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Abstract: First-order methods have simple structures and are of great importance to big data
problems because first-order methods are easy to implement in a distributed or parallel way.
However, in the worst cases, first-order methods often converge at a rate O(1/t), which is slow.
This paper considers a class of convex-concave bilinear saddle point problems and proposes an
accelerated first-order continuous-time algorithm. We design the accelerated algorithm by using
both increasing and decreasing damping coefficients in the saddle point dynamics. If parameters
of the proposed algorithm are proper, the algorithm owns O(1/t2) convergence without any strict
or strong convexity requirement. Finally, we apply the algorithm to numerical examples to show
the superior performance of the proposed algorithm over existing ones.

Keywords: Accelerated method, first-order algorithm, continuous-time algorithm, saddle-point
problem.

1. INTRODUCTION

Convex-concave bilinear saddle point problems are an im-
portant model in optimization (see Ruszczynski (2006)).
Many constrained optimization problems in applied math-
ematics and engineering, such as signal/image processing
(see Beck and Teboulle (2009)), machine learning (see
Boyd et al. (2011)), and distributed optimization (see
Chen and Kai (2018); Kia et al. (2015); Wang and Elia
(2010); Yi et al. (2015); Zeng et al. (2017)), can be cast
as convex-concave bilinear saddle point problems. Due
to the wide application of convex-concave bilinear saddle
point problems, the design of efficient algorithms for such
problems is of great importance.

Motivated by big data and distributed computation prob-
lems, first-order methods have received tremendous atten-
tion for a wide class of constrained optimization problems
due to the fact that first-order algorithms only require
gradient information and may drastically simplify the com-
putation of the optimization problem. In particular, first-
order methods have been applied to distributed optimiza-
tion problems such as optimal consensus problems (see
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Kia et al. (2015); Yi et al. (2015)), resource allocation (see
Yi et al. (2016)), and extended monotropic optimization
problems (see Zeng et al. (2018)).

Rates of convergence are of great importance for opti-
mization algorithms. It is well known that when the cost
functions are convex, the rate of convergence of first-order
primal-dual optimization algorithms is O(1/t) under the
worst choice of cost functions. The Nesterov accelerated
method has been developed in Nesterov (1983) by using a
vanishing damping coefficient to have O(1/t2) convergence
rate, which was proved to be optimal in some sense (see
Nemirovskii and Yudin (1983)). However, most existing
accelerated results (see Attouch et al. (2015); Siegel (2019);
Su et al. (2015); Wibisono et al. (2016)) focus on primal-
based methods and can not be applied to the saddle point
problems. In recent years, Beck and Teboulle (2009) has
developed accelerated discrete-time primal-dual methods,
and Xu (2017) has proposed accelerated linearized aug-
mented Lagrangian method and an accelerated alternating
direction method of multipliers for solving structured lin-
early constrained convex programming. However, results
in Beck and Teboulle (2009) and Xu (2017) are based on
the assumption that cost functions are simple with easy
minimization operations or proximal mappings.

Recently, continuous-time optimization algorithm have
been revisited via the Lyapunov approach for both ac-
celerated algorithms (see Attouch et al. (2015); Siegel
(2019); Su et al. (2015); Wibisono et al. (2016)) and
distributed algorithms (see Kia et al. (2015); Wang and
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Elia (2010); Yi et al. (2015); Zeng et al. (2017); Zhou et al.
(2019)). On one hand, ordinary differential equations often
exhibit similar convergence properties to their discrete-
time counterparts without tuning the step sizes, which is
typically a hard task. On the other hand, continuous-time
algorithms may serve as a tool for algorithm design and
analysis with explainable intuitions and ideas (see Bhaya
and Kaszkurewicz (2000)).

Focusing on convex-concave bilinear saddle point problem-
s, this paper aims to answer two questions:

(1) Can we propose an accelerated first-order continuous-
time algorithm that has a faster convergence rate
than O(1/t)?

(2) If we have an accelerated first-order continuous-time
algorithm, what is the best choice for parameters to
obtain an optimal convergence rate?

