAL MODEL

2.1 Intrinsic beam equations

The intrinsic formulation of geometrically exact beams of
Hodges (2003) describes the structural dynamics with two
vector states x1(s, t) := [v>,ω>]> : [0, L]×R+ → R6 and
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x2(s, t) := [f>,m>]> : [0, L] × R+ → R6. The first one
gathers the translational and angular inertial velocities,
v, ω ∈ R3, while the second gathers the sectional force
and moment resultants, f , m ∈ R3. The curvilinear
spatial coordinate s defines the elastic axis and t denotes
time. L denotes the total arclength of the undeformed and
unloaded structures. The equations read

M
∂x1

∂t
− ∂x2

∂s
−Ex2+L1(x1)Mx1+L2(x2)Cx2 =

D0x1 +D1
∂x1

∂s
+D2

∂2x1

∂s2
+f1,

(1)

C
∂x2

∂t
− ∂x1

∂s
+ E>x1 − L>1 (x1)Cx2 = 0. (2)

All terms are expressed in a local frame of reference (e1,
e2, e3 in Fig. 1), with origin at the beam elastic axis and
first component of the basis, e1=[1, 0, 0]>, tangent to it.

M(s) : R → S6
++ and C(s) : R → S6

+ are the mass and
compliance matrices 1 , and the matrix E(s) : R → R6×6

gathers information on the structure’s initial curvature κ0

(e.g. arched structures):

E =

[
κ̃0 0
ẽ1 κ̃0

]
, (3)

where the tilde superscript denotes the usual vector prod-
uct operator ã ∈ R3×3, defined as ãb = a×b, for a, b ∈ R3.
The linear operators L1 : R6 → R6×6 and L2 : R6 → R6×6

are defined as

L1(x1) =

[
ω̃ 0
ṽ ω̃

]
, L2(x2) =

[
0 f̃

f̃ m̃

]
. (4)

e1

e2

e3

e∗1

e∗3

e∗2

Fig. 1. Frames of reference involved in a multibody hinged
configuration.

The vector f1 accounts for external forces and moments
per unit length acting on the structure. Matrices D0, D1

and D2 account for structural/viscous damping modelling
(Artola et al. (2019b)). Natural boundary conditions (i.e.
no internal damping and no boundary forcing) for (1) and
(2) satisfy

x1(s∂ , t)
>x2(s∂ , t) = 0, (5)

while forced motions or prescribed forces at a boundary
s∂ are simply enforced as x1(s∂ , t) = x1∂(t) or x2(s∂ , t) =
x2∂(t). The total energy (kinetic and potential) of the
system is given by

ε(t) =
1

2
〈x1,Mx1〉+

1

2
〈x2, Cx2〉 , (6)

where 〈x,y〉 =
∫ L

0
x>yds denotes the L2([0, L],R6)-inner

product. If (5) holds and no damping is considered, the
energy satisfies ε̇ = 〈x1,f1〉.

1 S6++ and S6+ denote the set of positive definite and semi-definite

symmetric matrices of R6×6, respectively.

2.2 Displacements and rotations

Since this is a fully intrinsic description, displacements and
rotations are derived variables. Unless required to account
for displacement or orientation-dependent external forces
(e.g. gravity), they are not needed to solve for (1) and (2).

The rotation matrix from the local to the global frame of
reference (e∗1, e∗2, e∗3 in Fig. 1) is T (s, t) : [0, L] × R+→
R3×3. Rotation quaternions are employed to parametrise
rotations ξ(s, t) = [ξ0, ξ

>
v ]> : [0, L] × R+ → R4, with

ξ0 ∈ R and ξv ∈ R3. They satisfy (Hanson, 2005, ch. 26):

∂ξ

∂s
= U(κ+ κ0)ξ,

∂ξ

∂t
= U(ω)ξ, (7)

where κ is the vector of curvatures and twist (i.e. the last
three components of the product Cx2) and U is the skew-
symmetric operator

U(a) =
1

2

[
0 −a>
a −ã

]
, a ∈ R3. (8)

The relationship between orientation quaternions and the
corresponding rotation matrix is (Hanson, 2005, ch. 6)

T (ξ) = (1− 2 ‖ξv‖
2
)IR3 + 2ξvξ

>
v + 2ξ0ξ̃v, (9)

where IR3 is the identity matrix in R3. The instantaneous
displacement field r with respect to an inertial observer
can be computed similarly by solving either of the equa-
tions

∂r

∂s
= T (e1 + γ),

∂r

∂t
= Tv, (10)

where γ is the strain vector (i.e. the first three components
of Cx2).

