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Abstract: In this paper we present a method to exactly certify the iteration complexity of a
primal active-set algorithm for quadratic programs which is terminated early, given a specific
multi-parametric quadratic program. The primal active-set algorithm’s real-time applicability
is, hence, improved by early termination, increasing its computational efficiency, and by the
proposed certification method, providing guarantees on worst-case behaviour. The certification
method is illustrated on a multi-parametric quadratic program originating from model predictive
control of an inverted pendulum, for which the relationship between allowed suboptimality and
iterations needed by the primal active-set algorithm is presented.
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1. INTRODUCTION

In model predictive control (MPC) the control problem is
formulated as a parametric optimization problem which
is solved in each sample to introduce feedback. In linear
MPC, the problem is often formulated in a way that results
in the optimization problems being quadratic programs
(QPs) that depend on parameters such as the current state
of the system, making them multi-parametric quadratic
programs (mpQPs). In embedded MPC it is important
that these optimization problems can be solved under
real-time constraints, especially when the computational
resources needed are close to the computational resources
at hand.

A class of methods for solving QPs are active-set methods
such as the primal method presented in Nocedal and
Wright (2006), the dual method presented in Goldfarb and
Idnani (1983) and the primal-dual method presented in
Kunisch and Rendl (2003). Methods for exactly certifying
the complexity of these methods, when the QP is solved to
optimality, have been presented in Arnström and Axehill
(2019), Cimini and Bemporad (2017) and Cimini and
Bemporad (2019), respectively. Complexity certification of
a primal active-set method for linear programs (LPs) has
been presented in Zeilinger et al. (2011).

A property of primal active-set methods which make them
desirable for real-time optimization is that all the iterates
are primal feasible. Hence, the algorithm can be termi-
nated before optimality has been reached, reducing the
computations needed, while still providing a solution that
is admissible. In the context of MPC, solving the QPs to
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optimality is often unnecessary to achieve sufficient control
performance. Furthermore, if the suboptimality is moder-
ate and the suboptimal solution is primal feasible, stability
can be guaranteed, Scokaert et al. (1999), Michalska and
Mayne (1993), Graichen and Kugi (2010).

In this paper we present a method for exactly certifying
the worst-case number of iterations a standard primal
active-set QP algorithm, presented in Nocedal and Wright
(2006), needs for an iterate to be sufficiently close to the
optimal solution. Given a user-defined tolerance for the
suboptimality of the solution, the proposed method deter-
mines the worst-case number of iterations needed by the
QP algorithm for the iterate to be within this tolerance.
The method is an extension to the certification method
presented in Arnström and Axehill (2019), where the same
primal active-set algorithm is analyzed when being applied
until it converges to optimality. The extension makes it
possible to certify exactly how many iterations are re-
quired, for any parameter value, until the iterate is within
the user-defined tolerance from the optimal solution. Ul-
timately the method provides information about exactly
how much computational effort can be saved online if the
solution is allowed to be suboptimal to a certain degree.

The outline of the paper is as follows. Section 2 presents
some preliminary information about mpQPs, the pri-
mal active-set algorithm considered and the certification
method presented in Arnström and Axehill (2019) while at
the same time introducing notation used throughout the
paper. Section 3 presents two different ways of terminating
the active-set algorithm early and how to incorporate these
in the certification method. Finally, Section 4 illustrates
the proposed method on an mpQP originating from the
control of an inverted pendulum using MPC.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

Copyright lies with the authors 6587



2. PRELIMINARIES

Consider the multi-parametric quadratic program (mpQP)

minimize
x

J(x, θ) ,
1

2
xTHx+ (fT + θT fTθ )x

subject to Ax ≤ b+Wθ,
(1)

where x ∈ Rn and the parameter θ ∈ Θ0 ⊆ Rp, with Θ0

being a polyhedron. The mpQP is given by A ∈ Rm×n,
b ∈ Rm, W ∈ Rm×p, f ∈ Rn, fθ ∈ Rn×p, and H ∈ Sn++.
The minimizing argument of (1) given θ is denoted x∗(θ)
and the minimizing value of the objective function given
θ is called the value function and is denoted J∗(θ).

A linear MPC problem using a quadratic cost can be
cast in the form (1), where the parameter θ contains the
measured/estimated state, Bemporad et al. (2002).