The contributions of this paper can be summarized as
follows:

• This paper extends the Nesterov accelerated method
Nesterov (1983) to the primal-dual method for
convex-concave bilinear saddle point problems. To
our best knowledge, this is the first accelerated first-
order continuous-time method for convex-concave bi-
linear saddle point problems.
• By using the Lyapunov approach, we give rigorous

proofs that the proposed algorithm can converge
at an optimal rate of O(1/t2) by choosing proper
parameters. We have shown that α > 3 is a better
choice for the parameter in the proposed algorithm
and the critical value for the parameter is α = 3. This
result is consistent to the existing results in primal-
based accelerated methods (see Attouch et al. (2015);
Su et al. (2015); Wibisono et al. (2016)).

The paper is organized as follows. Section 2 gives the
problem formulation and proposes an accelerated primal-
dual continuous-time algorithm. Section 3 proves the con-
vergence of the proposed algorithm and shows the O(1/t2)
rate of convergence under some conditions. Then Section
4 shows numerical examples to verify the efficacy of the
proposed algorithm. Finally, Section 5 gives concluding
remarks.

2. PROBLEM FORMULATION AND ALGORITHM

In this section, we review relevant notations, present the
problem formulation, and design the algorithm.

2.1 Notation

R denotes the set of real numbers, R+ denotes the set
of nonnegative real numbers, Rn denotes the set of n-
dimensional real column vectors, Rn×m denotes the set of
n-by-m real matrices, In denotes the n×n identity matrix,
and (·)T denotes transpose, respectively. Furthermore, ‖·‖
denotes the Euclidean norm, log(·) denotes the natural
logarithm function, Bε(x), x ∈ Rn, ε > 0, is the open ball
centered at x with radius ε, dist(p,M) is the distance from

a point p to the setM, (that is, dist(p,M) , infx∈M ‖p−
x‖), x(t) → M as t → ∞ denotes that x(t) approaches
the set M (that is, for each ε > 0 there exists T > 0 such

that dist(x(t),M) < ε for all t > T ). Let f : R+ → R+ be
a continuous function. f(t) = O(1/tn) denotes that there
exists a constant C > 0 such that f(t) ≤ Ct−n for all
t ≥ 0.

2.2 Problem Formulation

Consider a convex-concave bilinear saddle point problem
given by

min
x∈Rq

max
y∈Rm

L(x, y), (1)

where

L(x, y) , f(x) + y>(Ax− b)− g(y), (2)

A ∈ Rm×q, b ∈ Rm, and f : Rq → R and g : Rm → R
are convex and twice differentiable functions. A point
(x∗, y∗) ∈ Rq ×Rm is said to be a saddle point of L(·, ·) if
L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗).

Remark 1. Convex-concave bilinear saddle point problems
are a general model that has many applications. For ex-
ample, one special case of convex-concave bilinear saddle
point problems is the Lagrangian function of convex op-
timization problems with affine constraints. Applications
of convex-concave bilinear saddle point problems include
imaging and signal processing (see Beck and Teboulle
(2009); Chambolle and Pock (2011)) and machine learning
(see Boyd et al. (2011)). ♦

Throughout this paper, we have the following assumption.

Assumption 1. Problem (1) has at least one saddle point.

One existing algorithm for problem (1) is the first-order
method given by the saddle point dynamics

ẋ(t) =−∇x(t)L(x(t), y(t)), x(0) = x0, (3a)

ẏ(t) =∇y(t)L(x(t), y(t)), y(0) = y0. (3b)

It is well-known that the rate of convergence for the
algorithm is O(1/t). In the remaining of this paper, we will
propose a continuous-time algorithm with an improved
rate of convergence O(1/t2).

2.3 Accelerated Algorithm

We propose an accelerated first-order continuous-time
method for problem (1):

ẍ(t) =− α

t
ẋ(t)−∇x(t)L(x(t), y(t) +

1

2
tẏ(t)), (4a)

ÿ(t) =− α

t
ẏ(t) +∇y(t)L(x(t) +

1

2
tẋ(t), y(t)), (4b)

where t ≥ t0 > 0, α > 3, x(t0) = x0, ẋ(t0) = ẋ0,
y(t0) = y0, and ẏ(t0) = ẏ0.