2.3 Multibody configurations

To simulate the dynamics of multibody configurations,
such as the one portrayed in Fig. 1, an extra set of
constraints imposed by the joints/attachments between
the diverse structures of the network shall be defined,
besides the boundary conditions (5), which are still needed
for ends which are not part of any joint.

These constraints, restraining some of the structure’s de-
grees of freedom, shall be translated into the velocity and
force/moment variables of the intrinsic formulation. Con-
straints in displacements or rotations are directly imposed
on linear or angular velocities, respectively, noting that
these variables are expressed in a body-attached, local
frame of reference. Hence, continuity in velocities across
the joint has to account for the change in orientation
between the joined structures. Constraints for the sectional
force/moment are not continuity constraints, as with ve-
locities, but obtained by a force/moment balance at the
joint.

The case of a ball joint, where only translational degrees
of freedom are constrained leaving all three-dimensional
rotations free, with three participating beams is portrayed
here as an illustrative example. The constraints imposed
on translational velocities are

T a(La)va(La) = T b(0)vb(0) = T c(0)vc(0), t > 0, (11)

where T is the transformation matrix (9), and the super-
scripts denote each of the diverse beams joined together
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(see Fig. 2). The force constraint is obtained by a force
balance around the joint, that is,

−T a(La)fa(La) + T b(0)f b(0) + T c(0)f c(0) = 0, t > 0.
(12)

Note that in (12) the positive direction defined for the
spatial coordinate s marks the sign of the force in the
balance, as shown in Fig. 2 and also marks the spatial
evaluation (0 or end L) of each beam’s velocity/force
vector in (11)–(12). In the case of a rigid joint between
two or more structures, constraints (11)–(12) shall also be
equally applied to the angular counterparts ω and m.

(a) (b)

(c)

fa1

fa3

f b1

f b3

f c1

f c3

Fig. 2. Example of a three beam network interconnected
by a ball joint.

3. LOW-ORDER MODEL

3.1 Modal-based reduced order model

A finite dimensional approximation to the intrinsic equa-
tions is built using the eigenfunctions φ1j(s), φ2j(s) :

[0, L]→R6 of the linearised system (1)–(2). These are ob-
tained around the unloaded and undeformed configuration
(i.e. f1 = x1 =x2 =0) with no damping (Di = 0) and shall
comply with boundary conditions (5) and linearised con-
straints (11)–(12) around a reference angle configuration.

UsingNm eigenfunctions (also referred to as natural modes
or mode shapes), approximate state variables are defined
by

x1(s, t) = φ1j(s)q1j(t), x2(s, t) = φ2j(s)q2j(t), (13)

where q1j(t), q21j(t) :R+→R are the temporal coefficients
of the expansion (Einstein’s summation convention for
index j=1, ..., Nm is used).

The reduced order model is obtained by a Galerkin pro-
jection and has the form

q̇ = Wq +N(q)q +

[
η
0

]
, (14)

where the expansion temporal coefficients are gathered in
a column vector q(t) :R+→R2Nm . The modes around the
unloaded configuration are orthogonal (Palacios (2011)),
and if normalised so that 〈φ1i,Mφ1i〉 = 〈φ2i, Cφ2i〉 = 1,
the matrix W has the form

W =

[
Σ Ω
−Ω 0

]
, (15)

where Ω is a diagonal matrix whose entries are the eigen-
values corresponding to each eigenfunction participating
in the expansion and Σ is the modal damping matrix

[Σ]ij =
〈
φ1i, D0φ1j+D1φ

′
1j+D2φ

′′
1j

〉
. (16)

The term N(q) is linear in q,

N(q) =

[
−q1lΓ

l
1 −q2lΓ

l
2

q2l(Γ
l
2)> 0

]
, (17)

with constant matrices[
Γl1
]
ij

= 〈φ1i,L1(φ1j)Mφ1l〉 , (18)[
Γl2
]
ij

= 〈φ1i,L2(φ2j)Cφ2l〉 . (19)

The entries of the forcing term vector are

[η]i = 〈φ1i,f1〉 . (20)

The reader is referred to Wynn et al. (2013) for further de-
tails on the construction of such model. The instantaneous
energy of the system (6) written in modal coordinates is,
simply,

ε(t) =
1

2
q>q, (21)

with ε satisfying ε̇ = q>1 η + q>1 Σq1.