Another way of expressing the feasible set in (1) is in terms
of each constraint as [A]ix ≤ [b]i + [W ]iθ,∀i ∈ K, where
the notation [M ]i denotes the i:th row of the matrix M

and K , {1, . . . ,m} is the set of all constraint indices. A
constraint which holds with equality is said to be active.

Since the primal active-set algorithm considered in this
paper is iterative, we introduce notation for quantities that
change in each iteration. xk and λk denote the primal and
dual iterates, respectively, at iteration k. Wk denotes the
working set at iteration k, which contains a subset of the
constraints that are active at xk. Furthermore, Ck , K\Wk

denotes the complement to the working set at iteration k.

2.1 A primal active-set algorithm

The primal active-set algorithm considered in this paper
is given in Algorithm 1 and is described briefly below,
see Nocedal and Wright (2006) for a more extensive
description. The algorithm starts with a feasible starting
iterate x0 and a starting working set W0 which contains
a subset of the constraints that are active at x0 and the
main objective of the algorithm is to iteratively update the
iterate xk and the working set Wk by adding/removing
constraints until x∗ is found. In iteration k, the algorithm
computes a search direction pk by solving an equality-
constrained quadratic program (EQP), where the equality
constraints of the EQP are given by the working set
Wk. A step is taken in the direction of pk until either
a constraint that is not in Wk becomes active or a
constrained stationary point with respect toWk is reached.

Definition 1. An iterate x̃k(θ) is said to be a constrained
stationary point (CSP) with respect to Wk if

x̃k(θ) = argminx J(x, θ)

s.t [A]ix = [b]i + [W ]iθ, i ∈ Wk.
(2)

If a constraint that is not in the working set becomes
active before reaching a CSP, the constraint is added to the
working set to maintain primal feasibility and a new search
direction is computed by solving another EQP given by the
updated working set. If a CSP is reached, global optimality
of the iterate is checked by analyzing the dual variables. If
all dual variables are non-negative the global solution has
been found, otherwise, a constraint which corresponds to
a negative dual variable is removed from the working set
and a new search direction is computed.

Algorithm 1 Primal Active-Set Method for solving (1).

Input: x0,W0, k = 1, θ
Output: x∗k, λk,Wk

1: while true do
2: Compute x∗k and λk by solving EQP defined byWk

3: pk ← x∗k − xk
4: if pk = 0 then
5: if λk ≥ 0 then return x∗k, λk,Wk

6: else l← argmin [λk]i, Wk+1 ←Wk \ {l}
7: else
8: m← argmin

i∈Ck, [A]ipk>0

[b+Wθ]i−[A]ixk

[A]ipk

9: αk ← min{1, ([b+Wθ]m − [A]mxk)/([A]mpk)}
10: xk+1 ← xk + αkpk
11: if αk < 1 then Wk+1 ←Wk ∪ {m}
12: k ← k + 1

2.2 Certification of the primal active-set algorithm

We will use the certification method presented in Arnström
and Axehill (2019), summarized briefly below, to certify
how many iterations that are needed by Algorithm 1 to
reach a certain, user-defined, level of suboptimality. The
main idea of the certification method is to iteratively parti-
tion the parameter space depending on which working-set
sequences that are produced by Algorithm 1 for different
parameters. For each iteration, the parameter space will be
partitioned depending on which constraints that are added
to or removed from W. In iteration k we will have the
subregions Θi

k of the region of interest Θ0 in the parameter
space. For each region we also have the corresponding
iterate xik(θ) and working set Wi

k. Instead of terminating
when the iterates have converged completely to global
optimality, as was done in Arnström and Axehill (2019),
we will consider two different early termination criteria
which guarantee a certain quality of the solution.

In this paper we are not concerned with determining
a suboptimality which maintains a sufficient closed-loop
performance for the controller. Instead, we assume that
a suitable suboptimality level is given and consider how
many iterations Algorithm 1 will have to perform until
every possible iterate satisfy this suboptimality level.