For convenience, we omit time t in remaining of this paper
without causing confusions. The specific form of algorithm
(4) is

ẍ =− α

t
ẋ−∇f(x)−A>(y +

1

2
tẏ) (5a)

ÿ =− α

t
ẏ −∇g(y) +A(x+

1

2
tẋ)− b. (5b)

Note that f(·) and g(·) are twice differentiable. Functions
∇f(·) and ∇g(·) are locally Lipschitz continuous. It fol-
lows from (Haddad and Chellaboina, 2008, Theorem 2.38,
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pp. 96) that algorithm (5) has a unique trajectory. The
initial time t0 > 0 avoids the singularity of the damping
coefficient α

t at zero. Although algorithm (5) uses tẋ(t)
and tẏ(t) in the righthand side, Section 3 will show that
tẋ(t) and tẏ(t) are bounded as t → ∞. Hence, ẍ(t) and
ÿ(t) are bounded and algorithm (5) is well defined.

Remark 2. In this design, the use of derivative information
1
2 tẋ(t) and 1

2 tẏ(t) is not intuitive. However, it is important
in our design and is shown to be effective for convergence
in the analysis as demonstrated later. From the control
perspective, it may be viewed as a “derivative feedback”
design and plays a role as damping terms. From the
optimization perspective, 1

2 tẋ(t) and 1
2 tẏ(t) point to the

future moving direction of x(t) and y(t). Thus, algorithm
(5) uses the “estimated future” position x(t) + 1

2 tẋ(t) and

y(t) + 1
2 tẏ(t) in this design. ♦

3. MAIN RESULTS

In this section, we prove convergence properties of the
proposed method and show that α > 3 is the optimal
choice for the proposed algorithm.

3.1 Analysis of Algorithm (4)

In this subsection, we give rigorous analysis of the conver-
gence properties for proposed algorithm (4).

Let (x∗, y∗) ∈ Rq × Rm. It follows from the Karush-
Kuhn-Tucker (KKT) optimality condition (Theorem 3.34
of Ruszczynski (2006)) that (x∗, y∗) ∈ Rq×Rm is a solution
to problem (1) (a saddle point to function L(x, y)) if and
only if

0q =∇f(x∗) +A>y∗, (6a)

0m =−∇g(y∗) +Ax∗ − b. (6b)

Then the following theorem shows the well posedness and
the convergence rate of algorithm (4).

Theorem 1. Suppose Assumption 1 holds. Let (x(t), y(t))
be a trajectory of algorithm (4).

(i) The trajectory of (x(t), y(t), tẋ(t), tẏ(t)) is bounded
for t ≥ t0.

(ii) The trajectory (x(t), y(t), ẋ(t), ẏ(t)) satisfies the con-
vergence properties

L(x(t), y∗)− L(x∗, y(t)) = O(
1

t2
),

‖ẋ(t)‖ = O(
1

t
), and ‖ẏ(t)‖ = O(

1

t
).

(iii) For any initial condition, there exists m0 > 0 such
that the following integral inequalities are satisfied:∫ ∞

t0

tẋ2(t) ≤ 1

α− 3
m0, (7)∫ ∞

t0

tẏ2(t)dt ≤ 1

α− 3
m0. (8)

Remark 3. In algorithm (4), α is greater than 3. By a
similar line of attack as Appendix A (proof of Theorem
1), one can easily verify that L(x(t), y∗) − L(x∗, y(t)) =
O( 1

t2 ) for α = 3. However, if α = 3, the trajecto-
ry of (x(t), y(t), tẋ(t), tẏ(t)) may not be bounded since
V (t, x, y, ẋ, ẏ) defined in (A.1) is not positive definite with
respect to (x, y, tẋ, tẏ) for any t ≥ t0. Hence, α > 3 is a
better choice than α = 3. ♦

3.2 Analysis of The Case 0 < α < 3

In this subsection, we discuss the case that 0 < α < 3.
Suppose 0 < α < 3. We propose a modified algorithm

ẍ(t) =− α

t
ẋ(t)−∇x(t)L(x(t), y(t) +

3

2α
tẏ(t)), (9a)

ÿ(t) =− α

t
ẏ(t) +∇y(t)L(x(t) +

3

2α
tẋ(t), y(t)), (9b)

where t ≥ t0 > 0, 0 < α < 3, x(t0) = x0, ẋ(t0) = ẋ0,
y(t0) = y0, and ẏ(t0) = ẏ0. The specific form of algorithm
(9) is

