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Abstract: This paper investigates the sampled-data control of continuous-time Takagi-Sugeno
(T-S) fuzzy systems. The closed-loop dynamics is rewritten as a T-S system with input time-
varying delays. In this context, asynchronous membership functions appears in the closed-loop
dynamics. Thus, to reduce the conservatism of design conditions involving mismatch membership
functions, a dedicated relaxation scheme is proposed. Then, from a convenient Lyapunov-
Krasovskii function and the application of the Finsler’s Lemma, new LMI-based conditions are
proposed for the design of sampled-data Parallel-Distributed-Compensation (PDC) controllers.
An example is provided to illustrate the effectiveness of the proposed design methodology in
simulation, as well as to highlight their conservatism improvement regarding to previous related
results from the literature.

Keywords: Sampled-data controllers, Takagi-Sugeno models, Lyapunov Krasowskii Functionals.

1. INTRODUCTION

During the last decades, sampled-data control approaches
emerged as a promising research topic in control theory.
It consists in the investigation of the overall closed-loop
stability of continuous-time plants driven by sampled-
data controllers, see e.g. (Fridman et al., 2004; Hetel
et al., 2017). In this context, an elegant and powerful
way to design such controllers consists is rewriting the
closed-loop dynamics as a continuous-time system with
input time-varying delay, also known as a time-delay
approach for the stabilization of sampled-data systems
(Fridman et al., 2004). If many efforts have been done
for the stabilization of linear dynamical systems from
sampled-data measurements, most of real applications
exhibit nonlinear dynamics. Among the nonlinear control
theory, Takagi-Sugeno (T-S) fuzzy models (Takagi and
Sugeno, 1985) are nowadays known convenient to provide a
polytopic representation of nonlinear systems as weighted
sums of linear subsystems.

A vast literature is available for various T-S model-based
control problems, for instance dealing with continuous-
time controller design, see e.g. (Guerra et al., 2012; Cherifi
et al., 2018, 2019), discrete-time ones, see e.g. (Xie et al.,
2017; Lopes et al., 2020b), T-S systems with time-delays,
see e.g. (Li and Liu, 2009; Bourahala et al., 2017), or also
sampled-data control, see e.g. (Yoneyama, 2010; Zhang
and Han, 2011; Cheng et al., 2017). Indeed, thanks to
their convex polytopic structures, stability conditions and
controller design conditions for T-S systems are usually
studied via Lyapunov approaches and solved in the Linear

Matrix Inequality (LMI) framework. Nevertheless, these
LMI-based results provide only sufficient conditions and so
suffer from conservatism, which reduction is an important
and common challenge for the T-S community, see e.g.
(Sala, 2009) and references therein.

When dealing with sampled-data control, a convenient
way to check the conservatism of the design conditions
is to search for the maximal allowable sampling period η̄,
with which the closed-loop dynamics is stabilized. In this
context, successive conservatism improvements have been
obtained. For instance, a Lyapunov-Krasovskii function
(LKF) and relaxation techniques based on the Leibniz-
Newton formula and free-weighting matrix has been con-
sidered in (Yoneyama, 2010). Then, since the delayed
membership functions involved in the controller part are
mismatching the ones involved in the continuous-time
plant to be controlled, the upper bounds of the asyn-
chronous errors of the membership functions has been in-
troduced in the design conditions (Zhang and Han, 2011).
In (Zhu et al., 2012), an enlargement scheme has been
introduced in the stabilization criteria. Furthermore, the
variation ranges of membership functions within variable
sampling intervals has been considered in (Zhu et al.,
2013). More recently, a structured vertex separator has
been used to reduce the number of LMIs constraints
(Cheng et al., 2017).

This paper follow the same objective as the above men-
tioned ones, i.e. conservatism improvement for the de-
sign of sampled-data controllers for T-S systems. In this
context, new LMI-based conditions are proposed from
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the choice of a convenient augmented LKF candidate,
extensions of Jensen’s inequalities, and by applying the
Finsler’s Lemma. The effectiveness of the proposed result
will be illustrated and compared to related previous stud-
ies through the benchmark of the inverted pendulum on a
cart.