3. EARLY TERMINATION OF THE PRIMAL
ACTIVE-SET ALGORITHM

Two approaches for early termination of the primal active-
set algorithm are considered. The first approach, which we
will call the relaxation approach, is based on terminating
when a set of relaxed KKT-conditions are satisfied, similar
to what is done in Bemporad and Filippi (2003) for
obtaining an approximate explicit solution. The second
approach, which we will call the direct approach, analyzes
the level of suboptimality in terms of the objective function
directly and the algorithm is terminated when this value
is sufficiently close to the value function. In practice,
the relaxation method will lead to a modification of the
check for global optimality at Line 5 in Algorithm 1
while the direct method will lead to the algorithm being
stopped after a predetermined number of iterations has
been performed.
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3.1 Relaxing KKT-conditions

The KKT-conditions are necessary for optimality and for
(1) they are also sufficient and explicitly given as

Hx+ATλ = −f − fθθ, (3a)

(Ax− b−Wθ)iλi = 0, i = 1, . . . ,m (3b)

Ax ≤ b+Wθ, (3c)

λ ≥ 0, (3d)

where (3a) is called the stationarity condition, (3b) the
complementarity condition, (3c) primal feasibility and (3d)
dual feasibility.

A way to early terminate an iterative algorithm, such as
the primal active-set algorithm of interest, is to relax these
conditions and terminate when the relaxed conditions are
met. In Bemporad and Filippi (2003) the KKT-conditions
are relaxed by introducing slack in (3a), (3b) and (3d) and
this is used to compute suboptimal explicit solutions of
reduced complexity. Slack in the stationarity and comple-
mentarity condition are shown in Bemporad and Filippi
(2003) to result in projections of lifted polytopes in the
analysis while slack in the dual feasibility does not. In
this paper we will consider a slack in the dual feasibility
conditions, i.e., replacing (3d) with the condition λ ≥ −ελ
for a constant vector ελ > 0.

Implementing this for early termination of Algorithm 1 is
straightforward. The only modification needed is to replace
λk ≥ 0 with λk ≥ −ελ at Line 5. This modification of
Algorithm 1 calls for a modification to the certification
method described in Arnström and Axehill (2019), how-
ever, the modification is minor. Since the dual variables
are affine in the parameter, i.e., λ = Fλθ + Gλ for some
Fλ and Gλ, the partition of the parameter space origi-
nating from Line 5 in Algorithm 1 is done by half-planes,
Arnström and Axehill (2019). Specifically, parameters in
a region that satisfy global optimality, i.e., λ ≥ 0, is
restricted by the half-planes λ = Fλθ + Gλ ≥ 0 ⇔
−Fλθ ≤ Gλ. Adding a slack ελ modifies these half-planes
to λ = Fλθ +Gλ ≥ −ελ ⇔ −Fλθ ≤ Gλ + ελ.

The dual slack will also affect the partitioning that is
done when constraints are removed from the working set.
For a constraint to be removed, its corresponding dual
variable has to be negative. Hence, all parameters in the
region that leads to the constraint corresponding to the
i:th dual variable being removed from the working set
are restricted by the half-plane [λ]i = [Fλ]iθ + [Gλ]i <
0 ⇔ [Fλ]iθ < −[Gλ]i, where [.]i denotes the i:th row of
a matrix. Adding a dual slack modifies this half-plane to
[λ]i = [Fλ]iθ + [Gλ]i < −ελ ⇔ [Fλ]iθ < −ελ − [Gλ]i.

Remark 2. The modifications of the half-planes are done
linearly by the dual slack, i.e., the constant ελ enters
exactly the same way as the parameters θ do. Hence, the
dual slack could be considered as additional parameters
and the effect on Algorithm 1 for a continuum of values of
ελ can be analyzed in one shot, enabling an immediate
analysis of the trade-off between numbers of iterations
and suboptimality. This would result in extending the
parameter space with the same number of dimensions as
ελ. However, if all elements of ελ are chosen to be equal,
the parameter space would only have to be extended with
one additional dimension.

A limitation of the relaxation method is that it only allows
early termination when the iterate is a constrained station-
ary point, i.e., when a constraint is removed in Algorithm
1. Thus, the early termination cannot be enforced in an
arbitrary iteration. Also, note that in practice selecting a
suitable ελ is problem dependent since the dual variables
depend on the scaling of the constraints. Furthermore, the
desired suboptimality is only stated implicitly by ελ. In
practice an admissible suboptimality is often given, hence,
this specification has to be translated into the choice of a
suitable ελ.

