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∗∗Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEPP

UMR 5007, 43 boulevard du 11 novembre 1918, F-69100, Villeurbanne,
France (e-mail: daniele.astolfi@univ-lyon1.fr)

Abstract: The internal model principle (IMC) in linear robust output regulation theory states
that a dynamical controller needs to incorporate a copy of the model generating the periodic
signals in order to achieve perfect rejection/tracking, robustly with respect to plant’s parameters.
On the other hand Iterative Learning Control (ILC) is a data-based approach which not requires
any a priori knowledge, and can be used to find the required control action for attenuating
periodic disturbances or tracking periodic references. The control signal generated by ILC
includes the frequency and amplitude information of the disturbance and can be used to build
the internal model needed for a linear output regulator problem. The objective of this work
is therefore that of trying to combine the two approaches, that is IMC and ILC, in order to
retain the advantages of each methodology. The proposed methodology, denoted as Supervised
Output Regulation via Iterative Learning Control (SOR-ILC), allows to address the problem
of output regulation in presence of unknown frequencies. The performances of SOR-ILC are
validated through numerical simulations in case of complex periodic disturbances and parameter
uncertainties.
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1. INTRODUCTION

One can approach the problem of periodic disturbance
rejection and/or periodic tracking either by applying a
traditional control design or data-based control design.
In the context of control feedback theory, the output
regulation theory allows to handle both problems with a
unifying point of view. In particular, it is supposed that
both disturbances and references, denoted in the following
as exosignals, are generated by an known autonomous
systems, denoted as exosystem. The internal model princi-
ple (IMC) (Francis and Wonham (1976); Davison (1976))
states that by incorporating in the feedback loop a copy
of the exosystem processing the output to be regulated,
it is possible to achieve perfect asymptotic rejection or
tracking. Furthermore, with such design, the above prop-
erty is robust to (small) plant parameters perturbations.
The drawback of such approach is that the model of the
exosystem, that is the frequencies of the exosignals, needs
to be perfectly known. In order to address this problem,
adaptive solutions have been proposed in the contexts of
linear and nonlinear output regulation, see, e.g. (Marino
and Santosuosso (2007); Nikiforov (1998); Serrani et al.
(2001); Ding (2003)) and references in Bin et al. (2019).
A recent approach proposed a solution based on discrete-
time identifiers Bin et al. (2019). Despite the efforts, all the
proposed designs require a minimal information concern-
ing the number of frequencies of the exosystems. Another
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common approach, denoted as repetitive control(RC), pro-
pose to use delays of the period of the exosignal in order to
address the problem. Its use in continuous-time systems is
limited by structural controllability properties Hara et al.
(1988); Califano et al. (2018). Repetitive control has there-
fore mainly developed for discrete-time systems, see, for
instance, Moore (1999) and references therein. Similar to
RC, iterative learning control (ILC) has caught significant
attention in the last decades thanks to its promising ability
of dealing with periodicities in repetitive systems. ILC
can simply reduce the effect of periodic disturbances and
improve the system performance through iterative trials
by means of modifying the current control based on the
data obtained from previous system runs (Alsubaie et al.
(2019)). Furthermore, ILC is a rather powerful concept
for repeatedly operated systems since it allows to dimin-
ish the system errors way above the feedback bandwidth
(Steinbuch and van de Molengraft (2000)). It is possible to
see many ILC applications to accommodate the periodic
disturbances in various areas. Rotary systems including
robotics, printing, packing, semiconductor and fabrication
(Chen (2016)); data storing systems (Ha and Park (2008));
twin-roll strip casting (Browne et al. (2018)); active flow
control for compressor stators (Steinberg et al. (2015))
are some of these examples where ILC is used to tackle
periodic disturbances.

Although both the traditional and data-based ILC ap-
proaches can be sufficient on their own depending on the
application, they each have advantages and disadvantages.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 1453



To begin, traditional methods tend to be more intuitive
and easier to understand visually during modelling since
their architectures can be represented by separate blocks,
each of which carries out a specific task. However, their
main disadvantage is that in order to be able to solve the
problem one needs to do some mathematical assumptions
about the unknown (or partially known) properties of
periodic disturbance such as its period and eigenvalues.
Yet, ILC being a data-based method can easily learn the
required system input that will reject a periodic distur-
bance without needing to know any of its properties. Al-
though this approach may seem a better solution, ILC can
suffer from being ’blackbox-looking’ and thus less intuitive
and more difficult to use for traditional control engineers
and researchers that comprise the majority of the control
industry and literature. Hence, considering all these pro
and cons mentioned above, we propose that a combination
of both approaches can yield more satisfying results.