A similar modal approximation to (13) is defined for
the finite rotations, which involves a modal expansion
of the quaternions that preserves, weakly, the unit-norm
property of rotation quaternions (Artola et al. (2019b)) :

ξ(s, t) = φξj(s)qξj(t), j = 0, 1, · · · , Nm, (22)

for chosen quaternion mode shapes φξj : [0, L]→ R4, with
coefficients qξj : R+ → R.

The first mode shape is a shifting equilibrium mode, φξ0 =

ξ̄(s), where ξ̄(s) defines the undeformed rotation field, that

is, ξ̄
′

= U(κ0)ξ̄.

The remaining modes, φξj j = 1, · · · , Nm, are defined to be
the eigenfunctions of the linearised time evolution equation
(7) around the unloaded and undeformed condition,

∆ξ̇ = Uω(ξ̄)∆ω, (23)

where

Uω(ξ̄) =
∂

∂ω

(
U(ω)ξ̄

)
=

[
−ξ̄>v

ξ̄0I3 + ˜̄ξv
]
. (24)

Hence, the mode shapes are obtained from the velocity
modes φ1j by

φξj = Uω(ξ̄)φωj , j = 1, · · · , Nm, (25)

where φωj = Πωφ1j , and Πω = [0R3 , IR3 ] is a projection
operator used to retrieve the angular velocity components.

We construct a time evolution system for qξ applying a
Galerkin projection to the time evolution equation (7)
using mode shapes (25) and φξ0 = ξ̄:

Aξq̇ξ = Nξ(qξ))q1, (26)

where Aξ and Nξ(qξ) = qξlΓ
l
ξ are matrices independent of

the spatial coordinate s

[Aξ]ij =
〈
φξi,φξj

〉
, (27)[

Γlξ
]
ij

=
〈
φξi,U(φωj)φξl

〉
. (28)

Here, the notation 〈·, ·〉 is used to denote the L2-inner
product in L2([0, L],R4).

The augmented low-order model (including finite rota-
tions) reads

q̇a =

[
W 0
0 0

]
qa +

[
N(q) 0[

A−1
ξ Nξ(qξ) 0

]
0

]
qa, (29)
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where qa is the augmented modal coordinates vector qa =
[q>1 , q

>
2 , q

>
ξ ]> : R+ → R3Nm+1.

3.2 Constrained modes in the intrinsic formulation

As previously described, the low-order model (29) is built
using a finite set of eigenfunctions of the linearised and
undamped (i.e. Di = 0, i= 0, 1, 2) system (1)–(2) around
the origin. Using ∆ to denote perturbation variables from
the linearisation point, the eigenproblem reads[
M 0
0 C

]
∂

∂t

[
∆x1

∆x2

]
=

[
0 E + ∂/∂s

−E> − ∂/∂s 0

] [
∆x1

∆x2

]
.

(30)

The eigenfunctions which will define the basis onto which
the intrinsic equations are projected are obtained by solv-
ing (30) together with boundary conditions (5) and the lin-
earised constraints arising from multibody configurations
(11)–(12). A FE discretisation, similar to that described
for the same equations in Palacios et al. (2010), is used to
solve (30), resulting in a constrained eigenvalue problem
of the following form

λBX = AX,

GX = 0,
(31)

where X ∈ R12N is a vector containing the values of x1

and x2 at each of the N nodes used in the discretisation
and G ∈ RNc×12N is a constant matrix defining the
Nc constraints, including boundary conditions (5) and
joint restrictions (11)–(12). This constrained eigenvalue
problem can be solved by projecting (31) onto the null
space of G, using some transformation matrix Z, so that
X = ZXp and GZ = 0 (Gill et al., 1991, §6). Then, the
resulting unconstrained eigenproblem is solved, using the
projected vector Xp ∈ null(G)

λ
(
Z>BZ

)
Xp =

(
Z>AZ

)
Xp. (32)

Using this set of mode shapes to construct the nonlinear
low-order model (14), multibody dynamics accounting for
nonlinear geometrical effects can be accurately simulated
avoiding the use of algebraic equations (or Lagrange mul-
tipliers) to enforce constraints, as long as joint angles are
sufficiently small. This model provides a low-cost alter-
native that can suffice for successful control in certain
applications, as is exemplified in § 5 with two and three-
dimensional stabilisation problems of a very flexible two-
link manipulator.