In Bemporad and Filippi (2003), a bound on the difference
between the value function and the objective function for
the iterate when the iterate satisfies the relaxed KKT-
conditions with dual slack ελ is derived

Lemma 3. (Bemporad and Filippi (2003) Lemma 4.3) If
an iterate xk satisfies (3a),(3b),(3c) and λk ≥ −ελ, the
difference between the objective function and the value
function is bounded by

J(xk, θ)− J(x∗, θ) ≤ 1
2ε
T
λ [A]Wk

H−1[A]TWk
ελ , ε̄k, (4)

where [A]Wk
denotes the rows of A indexed by Wk.

This relationship can be used when choosing an ελ to
obtain a suboptimal solution sufficiently close to the opti-
mal one. Tight a posteriori bounds on the suboptimality
level for a given ελ are also calculated in Bemporad and
Filippi (2003) by comparing the objective function of the
terminated iterates with the value function. A similar
comparison between the objective function and the value
function is done in the direct method, described below,
but the comparison is done in all iterations.

3.2 Directly comparing objective function to value function

Another, more direct, termination criteria is to compute
the difference between the objective function at the current
iterate J ik(θ) , J(xik, θ) and the value function J∗(θ) ,
J(x∗, θ), which is obtained by computing the optimal so-
lution explicitly, and to terminate if this difference is small
enough. Since the value function is not known a priori
in practice, assuming the explicit solution is not available
online, the implementation of the direct method online is
to terminate Algorithm 1 after a predefined iteration limit
has been passed, independent of the parameter value. This
iteration limit is determined offline and guarantees that all
iterates at termination, for all θ ∈ Θ0, will be sufficiently
close to the optimum. More concretely, using the proposed
certification algorithm, the iteration limit can be obtained
by calculating the difference between the current objective
function values with the value function at each subregion.
Subregions which result in this difference being below the
specified suboptimality level is terminated, while the other
subregions are partitioned further and the iterates are
updated, corresponding to executing yet another iteration
of Algorithm 1. When all regions have been terminated,
the iteration limit is the maximum times a subregion has
been partitioned.

Remark 4. Since Algorithm 1 defines a descent method,
Nocedal and Wright (2006), terminating the algorithm
in an iteration when the suboptimality is below a given
threshold also guarantees that the quality of the subop-
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timal solution in later iterations is no worse than the
specified suboptimality.

Remark 5. In contrast to the relaxation method where
the suboptimality is stated implicitly in terms of the
dual slack ελ, the subotimality for the direct method
is stated explicitly. Moreover, since the direct method
leads to termination after a fixed number of iterations
independently of the parameter value, the number of
iterations is only reduced for regions leading to the worst-
case number of iterations or more. This is not the case
for the relaxation method which can lead to regions with
relatively few iterations terminating early. However, from
a real-time perspective it is only the worst-case number of
iterations that is of interest.

Two approaches, one implicit and one explicit approach,
can be considered when analyzing suboptimality by com-
paring J ik with J∗.

Implicit approach In the implicit approach, we consider
a region Θi

k as an atomic unit when suboptimality is
checked, similar to Axehill et al. (2014). We mark the
current region Θi

k as optimal if the difference between the
current objective function value J ik and the value function
J∗ is small enough for the entire region. Formally this can
be expressed in terms of ε-optimality as

Definition 6. Θi
k is said to be ε-optimal if

J ik(θ)− J∗(θ) ≤ ε, ∀θ ∈ Θi
k. (5)

In this case, all parameters θ ∈ Θi
k have to result in J ik(θ)

being sufficiently close to J∗(θ). Thus, a single pathological
parameter in the region dismisses the entire region from
early termination. Deciding a suitable value of ε can be
difficult since the scaling of J is problem dependent.
Therefore, it is often more convenient to consider the
relative error (J ik(θ)− J∗(θ))/J∗(θ).
Definition 7. Θi

k is said to be εr-optimal if

J ik(θ)− J∗(θ)
J∗(θ)

≤ εr, ∀θ ∈ Θi
k. (6)

Remark 8. Note that εr-optimality is only well-defined
when J∗(θ) > 0. However, J can always be modified to
satisfy this, without changing the optimizer, by adding
terms which are constant or only depend on θ.