The outline of the paper is as follows: Sec. 2, 3 highlight the
main notions on optimization-based ILC and robust out-
put regulation, respectively; Sec. 4 develops the proposed
SOR-ILC; Sec. 5 provides simulation examples; finally,
Sec.6 draws a conclusion.

2. ITERATIVE LEARNING CONTROL HIGHLIGHT

Various ILCs had been proposed since the earliest version
of ILC in Arimoto et al. (1984). Some of them can be seen
as P-type, D-type, PD-type ILCs, fractional order ILC,
model inversion-based ILC, optimisation-based ILC and so
on. Recent ILC applications show that there is tendency
towards optimisation-based ILC methods. Such trend is
quite understandable considering the increased processing
power of computers and the efficacy of optimisation ap-
plications in solving difficult design problems. Motivated
by the same reason, in this work we utilise a popular
optimisation-based ILC method, namely the norm-optimal
ILC (NO-ILC). The main points of designing a NO-ILC
are briefly introduced below and the reader is suggested
to refer to Norrlöf (2000) for more details .

The fundamental idea of ILC is to iteratively find new
system inputs by filtering the errors and the inputs from
the previous system runs. This can easily be seen from the
ILC update equation

ui+1(t) = Qui(t) +QLei(t) (1)

in which i is the iteration index of ILC, t is the time step
with t = 1, ..., N , ei+1(t) ∈ RN is the system’s current
tracking error, ui+1(t) ∈ RN is the system’s current input,
ui(t) ∈ RN is the system’s previous input (assuming that
N is a vector/matrix length/size parameter defined by the
simulation time and the step size).

In NO-ILC the update equation (1) defines the current
system input ui+1 which can be found by analytically
solving for the ui+1 that minimises the cost function

J(ui+1) = eTi+1Weei+1 + uTi+1Wuui+1

+ λ[(ui+1 − ui)T (ui+1 − ui)],
(2)

where λ ∈ R1 is the Lagrange multiplier; We = ρI ∈
RN×N and Wu = I ∈ RN×N are the weighting matrices
for the error and the input, respectively, with I being the
identity matrix. Thus, the optimal solution of (2) gives
the required Q ∈ RN×N and L ∈ RN×N filters (i.e. (3)

and (4), respectively) which constitute the core of NO-
ILC. Here, the G matrix referes to the lifted-matrix of
the internal system (Bristow et al. (2006)). Moreover,
the convergence and robustness performance of NO-ILC
depends on the heuristic selection of λ > 0 and ρ > 0
under the requirement of two criteria: ||Q||2 < 1 and
||QL||2 ≤ 0.5/

√
ρ+ λ.

Q = ((λ+ ρ)I +GTG)−1(λI +GTG) (3)

L = (λI +GTG)−1GT (4)

3. ROBUST OUTPUT REGULATION HIGHLIGHTS

3.1 Problem definition

Let us consider the following linear time invariant open-
loop plant in continuous-time

ẋ(t) = Ax(t) +Bu(t) +Wxw(t), (5)

e(t) = Cx(t) +Du(t) +Wyw(t). (6)

where x ∈ Rn is the state, u ∈ R is the control input,
and e ∈ R is the output aimed to be regulated to zero
without loss of generality. In the rest of the paper, for
simplicity, we suppose that the full state x is available
for feedback design, that e, u are scalar and that D = 0.
Such assumptions are no restrictive since a straightforward
extension to the multivariable and output feedback cases of
all the forthcoming results can be formulated by following
Byrnes et al. (1997); Astolfi (2016) or Steinbuch and
van de Molengraft (2000). In (5), (6), w ∈ Rnw is a signal
representing disturbances to be rejected or references to
be tracked. In output regulation theory (see Francis and
Wonham (1976); Davison (1976)), w is usually denoted as
exosignal and is generated by an autonomous exosystem
of the form ẇ = Sw (7)

where S is a neutrally stable matrix of the form S =
blkdiag(0, ω1J, . . . , ωρJ), where

J =

[
0 1
−1 0

]
(8)

where the ωi, i = 1, . . . , ρ, are all different and characterize
the frequencies of the signal w. The problem of regulating
e to zero while maintaining bounded the state x for all
positive times, denoted as output regulation, is solved
under the following customary assumptions, see Byrnes
et al. (1997).