ẍ =− α

t
ẋ−∇f(x)−A>(y +

3

2α
tẏ), (10a)

ÿ =− α

t
ẏ −∇g(y) +A(x+

3

2α
tẋ)− b. (10b)

Remark 4. In algorithm (9), the gain 3
2α of tẋ(t) and

tẏ(t) is different from that in algorithm (4). In fact,
this modification is needed for convergence analysis of
algorithm (9). ♦

Then the following theorem, whose proof is given in Ap-
pendix B, shows that the rate of convergence for algorithm
(9) is O(t−

2α
3 ).

Theorem 2. Suppose Assumption 1 holds. Let (x(t), y(t))
be a trajectory of algorithm (9). Then

(i) L(x(t), y∗)− L(x∗, y(t)) = O( 1

t
2α
3

).

(ii) ‖ẋ(t)‖ = O( 1

t
α
3

), and ‖ẏ(t)‖ = O( 1

t
α
3

).

Remark 5. Theorem 2 shows that algorithm (9) converges
at a rate of O( 1

t
2α
3

) for 0 < α < 3. Combining the results

of Theorem 1, α > 3 is the optimal choice. ♦

3.3 Discussion of Results

Results in subsections 3.1 and 3.2 show that algorithm (4)
(α > 3) is superior to algorithm (9) (0 < α < 3) in the
following aspects.

(1) The rate of convergence for algorithm (4) is O( 1
t2 ),

which is faster than that of algorithm (9).
(2) Since the trajectory of (x(t), y(t), tẋ(t), tẏ(t)) gener-

ated by algorithm (4) is bounded, algorithm (4) is
well-defined with bounded ẍ(t) and ÿ(t). However,
ẍ(t) and ÿ(t) of algorithm (9) may be unbounded as
t→∞.

The main challenges of proving Theorems 1 and 2 are
finding appropriate Lyapunov function candidates for pro-
posed algorithms. The design of Lyapunov function candi-
dates in this paper is partially inspired by the results for
primal-based accelerated algorithms (see Attouch et al.
(2015); Su et al. (2015)). However, we have extended
the design of algorithm and the analysis to primal-dual
cases, which are a more general formulation. The obtained
convergence rates (O( 1

t2 ) for the case α > 3 and O( 1

t
2α
3

)

for the case 0 < α < 3) for convex-concave bilinear
saddle point problems are consistent to that of primal-
based accelerated algorithms for unconstrained convex op-
timization problems (see Attouch et al. (2015); Su et al.
(2015)).

One should note that the accelerated performance of the
proposed method does not hold for any cost function.
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Fig. 1. Trajectories of algorithm (4) and algorithm in (11)

Suppose f and g are both strongly convex or quadratic
convex functions. The primal-dual saddle point dynamics
has a linear rate, which is faster than O( 1

t2 ) of the proposed
method.

4. NUMERICAL SIMULATION

In this section, we conduct two numerical examples to
show the efficacy of proposed algorithms.

Example 1. Consider an optimization problem given by

minx∈R2 f̂(x) s.t. Ax = b, where A = [1, 1], f̂(x) =

20 log
[
exp([1, 2]x − 1)/20) + exp([3, 1]x − 1)/20) +

exp([1, 1]x− 1)/20)
]
, and b = 0.

The augmented Lagrangian function of the optimization
problem is L̂(x, y) = f(x)+y(Ax−b)+ 1

2‖Ax−b‖
2. Recall

the KKT optimality condition, one can seek a saddle point
of L̂ to solve the optimization problem using algorithm (4)

by replacing L in (4) with function L̂.

Then we compare algorithm (4) with a standard primal-
dual gradient algorithm given by

ẋ(t) =−∇x(t)L̂(x(t), y(t)), (11a)

ẏ(t) =∇y(t)L̂(x(t), y(t)), (11b)

Fig. 1 plots the simulation results and shows that the
proposed algorithm has a faster convergence performance
than the standard algorithm (11).