4. NMPC STRATEGY

A conventional nonlinear model predictive strategy is fol-
lowed, where the solution u(t)∗ to the following nonlinear,
continuous-time, optimal control problem is used as a
control law, which is applied to the system during the time
in between samples τs,

min
u(t)

∫ ti+τp

ti

V (qa,u(t))dt

s.t.
h(q̇a, qa,u(t)) = 0,
qa(ti) = qas ,

umin ≤ u(t) ≤ umax.

(33)

Here, τp is the prediction time horizon, h represents the
ODE (29) and V (qa,u(t)) is a cost functional chosen to
have a quadratic form as

V =
1

2
(qa−qr)

>
Q(qa−qr) +

1

2
(u−ur)>R(u−ur) , (34)

for some weighting matrices Q ≥ 0 and R ≥ 0, reference
state qr and control ur. If Q is set equal to the identity, the
control can be interpreted to act via energy-shaping, since
the state penalty is the perturbed energy of the system.
A piece-wise constant parametrisation of the control input
u(t) is used, which is independent of the chosen sampling
time. The NLP (33) is parametrised employing a multiple
shooting strategy (Bock and Krämer-Eis (1984)) and is
iteratively solved via Sequential Quadratic Programming,
as in Artola et al. (2019a).

A linear model predictive controller is also employed
as a means of pinpointing the relevance of capturing
nonlinear behaviour arising from large displacements and
rotations. This linear version solves the same optimal
control problem (33) using a linearised system (29) about
a reference equilibrium state qr. Hence, the control policy
is obtained at each sample time by solving a quadratic
problem (quadratic cost functional plus linear dynamics).

5. NUMERICAL EXAMPLES

5.1 Eigenfunctions for a 2D hinged two-link manipulator

In this section, the eigenfunctions of the planar double-
hinge set-up for three different joint angle reference con-
figurations (Fig. 3) are shown.

(a)

(b)

z

x
(a)

(b)

(a)

(b)

e3

e1

e3

e1

Fig. 3. Planar hinged two-link manipulator with 0◦, 45◦

and 90◦ joint angle reference configurations.

The five first elastic modes, starting from that of lowest
natural frequency, have been computed. The two seg-
ments are straight beams of length L = 1, with mass
M = diag(1, 1, 1, 0, 10−5, 0) and compliance matrices C =
diag(1000,∞, 105,∞, 1,∞)−1, all with appropriate units,
corresponding to a highly flexible beam in bending with
bending-axial geometrical nonlinear couplings.

Fig. 4 shows the spatial distribution of the three com-
ponents of the velocity modes for this planar case (axial
and transverse linear velocities and out-of-plane angular
velocity). As observed, the case with 0◦ joint angle (a)
produces mode shapes where axial and transverse motions
are completely decoupled (4 pure bending and one pure
axial mode). Note how angular velocities are discontinuous
across the joint, due to the rotational freedom introduced
by the hinge. For the 45◦ case (b), all modes present axial
and transverse motions, with discontinuous linear veloci-
ties across the joint, due to the difference in the relative
orientation between both beams, according to equation
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(11). Finally, the case in which the joint is at an angle
of 90◦ (c) also presents mode shapes where axial and
bending motions occur simultaneously, however confined
to each of the beams. That is, for each mode, one of
the beams undergoes a pure bending motion while the
other deforms axially only. The translational velocity mode
shapes, superimposed to the reference configuration, are
shown in Fig. 5, where the continuity of the velocity vector
across the joint is clearly visible.

(a) (b) (c)

Fig. 4. Spatial distribution of the three different compo-
nents of the five first elastic velocity modes (φv1 ,φv3
and φω2

, top to bottom) for the three different joint
reference angles (0◦ (a), 45◦ (b) and 90◦ (c)).

(a) (b) (c)

Fig. 5. Comparison of the five first elastic translational
velocity mode shapes for the three different joint refer-
ence angles (0◦ (a), 45◦ (b) and 90◦ (c)), superimposed
to the undeformed structure (thick black line).