Assumption 1. (Stabilisability). The pair (A,B) is stabil-
isable.

Assumption 2. (Non-resonance condition). The matrix[
A− λI B
C 0

]
has independent rows for each λ ∈ iR, where

i denotes the imaginary number.

Assumption 2 mainly states that the transfer function
between u and y has no zeros with zero real part. Although
the condition we stated is more stringent than standard
output regulation framework (where the rank condition
needs to hold only for each λ eigenvalue of S), it is
necessary in our scenario, in which an adaptive solution
is sought.

The solution to the output regulation problem follows then
the next two-step procedure.

S1) Extend the system (5)-(6), with an internal model
unit (IMU) of the form
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η̇(t) = Ŝη(t) + Γe(t) (9)

where η = (η0, η1, . . . , η%)
T ∈ R1+2% is the state

of the IMU. The matrix Ŝ is selected as S =
blkdiag(0, ω̂1J, . . . , ω̂%J), with J of the form (8) for
some frequencies ω̂i, while Γ has to be chosen so that
Ŝ,Γ is a controllable pair.

S2) Stabilize the extended system (5), (6), (9) with a
controller of the form

u = K1x+K2η (10)

such that the unforced (i.e. when w = 0) closed loop
system is asymptotically stable.

Theorem 1. Suppose % = ρ,Ŝ = S in (9), with ρ, S given
by (7), and that K1,K2 in (10) ensures asymptotic sta-
bility of the unforced closed loop system (5), (6),(9), (10).
Then, the output regulation problem for system (5), (6),
is solved, namely solutions of the closed-loop system (5),
(6), (9), (10), forced by (7), are bounded for all t ≥ 0 and
satisfy limt→∞ e(t) = 0. Furthermore, the above properties
are robust to any (small) parameter perturbations of the
nominal matrices (A,B,C) that do not destroy the stability
property of the (unforced) closed-loop system.

Proof. See Francis and Wonham (1976); Davison (1976);
Byrnes et al. (1997).

In addition to previous result, note that the design of the
dynamical regulator (9), (10), is independent from how
the exosignal w affects the plant (5)-(6), namely from the
matrices Wx and Wy.

3.2 Parametrisation of the controller via forwarding for
ILC application

As one can see from Theorem 1, the main challenge
of the internal model based approach is that for the
design of (9), one needs to perfectly know S, that is the
frequencies ωi of the exosignals (7), and such assumption
remains unrealistic in a practical scenario. Furthermore,
each time the matrix Ŝ in (9) is aimed to be adapted,
the matrices K1, K2 of the controller (10) may need
to be redesigned. Therefore, a pole-placement strategy
is not well suited in such context. A possible solution
could be parametrizing the dynamic (9) by following
the parametrization of Nikiforov (1998). However, the
extension to the nonlinear case is not trivial with this
approach, see Astolfi et al. (2019). Therefore, in this
work, we follow another route which is maintaining the
structure of (9) and proposing a design of (10) based
on forwarding techniques proposed in Astolfi (2016). The
advantage of such approach is the self-re-parametrisation
of the stabilizer unit each time Ŝ in (9), that is the
frequencies ω̂i, is modified. Thus, following Astolfi (2016),
we design (10) as

u = −βBTRx+

%∑
i=1

µiB
TMT

i (ηi −Mix) (11)

where the parameters β ≥ 0 and µi > 0 can be seen as
free design parameters which can be utilized to put weight
on specific frequencies as well as to increase rejection
performance, and the matrices R, T , and M are computed
respectively as solution to

RA+ATR = −I, T Ŝ + ŜTT = 0,MiA = ω̂iJMi + ΓiC.
(12)

with J defined in (8) and Γ = [Γ0,Γi, . . . ,Γρ]
T with Γ0 = 1

and Γi = [0, 1]T for all i = 1, . . . , %. Note that the skew-

symmetricity of the Ŝ matrix allows T to be the identity
matrix. Note that with respect to (10), we selected

K1 = −βBTR−
ρ∑
i=1

µiB
T (13)

K2 = [µ1B
TMT

1 , µ2B
TMT

2 , ..., µρB
TMT

ρ ]. (14)

Then, the following proposition can be stated.