Notations. Stars * in symmetric matrices denote block
transpose quantities. We denote the set of integers Ir =
{1, ..., r}. For any square matrixM ,H(M) =M+MT . I is
an identity matrix with appropriate dimension. For vectors

v1, v2,..., vn, col{v1, v2, ..., vn} =
[
vT1 vT2 . . . vTn

]T
.

2. PRELIMINARIES

Let us consider a continuous-time T-S system given by:

ẋ(t) =
r∑

i=1

αi(z(t)) (Aix(t) +Biu(t)) (1)

where z(t) = [ z1(t) ... zp(t) ]∈ R
p is a known vector of

premise variables which only depends (for control purpose)
on the entries of the state vector x(t) ∈ R

n, u(t) ∈ R
m

is the control input vector, Ai ∈ R
n×n, Bi ∈ R

n×m are
known constant matrices describing the dynamics of each
polytope and αi(z(t)) ≥ 0 are the membership functions
satisfying the convex properties

∑r

i=1 αi(z(t)) = 1.

In this paper, we consider the stabilization of T-S systems
(1) from the following sampled-data PDC control law:

u(t) =

r∑

i=1

αi(z(tk))KiX
−1x(tk) (2)

where Ki ∈ R
m×n and X−1 ∈ R

n×n, for i ∈ Ir, are
the controller gain matrices to be designed, a zero holder
is employed ∀t ∈ [tk, tk+1) to maintain x(tk) from the
aperiodic sampling instants tk ≥ 0 such that:

tk+1 − tk ≤ ηk ≤ η̄ (3)

where the inner sampling period ηk > 0 can be non
uniform over samples with a maximal allowable sampling
period η̄ to be estimated.

For actual t ∈ [tk, tk+1), let τ(t) = t − tk ∈ [0, ηk) with
τ̇(t) = 1, the control law (2) can be rewritten as:

u(t) =
r∑

i=1

αi(z(t−τ(t)))KiX
−1x(t−τ(t)) (4)

In the sequel, for fuzzy summations of matrices we denote
Mα =

∑r

i=1 αi(z(t))Mi, Mᾱ =
∑r

i=1 αi(z(t−τ(t)))Mi and
Mαᾱ =

∑r

i=1

∑r

j=1 αi(t)αj(z(t− τ(t)))Mij . Substituting

(4) in (1) gives the closed-loop dynamics as:

ẋ(t) = Aαx(t) +BαKᾱX
−1x(t−τ(t)) (5)

Problem statement. Provide relaxed LMI-based conditions
for the design of the gain matrices Ki and X such that the
sampled-data closed-loop dynamics (5) is asymptotically
stable.

The following lemmas will be considered for the proofs of
the main results proposed in the next section.

Lemma 1. (Xie, 1996): Let X and Y be matrices of ap-
propriate dimensions. For any matrix T > 0, the following
inequality is true:

XTY + Y TX ≤ XTTX + Y TT−1Y (6)

Lemma 2. (Tuan et al., 2001): For (i, j) ∈ I2
r , Let Γij

be matrices of appropriate dimensions. The inequality
Γαα < 0 is satisfied if the following conditions hold:

∀i ∈ Ir : Γii < 0 (7)

∀ (i, j) ∈ I2
r , i 6= j :

2

r − 1
Γii + Γij + Γji < 0 (8)

Lemma 3. (Zhang and Han, 2013): For any constant ma-
trix R ∈ R

n×n, R = RT > 0, a scalar function τ(t) with
0 < τ(t) ≤ τM and a vector function ẋ : [−τM , 0] → R

n

such that the integration concerned is well defined, let
∫ t

t−τ(t)

ẋ(s)ds = Eψ(t) (9)

where E ∈ R
n×k and ψ(t) ∈ R

k. Then the following
inequality holds for any matrix M ∈ R

n×k

−

∫ t

t−τ(t)

ẋT (s)Rẋ(s)ds ≤ ψT (t)Υ1ψ(t) (10)

where Υ1 = −ETM −MTE + τ(t)MTR−1M .