Example 2. Consider problem saddle point problem (1),
where x = [x1, x2]> ∈ R2, y = [y1, y2]> ∈ R2, f(x) =

2
3 log(1+x21)+ 1

3 log(1+x22), g(y) = (y1−y2)2, A =

[
1, 1
1, 1

]
,

and b = [0, 0]>. The simulation results of algorithms (4)
(α = 4 > 3), algorithm (9) (α = 2 < 3), and algorithm (3)
(classic saddle point dynamics) are shown in Fig. 2. It is
clear that accelerated algorithm (4) converges at a faster
rate and α > 3 is a better choice for the algorithm.

5. CONCLUSIONS

This paper has focused on designing an accelerated first-
order algorithm for a class of convex-concave bilinear
saddle point problems. By using increasing and decreas-
ing damping coefficients, this paper has developed a
continuous-time algorithm having O(1/t2) convergence by

0 2 4 6 8 10 12 14 16 18 20

Time
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-40

-30

-20

-10

0
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20
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40

50

accelerated algorithm with =2
accelerated algorithm with =4
classic saddle point dyanmics

Fig. 2. Trajectories of accelerated algorithm and classic
saddle point dynamics

choosing proper parameters. For different choices of pa-
rameters, the paper has proved the correctness and conver-
gence of the algorithm based on the Lyapunov approach.
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Appendix A. PROOF OF THEOREM 1

Define function

V (t, x, y, ẋ, ẏ) = V1(t, x, y) + V2(t, x, ẋ) + V3(t, y, ẏ)(A.1)

such that

V1 = t2[L(x, y∗)− L(x∗, y)], (A.2)

V2 = 2‖x+
1

2
tẋ− x∗‖2 + (α− 3)‖x− x∗‖2, (A.3)

V3 = 2‖y +
1

2
tẏ − y∗‖2 + (α− 3)‖y − y∗‖2, (A.4)

where (x∗, y∗) satisfies the KKT optimality condition (6).
By the property of saddle points of L(·, ·), L(x∗, y) ≤
L(x, y∗). Hence, function V is positive definite with respect
to (x, y, tẋ, tẏ) for all t ≥ t0. Then we prove this theorem
in the following steps.

Step (i): The derivatives of Vi’s, i = 1, 2, 3, satisfy that

V̇1 = 2t[f(x)− f(x∗) + y∗>A(x− x∗)]
+2t[g(y)− g(y∗)− (Ax∗ − b)>(y − y∗)]
+t2[∇f(x) +A>y∗]>ẋ

+t2[∇g(y)−Ax∗ + b]>ẏ, (A.5)

V̇2 = 2(x+
1

2
tẋ− x∗)>(3ẋ+ tẍ)

+2(α− 3)(x− x∗)>ẋ, (A.6)

V̇3 = 2(y +
1

2
tẏ − y∗)>(3ẏ + tÿ)

+2(α− 3)(y − y∗)>ẏ. (A.7)

By plugging (4) in (A.6) and (A.7), we have

V̇2 =−2t(x− x∗)>(∇f(x) +A>y)− t2(x− x∗)>A>ẏ
−(α− 3)t‖ẋ‖2 − t2ẋ>(∇f(x) +A>y)

−1

2
t3ẋ>A>ẏ, (A.8)

V̇3 = 2t(y − y∗)>(−∇g(y) +Ax− b) + t2(y − y∗)>Aẋ
−(α− 3)t‖ẏ‖2 + t2ẏ>(−∇g(y) +Ax− b)

+
1

2
t3ẋ>A>ẏ. (A.9)

Equations (A.8) and (A.9) can be equivalently written as

V̇2 =−2t(x− x∗)>(∇f(x) +A>y∗)− t2(x− x∗)>A>ẏ
−2t(x− x∗)>A>(y − y∗)− (α− 3)t‖ẋ‖2

−t2ẋ>(∇f(x) +A>y∗)− t2ẋ>A>(y − y∗)

−1

2
t3ẋ>A>ẏ, (A.10)

V̇3 = 2t(y − y∗)>(−∇g(y) +Ax∗ − b)
+2t(y − y∗)>A(x− x∗) + t2(y − y∗)>Aẋ
−(α− 3)t‖ẏ‖2 + t2ẏ>(−∇g(y) +Ax∗ − b)