5.2 Stabilisation of a hinged two-link manipulator in 2D

The problem is formulated as a disturbance rejection one,
in which the structure is initially perturbed by imposing
a global rotation velocity of magnitude ω0 as initial con-
dition. The controller is required to bring the structure
back to the origin via three different inputs (torque applied
at the hinged root, axial and transverse follower forces
applied at the free end) using a functional (34) with the
following parameters

Q = blkdiag
(
kx1

IRNm , kx2
IRNm ,K

>
ξ AξKξ + k∆ξA∆ξ

)
,

R = kuIR3 , [qr]i = 0 i 6= 2Nm + 1, ur = 0.
(35)

Here, kx1
, kx2

, k∆ξ and ku are weighting coefficients, Kξ is
a weighting matrix, which allows us to penalise differently
the different rotation modes, Aξ is as in (27) and

A∆ξ = (Φaξ (La)− Φbξ(0))(Φaξ (La)− Φbξ(0))> (36)

penalises the relative orientation of both links at the
joint with Φξ = [φξ0 , φξ1 , · · · , φξNm+1

] and superscripts
denoting each of the two links (as in Fig. 3). References
qr and ur correspond to the equilibrium state. For qr
all entries are zero except for the shifting equilibrium
quaternion state, which is qξ0,r = ‖ξ̄(s)‖−2.

The controlled plant is modelled by an FE discretisation
of the intrinsic equations, as the one described in Palacios
et al. (2010), with joint restrictions (11)–(12) enforced as
hard constraints. This implementation has been verified
against a general-purpose finite-element flexible multibody
mechanics solver (Del Carre and Palacios (2019)). The
model underpinning the MPC is the reduced order model
(14) equipped with eight elastic modes (four axial and four
bending computed around the 0◦ joint reference angle)
plus the two rigid body modes of the structure. Numer-
ical investigations have been performed to determine a
suitable sampling time τs (which counteracts mismatch
and increases robustness of the scheme) and a suitable
prediction time horizon τp (which should be long enough
to account for the suboptimality error arising from solving
a finite-horizon problem).

Results presented below are based on a structure whose
parameters are the ones in § 5.1 and a structural damp-
ing given by D2 = diag(1, 0, 0, 0, 1, 0) · 10−4. MPC pa-
rameters are kx1

= kx2
= 0.01, k∆ξ = 2.0, ku = 0.1,

Kξ = diag(1, 1, 1, 0.01, · · · , 0.01), τp = 6 s, τs = 0.2 s. A
control parametrisation using piecewise constant functions
of equally spaced Nc = 24 intervals has been chosen and
box constraints on the input |umax| = |umin| = 5 are
imposed.

0 2 4 6 8 10

0

0.1

0.2

0.3

0 2 4 6 8 10

0

0.1

0.2

0.3

Fig. 6. Objective functional for the LMPC (top) and
NMPC (bottom) in the 2D case for different initial
disturbances.

The control objective is to stabilise the structure at the
initial orientation, aiming to maintain the joint angle as
small as possible so that the reduced order model is able
to produce control feedback based on sensible predictions.
The first objective is achieved by imposing a stronger
penalty on the rotations arising from rigid-body modes
and deviations of the shifting equilibrium rotation mode
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from its initial value through matrix Kξ while the second
is achieved by a large tuning constant k∆ξ.

Fig. 6 shows the scaled functional (34) for both the linear
and nonlinear MPC actuaction under different initial exci-
tation, which provides with a metric to assess stabilisation
of the system. Both controllers achieve stabilisation over a
wide range of initial disturbances. Nonetheless, the nonlin-
ear counterpart displays rather more aggressive behaviour
as the perturbation increases, eventually requiring some
sub-relaxation within the iterative solution (SQP) of the
NLPs for ω0 ' 1.75. This is thought to be caused by the
fact that no direct control over the joint angle is exerted,
and for a more aggressive actuation the joint angle might
be no longer in the range of validity of the model. Hence,
the actual state of the structure is no longer well captured
by the modes and produces difficulties in converging the
corresponding optimisation problems.

As seen in Fig. 7, where the snapshots corresponding to
the linear and nonlinear actuation for ω0 = 2.0 rad/s are
compared, larger joint angles are observed in the latter
case. The dynamics of the real system present nonlinear
effects mainly introduced by the hinge, but also due to
axial/bending couplings and follower force effect (note
that rotations (7) become linear, with respect ω or κ
in a 2D case). These two latter effects are captured by
the nonlinear low-order model but they do not appear to
dominate the dynamics since the linear counterpart shows
good performance throughout the range of tested initial
disturbances.

x

z

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

x

z

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

(a)-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

(b)-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

(c)

Fig. 7. Snapshots of the 2D two-link every 0.25 s for
t ∈ [0, 2.5] (a), t ∈ [2.5, 5] (b) and t ∈ [5, 7.5] s
(c). LMPC (top) and NMPC (bottom) results for
an initial disturbance of ω0 = 2.0 rad/s, with shade
darkening as t increases.