Lemma 4. (Fridman, 2014) For any matrix P = PT > 0
with appropriate dimensions, τ(t) ∈ [0, ηk) and τ̇(t) = 1,
the following inequality holds:
∫ t

t−τ(t)

xT (s)Px(s)ds ≥ η−1
k

∫ t

t−τ(t)

xT (s)P

∫ t

t−τ(t)

x(s)ds

(11)

Lemma 5. (Skelton et al., 1998) Let ξ ∈ R
n, G ∈ R

m×n

and Q = QT ∈ R
n×n such that rank(G) < n. The

following statements are equivalent.

ξTQξ < 0, ∀ξ ∈ {ξ ∈ R
n : ξ 6= 0, Gξ = 0} (12)

∃R ∈ R
n×m : Q+RG+GTRT < 0 (13)

3. MAIN RESULTS

Let us recall that the relaxation scheme expressed in
Lemma 2 cannot be directly employed in the context of
sampled-data control since the closed-loop dynamics (5)
involves a double fuzzy sum structure with asynchronous
membership functions (αᾱ). Therefore, before deriving
LMI-based conditions for the design of sampled-data PDC
controllers (2) dedicated to stabilize continuous-time T-S
fuzzy models (1), we will first propose a generic relaxation
scheme to cope with this drawback.

3.1 Asynchronous double fuzzy sums relaxation

To deal with parameterized matrix inequalities involving
double fuzzy sum structures with asynchronous member-
ship functions (αᾱ), we propose the following theorem.

Theorem 1. For (i, j) ∈ I2
r , let Λij be matrices of ap-

propriate dimensions and assume, ∀t, |α̇i(t)| ≤ φi. The
inequality Λαᾱ < 0 is satisfied if there exists diagonal
matrices Tij > 0 such that conditions (7) and (8) hold
with:

Γij =







Λij + r−1
16

Tij (∗) . . . (∗)

σ1Λ̄ij1 −Tij 0 0
.
.
. 0

. . . 0
σr−1Λ̄ijr−1 0 0 −Tij







(14)

where, ∀q ∈ Ir−1, Λ̄ijq = Λiq + Λjq − Λir − Λjr and
σq = min{1, φq η̄}.
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Proof. Using the short hand notation for memberships
functions αi = αi(z(t)) and ᾱi = αi(z(t−τ(t))) we have:

Λαᾱ =

r∑

i=1

r∑

j=1

αiᾱjΛij =

r∑

i=1

r∑

j=1

αiαj

(

Λij +

r∑

q=1

(ᾱq − αq)Λiq

)

=

r∑

i=1

r∑

j=1

αiαj

(

Λij +

r∑

q=1

ᾱq − αq

2
(Λiq + Λjq)

)

(15)

Since
∑r

q=1(ᾱq−αq) = 0 ⇔ (ᾱr−αr) = −
∑r−1

q=1(ᾱq−αq),

∀(i, j) we can write:
r∑

q=1

ᾱq − αq

2
(Λiq + Λjq) =

r−1∑

q=1

ᾱq − αq

2
Λ̄ijq (16)

with Λ̄ijq = Λiq + Λjq − Λir − Λjr.

Note that, ∀q ∈ Ir we have:

−1 ≤ αq − ᾱq ≤ 1 (17)

Moreover, by assuming ∀t, |α̇q(t)| ≤ φq and since τ(t) ∈
[0, ηk) with ηk ≤ η̄, we also have:

−φq η̄ ≤ αq − ᾱq =

∫ t

t−τ(t)

α̇q(s)ds ≤ φq η̄ (18)

Thus, from (17) and (18), we can assert that:

−1 ≤
ᾱq − αq

σq
≤ 1 with σq = min{1, φq η̄} (19)

Let us now rewrite (16) as:

r−1∑

q=1

ᾱq − αq

2
Λ̄ijq = He





1

4

[
I . . . I

]

︸ ︷︷ ︸

r−1 times I

∆αᾱ∇ij




 (20)

where:

∆αᾱ =






ᾱ1−α1

σ1

0 0

0
. . . 0

0 0 ᾱr−1−αr−1

σr−1




 and ∇ij =






σ1Λ̄ij1

...
σr−1Λ̄ijr−1






From Lemma 1, for any matrices Tij > 0, it yields:

r−1∑

q=1

ᾱq − αq

2
Λ̄ijq ≤

r − 1

16
Tij +∇T

ij∆αᾱT
−1
ij ∆αᾱ∇ij (21)

Now, let Tij > 0 be diagonal matrices, since ∆αᾱ is also di-

agonal and ∆αᾱ∆αᾱ ≤ I, ∆αᾱT
−1
ij ∆αᾱ = ∆αᾱ∆αᾱT

−1
ij ≤

T−1
ij . Thus, considering (15), (16) and (21) and applying

Lemma 2, then applying the Schur complement, we obtain
the conditions expressed in theorem 1. ✷

3.2 LMI-based sampled-data controller design

The following theorem summarizes the proposed relaxed
LMI-based sampled-data controller (2) design conditions
for T-S systems (1).