+t2ẏ>A(x− x∗) +
1

2
t3ẋ>A>ẏ. (A.11)

By summing (A.10)-(A.11) and simplifying the terms, we
have

V̇2 + V̇3 =N + t2ẏ>(−∇g(y) +Ax∗ − b)
−t2ẋ>(∇f(x) +A>y∗)

−2t(x− x∗)>(∇f(x) +A>y∗)

−2t(y − y∗)>(∇g(y)−Ax∗ + b), (A.12)

N = −(α− 3)t‖ẋ‖2 − (α− 3)t‖ẏ‖2. (A.13)

It follows from (A.5) and (A.12) that

V̇ = 2t[f(x)− f(x∗)− (x− x∗)>∇f(x)]

2t[g(y)− g(y∗)− (y − y∗)>∇g(y)] +N. (A.14)

Because f and g are convex, it is clear that f(x)−f(x∗)−
(x−x∗)>∇f(x) ≤ 0 and g(y)−g(y∗)−(y−y∗)>∇g(y) ≤ 0.
It follows from (A.13) and (A.14) that

V̇ ≤ −(α− 3)t‖ẋ‖2 − (α− 3)t‖ẏ‖2 ≤ 0. (A.15)

Recall that function V is radially unbounded and positive
definite with respect to (x, y, tẋ, tẏ) for all t ≥ t0. The
trajectory of (x(t), y(t), tẋ(t), tẏ(t)) is bounded for t ≥ t0.
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Step (ii): Define

m0 , V (t0, x(t0), y(t0), ẋ(t0), ẏ(t0)). (A.16)

Since V̇ ≤ 0, then V (t, x(t), y(t), ẋ(t), ẏ(t)) ≤ m0. Re-
call that V1(t, x(t), y(t)) ≤ V (t, x(t), y(t), ẋ(t), ẏ(t)). It is
straightforward that L(x(t), y∗) − L(x∗, y(t)) = O( 1

t2 ). In
addition, since we have proved the boundedness of tẋ(t)
and tẏ(t), it is clear that ‖ẋ(t)‖ = O( 1

t ), and ‖ẏ(t)‖ =

O( 1
t ).

Step (iii): Clearly, V (t, x(t), y(t), ẋ(t), ẏ(t)) − m0 =∫ t
t0
V̇ (s, x(s), y(s), ẋ(s), ẏ(s))ds. Because V (·) ≥ 0, it fol-

lows that −
∫ t
t0
V̇ (s, x(s), y(s), ẋ(s), ẏ(s))ds ≤ m0. By

(A.15), we have (7) and (8), where m0 is defined in (A.16).

Appendix B. PROOF OF THEOREM 2

(i) Let (x∗, y∗) ∈ Rq × Rm satisfy the KKT optimality
condition (6). Define the function

V (t, x, y, ẋ, ẏ) = V1(t, x, y) + V2(t, x, ẋ) + V3(t, y, ẏ)(B.1)

where V1 = t
2α
3 [L(x, y∗) − L(x∗, y)], V2 = 1

2

∥∥∥ 2α
3 t

α
3−1(x −

x∗)+t
α
3 ẋ
∥∥∥2+ (3−α)α

9 t
2α
3 −2‖x−x∗‖2, and V3 = 1

2

∥∥∥ 2α
3 t

α
3−1(y−

y∗) + t
α
3 ẏ
∥∥∥2 + (3−α)α

9 t
2α
3 −2‖y − y∗‖2.

Derivatives of Vi’s, i = 1, 2, 3, along the trajectory of
algorithm (9) satisfy that

V̇1 =
2α

3
t
2α
3 −1[f(x)− f(x∗) + y∗>A(x− x∗)]

+
2α

3
t
2α
3 −1[g(y)− g(y∗)− (Ax∗ − b)>(y − y∗)]

+t
2α
3 [∇f(x) +A>y∗]>ẋ

+t
2α
3 [∇g(y)−Ax∗ + b]>ẏ. (B.2)

V̇2 =
(2α

3
t
α
3−1(x− x∗) + t

α
3 ẋ
)>
×
(
t
α
3 ẍ+ αt

α
3−1ẋ

+
2α(α− 3)