Proposition 2. Under Assumptions 1, 2, for any Ŝ de-
signed as in S1, the unforced closed-loop sys tem (5), (6),
(9), (11) with R = RT > 0, T = TT and M designed as
in (12), respectively, is asymptotically stable.

Proof. The proof can be found in Astolfi (2016) and it
is based on the analysis of the derivative of the Lyapunov
function V = xTRx+ (η −Mx)TT (η −Mx).

4. SUPERVISED OUTPUT REGULATION VIA
ITERATIVE LEARNING CONTROL (SOR-ILC)

In this section, we explain how the iterative learning con-
trol and output regulation methods can be combined. The
main idea behind our approach can be seen as utilising
the capability of ILC to detect unknown periodic frequen-
cies in a disturbance and then using this information for
building an output regulator that will reject the periodic
disturbance. In other words, ILC, when combined with an
output regulator, can be seen as a supervisor for the output
regulator’s action on the periodic disturbance. Inspired
from this, we call this approach the Supervised Output
Regulation via Iterative Learning Control (SOR-ILC).
This approach can also be understood as representing the
data-based ILC in terms of a classical feedback controller
or as using ILC for automatically tuning a linear controller.
The following steps give a stepwise explanation of how to
apply the SOR-ILC on a generic system.

4.1 Inner model and disturbance

Let us consider (5)-(6) where now w(t) = d(t) is supposed
to be a signal that can be expressed as Fourier series of
unknown frequencies and number of Fourier coefficients.
One has to make sure that the inner system is stable
before applying ILC. This is due to the fact that ILC is an
open-loop control which modifies the system input through
iterations. Therefore, the system (5)-(6) can be assumed
to be already in closed-loop giving the required stability
as in Fig. 1.

4.2 Learning the disturbance via ILC

The first step of SOR-ILC is to learn the frequency content
of the periodic disturbance via ILC. In other words,
the challenge is to approximate the matrix S in (9) to
without knowing the exosystem. The required procedure
for applying this step is provided in our previous work
via a workflow called Learning Based Controller Tuning
(LBCT) (Koçan et al. (2019)). This work-flow can be
summarised as:

(1) Set the initial ILC parameters (see Sec. 2) and itera-
tively run the system shown in Fig. 1 (switch at S.1)
until the desired rejection is obtained (i.e. ||ei|| ≤ ε).
Note that theoretically under the conditions of ideal
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plant and full repetitiveness, the converged error ε can
reach zero as i→∞. However, in practice i <∞ and
in general due to the initial modelling error and the
repetitiveness of system disturbances and measure-
ment noise, ε→ ε∗ 6= 0 where the value of ε∗ depends
on the iteration number and other tuning parameters
of the ILC, e.g. see Table 1. For more details on ε refer
to ’Section 3.6’ and ’Section 4.2’ of Norrlöf (2000).

(2) Having the desired rejection performance, obtain
UILC(f) which is the frequency data (e.g. DFT/FFT)
of the converged ILC signal uILC(t)(i.e. the ILC input
at the last iteration, ui=M (t)), see Koçan et al. (2019).

(3) By looking at the points where there are peaks of am-
plitude, detect the approximated values of dominant
frequencies ωi ∈ R+ defining the unknown periodic
disturbance ω(t) in (5)-(6), see Koçan et al. (2019).

Note that this learning procedure is ’off-line’ and it is
finished before we begin to build the output regulator.

4.3 Building an Output Regulator based on ILC data

After obtaining a good approximation for the unknown
exosystem, the next step of SOR-ILC is to use this infor-
mation to build a linear output regulator. The procedure
provided in Sec. 3.2 is directly applicable for creating the
required output regulator except that this time the matrix
Ŝ in (9) is approximated by ILC, i.e. ω̂i = ωi for all i.