Explicit approach In the explicit approach, Θi
k is explic-

itly partitioned based on the difference between J ik and J∗k
in the ε-optimal region Θi

k
∗ , {θ ∈ Θi

k|J ik(θ)− J∗(θ) ≤ ε}
and in Θ̄i

k
∗ , {θ ∈ Θi

k|J ik(θ)− J∗(θ) > ε}. If ε is the user-
defined suboptimality tolerance, the algorithm can be ter-
minated in Θ∗k since its corresponding iterates are suffi-
ciently close to the optimal solution while Θ̄∗k is further
partitioned according to the certification algorithm. A
similar partitioning can be done if the relative error is
considered. Partitioning Θi

k into Θ∗k and Θ̄∗k introduces
nonlinear inequalities to the partitioning of the parameter
space, since J ik(θ) − J∗(θ) is nonlinear, which makes the
certification algorithm less tractable and is not considered
further in this paper.

Determining ε- and εr-optimality Deciding if a region
Θi
k is ε-optimal can be done by solving an optimization

problem as shown by the following lemma

Lemma 9. Given ε and a region Θi
k, let ∆∗J ik(ε) be the

optimal value to the optimization problem

∆∗J ik(ε) , maximize
θ∈Θi

k

J ik(θ)− J∗(θ)− ε. (7)

Then ∆∗J ik(ε) ≤ 0⇔ Θi
k is ε-optimal.

Proof. If ∆∗J ik(ε) ≤ 0 it holds that

J ik(θ)−J∗(θ)−ε ≤ 0,∀θ ∈ Θi
k ⇔ J ik(θ)−J∗(θ) ≤ ε,∀θ ∈ Θi

k,

which is the definition of Θi
k being ε-optimal. Now, assume

instead that ∆∗J ik(ε) > 0, then ∃θ̃ ∈ Θi
k such that

J ik(θ̃)− J∗(θ̃)− ε > 0⇔ J ik(θ̃)− J∗(θ̃) > ε,

which makes it impossible for Θi
k to be ε-optimal since (5)

has to hold for all θ ∈ Θi
k. 2

As is shown in Arnström and Axehill (2019), after a
constrained stationary point has been reached, the iterates
for the algorithm considered will be affine in θ, resulting
in J ik(θ) being a quadratic function of θ. Furthermore,
it is well-known, Bemporad et al. (2002), that the value
function of an mpQP is polyhedral piecewise quadratic
(PWQ), i.e., there exist Un, Vn and wn such that

J∗(θ) = θTUnθ + Vnθ + wn, θ ∈ Rn, (8)

where R = {Rn}Nn=1 is a polyhedral partition of Θ0.

Thus, the objective function in (7) will be PWQ after a
constrained stationary point has been reached. For the
general case Θi

k is defined by both affine and quadratic
constraints, making (7) a non-convex QCQP. However, the
problem reduces to an indefinite QP when Θi

k is a polyhe-
dron, which is shown in Arnström and Axehill (2019) to
be the case when there is no parameter dependence in the
constraints or if Algorithm 1 is started in a CSP.

Also in the case when Θi
k is not a polyhedron, a conserva-

tive result can be obtained by neglecting the quadratic con-
straints, resulting in (7) becoming an indefinite QP. The
result becomes conservative since removing constraints
makes Θi

k a subset of the parameters investigated for

suboptimality. Hence, a parameter θ̃ not in Θi
k but in the

relaxed feasible set might result in J ik(θ̃)− J∗(θ̃) > ε.

Similar to ε-optimality, εr-optimality of a region Θi
k can

be determined by solving an optimization problem shown
in the following lemma

Lemma 10. Assume that J∗(θ) > 0. Given εr and Θi
k, let

∆∗rJ
i
k(εr) be the optimal value to the optimization problem

∆∗rJ
i
k(εr) , maximize

θ∈Θi
k

J ik(θ)− (1 + εr)J
∗(θ). (9)

Then ∆∗rJ
i
k(εr) ≤ 0⇔ Θi

k is εr-optimal.

Proof. Similar to the proof of Lemma 9. 2

The properties of (9) coincide with the ones described
above for (7).