9
t
α
3−2(x− x∗)

)
−2α(α− 3)2

27
t
2α−9

3 ‖x− x∗‖2

+
2(3− α)α

9
t
2α
3 −2(x− x∗)Tẋ, (B.3)

V̇3 =
(2α

3
t
α
3−1(y − y∗) + t

α
3 ẏ
)>
×
(
t
α
3 ÿ + αt

α
3−1ẏ

+
2α(α− 3)

9
t
α
3−2(y − y∗)

)
−2α(α− 3)2

27
t
2α−9

3 ‖y − y∗‖2

+
2(3− α)α

9
t
2α
3 −2(y − y∗)Tẏ. (B.4)

Plugging (6) and (9) in (B.3) and (B.4), we have

V̇2 =
2α(α2 − 9)

27
t
2α
3 −3(x− x∗)2

−2α

3
t
2α
3 −1(x− x∗)>(∇f(x)−∇f(x∗))

−2α

3
t
2α
3 −1(x− x∗)>A>(y − y∗)

−t 2α
3 (x− x∗)>A>ẏ − t 2α

3 (∇f(x)−∇f(x∗))>ẋ

−t 2α
3 ẋ>A>(y − y∗)− 3

2α
t
2α
3 +1ẋ>A>ẏ, (B.5)

V̇3 =
2α(α2 − 9)

27
t
2α
3 −3(y − y∗)2

−2α

3
t
2α
3 −1(y − y∗)>(∇g(y)−∇g(y∗))

+
2α

3
t
2α
3 −1(y − y∗)>A(x− x∗) + t

2α
3 (y − y∗)>Aẋ

−t 2α
3 (∇g(y)−∇g(y∗))>ẏ

+t
2α
3 ẏ>A(x− x∗) +

3

2α
t
2α
3 +1ẏ>Aẋ. (B.6)

Summing (B.2), (B.5), and (B.6) and simplifying the
items, we have

V̇ ≤ 2α

3
t
2α
3 −1[f(x)− f(x∗)− (x− x∗)>∇f(x)]

+
2α

3
t
2α
3 −1[g(y)− g(y∗)− (y − y∗)>∇g(y)]

+
2

27
α(α2 − 9)t

2α
3 −3[(x− x∗)2 + (y − y∗)2].

Recall that f and g are convex functions. We have
f(x) − f(x∗) − (x − x∗)>∇f(x) ≤ 0 and g(y) −
g(y∗) − (y − y∗)>∇g(y) ≤ 0. Since 0 < α < 3,

V̇ ≤ 2
27α(α2 − 9)t

2α
3 −3[(x − x∗)2 + (y − y∗)2] ≤ 0 and

V (t, x(t), y(t), ẋ(t), ẏ(t)) ≤ V (t0, x0, y0, ẋ0, ẏ0).

Define m0 = V (t0, x0, y0, ẋ0, ẏ0). Because

0 ≤ V1(t, x(t), y(t)) ≤ V (t, x(t), y(t), ẋ(t), ẏ(t)) ≤ m0,

it follows that

L(x(t), y∗)−L(x∗, y(t)) = V1(t, x(t), y(t))t−
2α
3 ≤ m0t

− 2α
3 .

(ii) By rearranging terms in V2 and V3, we rewrite func-
tions V2 and V3 as

V2 =
α2 + 3α

9
t
2α
3 −2‖x− x∗‖2 +

1

2
t
2α
3 ‖ẋ‖2

+
2α

3
t
2α
3 −1(x− x∗)Tẋ

=
∥∥∥√α2 + 3α

3
t
α
3−1(x− x∗) +

√
α

α+ 3
t
α
3 ẋ
∥∥∥2

+
3− α

2(α+ 3)
t
2α
3 ‖ẋ‖2.

It follows that

‖ẋ‖2 ≤ 2(α+ 3)

3− α
1

t
2α
3

V2(t, x, ẋ)

≤ 2(α+ 3)

3− α
1

t
2α
3

V (t0, x0, y0, ẋ0, ẏ0).

Similarly, ‖ẏ‖2 ≤ 2(α+3)
3−α

1

t
2α
3
V (t0, x0, y0, ẋ0, ẏ0).
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