5. EXAMPLES

This section demonstrates two simulation examples of
SOR-ILC on a simple system. First example considers
only a simple external periodic disturbance while the
second example goes through a combination of complex
effects such as internal and external periodic disturbances,
parametric uncertainties and lack of frequency knowledge.

5.1 Testing SOR-ILC with a simple periodic disturbance

Let us consider that (5)-(6) is a second-order open-loop
system with

A =

[
−3.5014 −3.0003

1 0

]
, B =

[
0
1

]
,
C = I2×2,
D = 02×1.

Then, we assume that we can access both of the states and
that there is a sinusoidal disturbance acting on the second
output only, i.e. Wx = [0, 0], Wy = [0, 1] and w(t) = d(t) =
a · sin(ωt) where a = 0.2 and ω = 1rad/s = 0.1591Hz are
the amplitude and the pulsation of the signal, respectively.
Since most systems have some already existing controllers
in practice, we also suppose that our plant is in closed-loop
with: K0 = [−3.4728, 15.5866]. Hence, the inner system
(G) is defined by

ẋ(t) = Ainx(t) +Binu(t), (15)

y(t) = Cinx(t) +Wyd(t) (16)

where Ain = A + BK, Bin = B and Cin = [0, 1]. This
system can be observed in Fig. 1. Since the model of the
disturbance is not included in the state feedback, the gains
given above are already incapable of dealing with the given
disturbance. Thus, this architecture portrays a scenario
in which the existing closed-loop system is insufficient of
dealing with an external periodic disturbance.

Once the inner system is determined, one can follow the
procedures given in Sec. 4.2 to learn the frequency content

Table 1. NO-ILC initialisation

Sample time, Ts 0.01 sec.
Simulation time, Tsim 50 sec.
Initial states, x [0 0]T ∈ R2×1

Initial ILC input, uILC 0
Number of ILC iterations, M 1000
Weight on the error, We ρI ∈ RN×N

Weight on the system input, We I ∈ RN×N

ρ 0.001
λ 0.1

of the periodic disturbance d(t). The first step is if to
properly initialise the ILC and iteratively run the system
in Fig. 1 until a satisfying rejection level is achieved. If
NO-ILC initialisation is carried out according to Table
1, the ILC inputs shown in Fig. 2 iteratively improve
the rejection performance as in Fig. 3. The power of this
optimisation-based approach can easily be understood by
checking the output amplitude at the last iteration in Fig.
3. Then, the next step is to obtain the frequency data
of the converged ILC signal that is the input at the last
iteration in Fig. 2. Finally, by looking at the points where
there are peaks, it is possible to detect the approximated
values of dominant frequencies ωi defining d(t).

After detecting the approximate frequency content of the
periodic disturbance, it is possible to build the output
regulator part of the SOR-ILC following Sec. 4.3. The
first step is to build the internal model unit (9) using
the learned frequencies ωi. For the given disturbance d(t),

Ŝ = blkdiag(Ŝ0, Ŝ1) and Γ = [Γ0,Γ1]> where Ŝ0 = 0,
ω̂1 = ω, Γ0 = 1 and Γ1 = [0, 1]T . The second step is
to build the stabiliser unit given by (11). Since d(t) is a
single sine signal ρ = 2 such that (ρ+1) tuning parameters
are needed for the output regulator. The values for these
parameters can be set to following values: β = 0.1, µ1 =
100 and µ2 = 100 (note that these values are chosen
by trial-and-error for a sample demonstration and other
choices that lead to better rejection performance are also
possible). Additionally, for a better analysis, we consider
a phase for the disturbance and set the initial states of the
inner model to specific values, i.e. d(t) = 0.2 sin(t + π/4)
and x0 = [0, 0.05]T . Finally, we can test the performance
of the SOR-ILC against d(t) by running the system in
Fig. 1 while the switch is at S.2. One can observe in
Fig. 4 that the disturbance amplitude appearing in the
system output has been reduced by 99.6% after applying
the output regulator of the SOR-ILC. The remaining small
oscillations after 50sec are due to a small approximation
error left from the ILC learning, ω1 ≈ 1rad/s.