Remark 11. If (7) and (9) are solved with an optimization
method which maintains upper and lower bounds, such
as branch and bound, they do not have to be solved to
optimality to determine ε- or εr-optimality. The solver can
terminate immediately if a negative global upper bound
is found, since this guarantees ε/εr-optimality. Likewise,
a positive global lower bound guarantees that Θi

k is not
ε/εr-optimal.
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Algorithm 2 describes how to determine whether a region
Θi
k is εr-optimal, provided that the explicit solution on

Θi
k, consisting of the polyhedral partition R = {Rn}Nn=1,

is available.

Algorithm 2 Check if the current region Θi
k is εr-optimal

1: for Rn in R do
2: if Rn ∩Θi

k 6= ∅ then
3: ∆∗rJ

i
k(εr)← maximize

θ∈Rn∩Θi
k

J ik(θ)− (1 + εr)J
∗(θ)

4: if ∆∗rJ
i
k(εr) > 0 then

5: return false
6: return true

Remark 12. In Algorithm 2 the entire explicit solution is
not necessarily needed, it only has to be computed on
Θi
k ⊆ Θ0. However, since Algorithm 2 will be applied to

multiple regions in practice, which might be subsets of
the same optimal region in the explicit solution, it might
ultimately be cheaper to compute the entire Θ0, or at least
keep track of optimal regions that have been computed to
avoid redundant computations.

3.3 Direct method with an underestimator of J∗

The direct method described in Algorithm 2 assumes that
the explicit solution is available. However, instead of using
J∗(θ) in the direct method, an underestimator J(θ) of
J∗(θ) on Θi

k can be used to give a conservative result, i.e.,
to determine an upper bound on the worst-case number of
iterations needed that is not necessarily tight.

Definition 13. J(θ) is said to be an underestimator of
J∗(θ) on Θi

k if J(θ) ≤ J∗(θ), ∀θ ∈ Θi
k.

Algorithm 3 describes a method for iteratively construct-
ing an underestimator of J∗(θ) while at the same time
testing for εr-optimality of Θi

k. The method shares simi-
larities with the one presented in Jones and Morari (2010),
where the double description (DD) method, Fukuda and
Prodon (1995), is used to calculate approximate explicit
solutions to mpLPs by iteratively constructing outer- and
inner approximations of J∗(θ). Algorithm 3 also constructs
an outer approximation of J∗(θ) iteratively but for our
purpose, in contrast to Jones and Morari (2010), no inner
approximation needs to be constructed.

Algorithm 3 Check if the current region Θi
k is εr-optimal

while iteratively constructing an underestimator of J∗.

1: J(θ)← 0
2: for n < Nmax do
3: θ̄ ← argmax

θ∈Θi
k

J ik(θ)− (1 + εr)J(θ)

4: if J ik(θ̄)− (1 + εr)J(θ̄) ≤ 0 then
5: return true
6: else
7: Solve the QP obtained by setting θ = θ̄ in (1)
8: if J ik(θ̄)− (1 + εr)J

∗(θ̄) > 0 then
9: return false

10: Compute the tangent plane Tn(θ) of J∗(θ) at θ = θ̄
11: J(θ)← max{J(θ), Tn(θ)}
12: return false

The algorithm adds a tangent plane of J∗(θ) at the
parameter θ̄ to J(θ), where θ̄ is the parameter that results
in the largest difference between J ik(θ) and J∗(θ) on Θi

k.
The constructed underestimator J will be a PWA function.

Remark 14. In Algorithm 3, J is assumed to be positive,
making the relative error well-defined and 0 a universal
underestimator. If a non-trivial underestimator for J∗ is
available one can replace 0 in the initialization of J at
Line 1 with this underestimator. For example, such an
underestimator is at hand from a previous execution of
Algorithm 3 if the region failed the suboptimality test.

At iteration n in Algorithm 3, the optimization problem
at Line 3 takes the form

max
θ∈Θi

k

J ik(θ)− (1 + εr) max{0, T1(θ), ..., Tn(θ)} (10)

Which, with an epigraph formulation, can be cast as

maximize
θ∈Θi

k
,t≥0

J ik(θ)− (1 + εr)t

subject to t ≥ Tj(θ), j ∈ 1, ..., n.
(11)

Since Tj(θ) are affine functions in θ, (11) is an indefinte QP
when Θi

k is a polyhedron and J ik(θ) is a quadratic function.