5.3 Stabilisation of a hinged two-link manipulator in 3D

The three-dimensional problem is set up similarly to
the planar one, with structural properties now given
by M = diag(1, 1, 1, 2 · 10−4, 10−4, 10−4), compliance
matrix C = diag(1000, 105, 105, 0.05, 1, 2)−1 and D2 =
diag(1, 0, 0, 1, 1, 1) · 10−4, all with appropriate units. The
joint is modelled as a double universal joint or wheel joint,
which allows for freedom in the two bending directions

but is rigid in torsion (i.e. transmits torsion torque and
angular velocity). This choice of parameters provides us
with a structure displaying increased flexibility in both
bending directions and in torsion, with the different bend-
ing stiffness producing non-symmetric solutions triggering
nonlinear couplings between bending and torsion. The
initial angular velocity is applied diagonally, so that it
has equal components ω0 in the y and z directions (re-

sultant disturbance magnitude is
√

2ω0). Control inputs
are now two follower bending moments at the root and
three follower forces applied at the free end, in the three
perpendicular directions.
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Fig. 8. Objective functional for the LMPC (a) and NMPC
(b) in the 3D case for different initial disturbances.
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Fig. 9. Snapshots of the 3D two-link every 0.25 s for t ∈
[0, 2.5] (a), t ∈ [2.5, 5] (b) and t ∈ [5, 7.5] s (c). NMPC
results for an initial disturbance of ω0 = 1.0 rad/s,
with shade darkening as t increases. Top row refers
to the out-of-plane bending, bottom to the in-plane
bending.

In this case, the MPC uses a model constructed with a
total of sixteen elastic modes (four axial, four torsion and
four bending modes in each transverse direction computed
around the 0◦ joint angle configuration) plus the four rigid
body modes of the structure. MPC parameters are exactly
the same as in the planar case, except for the weighting
matrix Kξ, which now has its first five entries set up equal
to one, and R in (35) is now a 5× 5 matrix.
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Fig. 10. Control inputs for LMPC (a) and NMPC (b) actu-
ation for the 3D case, for increasing initial disturbance
magnitude (ω0 = 0.5, 0.625, 0.75 rad/s from top to
bottom).

Conversely to the planar case, in the three dimensional
scenario the linear controller exhibits failure for relatively
low initial disturbance values, when compared to the
planar case. This is explained by the fact that there exist
strong couplings between both planes that the linear model
is unable to predict. This is well observed in Fig. 9, which
shows the snapshots for an initial disturbance magnitude
of 1.41 rad/s. The in-plane and out-of-plane bending
directions of the structure are graphically represented by a
beam with a certain width, which helps in visualising the
torsion motions too. Fig. 10 shows the inputs produced by
both controllers up until the linear one encounters failure,
producing a completely chaotic control law. Similarly to
the 2D case, the nonlinear counterpart required mild
subrelaxation for ω0 ' 0.875 rad/s to achieve convergence
of the NLPs.

With three dimensional kinematics, rotations are no longer
linear in the intrinsic variables, which explains the poorer
authority of the linear controller over the joint angle, in
constrast to the nonlinear one. This, and the fact that the
follower forces at the tip are highly sensitive to changes
in orientation (due to bending/torsion couplings), well
captured by the nonlinear low-order model, highlights the
necessity for nonlinear control.

6. CONCLUSIONS

In this paper the application of the intrinsic formulation
to simulate multibody dynamics has been shown, which
presents slight differences with respect to displacement-
based formulations due to the use of the extra set of
force and moment variables and results in a very compact
formulation amenable to model-based control strategies.

Secondly, a computationally efficient (avoids use of alge-
braic equations to enforce constraints) nonlinear reduced
order model for very flexible multibody structures has
been presented. This has been shown to provide successful
control, underpinning an MPC strategy, in scenarios where
geometrical nonlinearities drive the dynamics of the prob-

lem and joint rotations are kept within a tolerable margin
so that plant/model mismatch is kept to a minimum.

Finally, ongoing investigation focuses on the construc-
tion of a (nonlinear) reduced order model obtained by
combination of the modes around different joint angles,
which possesses two desired characteristics: it preserves the
model’s structure (physically sensible, energy-preserving)
and it expands the model’s range of validity, which we
deem essential to enhance the controller’s performance.
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