5.2 Testing SOR-ILC with Complex Disturbances

We now test the rejection performance of our SOR-ILC
considering a lumped effect of complex disturbances and
parameter uncertainty. The inner system has this time the
following form:

ẋ(t) = Ã(t) + B̃u(t) + [sinx1(t), 0]T , (17)

y(t) = C̃x(t) + d(t). (18)

Here, Ã, B̃, C̃ are A, B, C matrices in (5)-(6) with
20% parameter uncertainty and x0 = [0, 0]T . The state
disturbance is a sine function of the first system state
and the output disturbance is in form of three non-
linearly combined sine waves, i.e. d(t) = 0.25[(0.7(0.15 −
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Fig. 1. SOR-ILC test model

Fig. 2. ILC inputs

Fig. 3. System outputs

Fig. 4. System output with SOR-ILC

0.8 sin(ω1t + φ))2 − 0.6 sin(ω2t + φ))3 − 0.35(sin(w3t +
φ))2] where ω1 = 0.27rad/s, ω2 = 0.76rad/s and ω3 =
0.95rad/s are chosen to not have common divisors and
φ = 0 for the first analysis. SOR-ILC is created by
following the procedure given in Sec. 4. First, ILC learns
the periodic frequencies of the disturbances under the
varying uncertainty between iterations (see Fig. 5). This
process allows to detect Nf = 18 frequencies coming
from the disturbances of which the maximum amplitude
reduced by 86.8%. Next, these frequencies are used for
building the internal model unit of the output regulator
as shown in Sec. 4.3. Then, the remaining step is to tune
the stabiliser unit parameters considering the equations
(9),(11), (13), (14). It can be seen in (11) that the number

of needed tuning parameters become ρ + 1 = 37. For the
simulation, β is set to 0.1 as before and all µi values
are chosen to be 100. In addition, we decide to analyse
the effect of the number of disturbance frequencies used
in creating the SOR-ILC. Therefore, the frequencies are
put in the order of decreasing amplitude and then 18
tests are carried out by adding a new frequency into
SOR-ILC before each test. The results of these tests are
shown in Fig. 6. In the test 1, the amplitude of the
disturbance is the highest since SOR-ILC uses only one
frequency. In the remaining tests, the amplitude of the
disturbance approaches a smaller value as we include new
frequencies in SOR-ILC. Furthermore, the final system
output obtained in the test 18 reaches the same form
of the signal calculated by ILC alone and it is less in
amplitude which can be attributed to the feedback gains
inside the output regulator. The maximum amplitude of
the disturbance is observed to be 92.9% smaller than that
obtained through ILC only. Another demonstration is done
in Fig. 7 by swithching the SOR-ILC on and off (this time
φ = π/4 in d(t), x0 = [0, 0.2]> in (17) and SOR-ILC
uses all the learned frequencies). One can observe that
when SOR-ILC is switched on, the amount of disturbance
attenuation highly increases which proves once again the
efficiency of SOR-ILC.

6. CONCLUSION

The results obtained through this work has demonstrated
the feasibility of combining iterative learning control with
traditional output regulation for accommodating periodic
disturbances. The proposed SOR-ILC method has shown
that ILC can be used to supervise an output regulator
scheme. From another point, it has been shown that it is
possible to transform the data-based ILC into an output
regulator form by means of SOR-ILC. It has been figured
out that through data-based iterative learning SOR-ILC
can remove the necessity of making mathematical assump-
tion for unknown disturbance frequencies when applying
conventional output regulation. Moreover, the simulations
has proven that by using SOR-ILC one can achieve a
better rejection performance than the case of applying
ILC alone. The residual error of the output regulation
is related to frequency and model uncertainties whereas
ILC’s residual error is due to iteration number and model
uncertainties. The variations in the disturbances between
iterations has some impact on ILC learning due to their
non-repetitiveness; however, ILC can still capture the av-
erage frequencies present in the disturbances. Thankfully,
the residual uncertainty in the learned frequencies can
be compensated by adjusting µi values of the output
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regulator. As a future work, the efficiency of SOR-ILC
can be further tested for nonlinear systems, by following
Astolfi et al. (2019), and with real-life problems where
designers are confronted with unwanted periodicities such
as periodic oscillations in fluid flows, rotary systems etc.

Fig. 5. System outputs with ILC only

Fig. 6. System outputs with SOR-ILC

Fig. 7. System outputs with SOR-ILC (on/off)
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