Remark 15. The higher Nmax is chosen, the better J
approximates J∗, resulting in a less conservative result.
However, this comes at a computational cost since (11) has
to be solved in every iteration of Algorithm 3. Since the
only difference in (11) between two iterations of Algorithm
3 is the addition of a single affine constraint, warm-starting
is important for the efficiency of the algorithm.

4. EXAMPLES

To illustrate the use of the proposed methods, both the
direct method and the relaxation method were tested on
an mpQP with n = 5, m = 10 and p = 8 originating
from the control of an inverted pendulum, for details about
the example see Cimini and Bemporad (2019). The worst-
case iteration bounds obtained by the methods presented
in this paper for given suboptimality thresholds and dual
slacks were compared with results from Monte-Carlo (MC)
simulations, i.e., applying Algorithm 1 to an extensive
amount of problems defined by samples drawn from Θ0.
The algorithm was started with the iterate in the origin
and with an empty working set. For the inverted pendulum
example 108 samples were used for the MC simulations.
CPLEX was used to solve the indefinite QPs needed to be
solved in the direct method and MPT 3.0, Herceg et al.
(2013), was used to calculate the explicit solution.

4.1 Relaxing KKT-conditions

The certification algorithm, Arnström and Axehill (2019),
with the relaxation method described in Section 3.1 used
for early termination was tested for different dual slacks ελ.
The number of iterations Nmax

iter performed by Algorithm
1 to satisfy the KKT-conditions, relaxed with different
dual slacks ελ, is shown in Table 1. Note that ελ = 0
introduces no dual slack and hence leads to Algorithm 1
computing the optimal solution. The maximum absolute
error bound max ε̄k, obtained by taking the maximum
of (4) over all regions in the final partition given by
the certification algorithm, is also shown. In Section 4.2,
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these bounds are compared to the bounds obtained by
the direct method. As expected, increasing the dual slack,
i.e., further relaxing the optimality conditions, leads to
a decrease in the number of iterations performed by the
active-set algorithm. Table 1 also shows that increasing the
dual slack increases the bound on the absolute error max ε̄k
which is reasonable since terminated iterates should be
further away from optimality because Algorithm 1 is a
descent method and fewer iterations are performed.

Table 1. Maximum number of iterations Nmax
iter

required by Algorithm 1 to satisfy the relaxed
KKT-conditions with dual slack ελ.

ελ 0 1 5 10 15 20

Nmax
iter 26 25 23 21 17 14

max ε̄k 0 1.3 35 140 315 561

4.2 Direct method

The certification algorithm, Arnström and Axehill (2019),
with the direct method introduced in Section 3.2 used
for early termination was also applied to the problem for
five different relative errors εr and five different absolute
errors ε. To be able to compare the direct method with
the relaxation method, the absolute errors were chosen
as the bounds max ε̄k obtained when using the relaxation
method, found in Table 1. The worst-case number of itera-
tions Nmax

iter required by Algorithm 1 to compute a solution
with an error below the specified relative suboptimality εr
and absolute suboptimality ε is shown in Table 2, giving
the explicit relationship between admissible suboptimality
and required iterations for the given problem.

Table 2. Nmax
iter number of iterations needed by

Algorithm 1 to attain an error below ε and εr.

εr 0 0.0001 0.001 0.01 0.1

Nmax
iter 26 25 22 20 14

ε 0 1.3 35 140 561

Nmax
iter 26 23 17 14 14

In Figure 1, the maximum relative error observed in MC
simulations are compared with the bounds computed by
the direct method. As expected, the number of iterations
required by Algorithm 1 to reach a certain level of subopti-
mality determined by the certification algorithm is always
greater than or equal to the MC simulation bounds.

The discrepancy between the result of the certification
algorithm and the MC simulations is a consequence of
that MC simulations are unable to guarantee full coverage
of the parameter space. A concrete illustration of this
weakness can be seen in Figure 1 where the conclusion
of the MC simulation would have been that 19 iterations
are needed to obtain εr ≤ 0.01 while the direct method
concludes that 20 iterations are needed. The direct method
is able to prove the existence of, and compute, a parameter
which results in a relative error which is larger than 0.01
after 19 iterations. Hence, the conclusion made by the
MC solution can be shown to be optimistic by executing
Algorithm 1 with this parameter.

Remark 16. Explicitly, a parameter proving the MC sim-
ulation to be optimistic can be found as the maximizing
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Fig. 1. Maximum relative error obtained through MC
simulations compared with bounds obtained by the
direct method.

argument of (9) when the optimal value is positive for a
region which has required 19 iterations.

MC simulations were also considered for analyzing the
absolute error. This result is shown in Figure 2 where it is
compared with the bounds given by the direct method
and by the relaxation method. The bound from (4) is
illustrated to be conservative for the considered example.
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Fig. 2. Maximum absolute error obtained through MC
simulations compared with bounds obtained by the
direct method and the relaxation method.

To further validate the direct method, another 1000
mpQPs with n = 5, m = 30, and p = 2 were randomly
generated. p was chosen small to make sure the probability
of an MC method covering most of the parameter space
was relatively high without having to pick intractably
many samples. The mpQPs had the form

H = I, f = 0, fθ ∼ N (0, 1)

A ∼ N (0, 1), b ∼ U([0, 10]), W = 0,
(12)

where the stochastic parts should be interpreted elemen-
twise, e.g., each element of fθ is drawn from N (0, 1) and
is independent of the rest of the elements. The parameter
set considered was Θ0 = {θ|− 10 ≤ θ ≤ 10}. Furthermore,
a term 1

2θ
THθθ with Hθ = 10I was added to the objective

function and fθ was redrawn if the resulting J was not
positive for all θ ∈ Θ0 and feasible x. This redraw was
done to ensure the relative error being well-defined. To
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start the algorithm, the origin was picked as the starting
iterate, which is feasible by construction in the examples,
and the starting working set was empty.

Remark 17. The Hessians H were picked as the identity
matrix for convenience but mpQPs defined by (12) also
capture generic positive-definite Hessians since such prob-
lems can be transformed into mpQPs with H = I by using
a Cholesky factorization and a change of variables.

The direct method was used with εr = 0.01 on the
randomly generated problems and the obtained iteration
bounds were compared with MC simulations using 4 · 104

samples. The results are summarized in Table 3.

Table 3. Comparison of the maximum num-
ber of iterations Nmax

cert and Nmax
MC needed by

Algorithm 1 to obtain a relative error of 1%
determined by the certification method and
by MC simulations, respectively, for 1000 ran-

domly generated mpQPs.

Nmax
cert ≥ Nmax

MC Nmax
cert = Nmax

MC Nmax
cert > Nmax

MC
100% 90.8% 9.2%

Again, the iteration bound determined by the certification
method is greater than or equal to the iteration bounds
obtained by the MC simulation for all generated mpQPs,
illustrating the validity of the method. For the 9.2% of
problems resulting in Nmax

cert > Nmax
MC , Algorithm 1 was

applied to the worst-case parameters computed by the
certification method. The outcome from solving these
additional problems proved that the results from the initial
MC simulations were optimistic, due to the parameter
space not being covered sufficiently well, rather than the
certification method being conservative.

Moreover, the iteration bounds for εr = 0.01 determined
by the certification method were compared with the iter-
ation bounds when the mpQPs were solved to optimality,
i.e., when εr = 0. The average difference was 5.29 iterations
and the maximum and minimum difference was 16 and
0 iterations, respectively. The effectiveness of terminating
Algorithm 1 early is, hence, problem dependent and the
proposed certification method introduces a novel possibil-
ity to determine this efficiency exactly for a given problem.

5. CONCLUSION

In this paper we have extended the certification method
presented in Arnström and Axehill (2019) to exactly cer-
tify the complexity of a primal active-set algorithm for
quadratic programs when it is prematurely terminated.
The certification method allows for an exact analysis of
how many iterations will be needed if the solution is
allowed to be suboptimal within a prespecified user-defined
bound. Hence, the method determines exactly how many
iterations can be saved when the requirements on the so-
lution quality are relaxed. This allows the active-set algo-
rithm to be terminated early, which decreases the required
computational resources on-line, with guarantees on worst-
case number of iterations needed to obtain a prespecified
quality of the solution, extending the applicability of the
primal active-set algorithm in real-time applications.
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