Theorem 2. : Let (i, j) ∈ I2
r and assume that there exists

the scalars φi > 0 such that ∀t, |α̇i(t)| ≤ φi. For aperiodic
sampling periods ηk ≤ η̄ (η̄ to be maximized), the T-S
fuzzy model (1) is stabilized by the sampled-data PDC
controller (2) if there exists the matrices 0 < L̄ = L̄T ∈
R

n×n, M̄j = M̄T
j ∈ R

4n×4n, N̄j = N̄T
j ∈ R

2n×2n, P̄11ij =

P̄T
11ij ∈R

n×n,P̄22ij = P̄T
22ij ∈R

n×n, P̄12ij ∈R
n×n, X ∈R

n×n,

Kj ∈R
m×n, Ȳij ∈R

4n×n, Ūij= Ū
T
ij ∈ R

3n×3n and the scalars

ε1, ε2 and ε3, such that the conditions of Theorem 1 are
satisfied with:

Λij=









Λ11
ij ∗ ∗ ∗ ∗ ∗

0 Λ22
ij ∗ ∗ ∗

0 η̄Ȳij −η̄P̄22ij ∗ ∗ ∗

0 η̄W̃j 0 −Ūij ∗ ∗

0 0 0 0 M̄0
j − Ūij ∗

0 0 0 0 0 −P̄11ij









< 0 (22)

with:
Λ11
ij =Φ̄0

Σij+IεḠij+Ḡ
T
ijI

T
ε ,

Λ22
ij =η

2
kM̃

0
j +ηk(Φ̄

1
Σj− P̃ij) +Φ̄0

Σij+IεḠij+Ḡ
T
ijI

T
ε ,

Iε=[I ε1I ε2I ε3I ]
T
, Ḡij=[AiX BiKj 0 −X ] , W̃j=[0 Wj ] ,

Φ̄1
Σj=H

(
η̄ET

1 M̄jE2−E
T
1 M̄jE1

)
−H

(
E
T
4N̄jE5

)
,

Φ̄0
Σij=η̄E

T
1 M̄jE1 +H

(
η̄ET

4N̄jE5

)
−H

(
ET Ȳij

)

+






η̄P̄11ij−P̄12j 0 0 L̄+ η̄P̄12j

0 P̄12j 0 0
0 0 −η−1

k P̄11ij 0
∗ 0 0 η̄P̄22ij




 ,

M̃0
j =

[
Ūij−M̄0

j 0

0 0

]

,M̄0
j =

[
H(M̄13j+M̄34j) M̄T

23j−M̄34j M̄T
33j

∗ 0 0
∗ 0 0

]

,

M̄j=





M̄11j M̄12j M̄13j M̄14j

∗ M̄22j M̄23j M̄24j

∗ ∗ M̄33j M̄34j

∗ ∗ ∗ M̄44j



 , P̃ij =





P̄11ij 0 0 P̄12j

0 0 0 0
0 0 0 0
∗ 0 0 P̄22ij



 ,

W̄j=

[
H(M̄14j)+M̄11j+M̄44j

M̄24j−M̄44j+M̄T
12j−M̄T

14j

M̄34j+M̄T
13j

]

,E1 =





I 0 0 0
0 I 0 0
0 0 I 0
I −I 0 0



 ,

E2 =





0 0 0 I

0 0 0 0
I 0 0 0
0 0 0 I



 ,E4 =
[
0 0 I 0
I −I 0 0

]

,E5 =
[
I 0 0 0
0 0 0 I

]

.

Proof. Let us consider the following LKF candidate:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) (23)

where:
V1(t) = x(t)TLx(t) (24)

V2(t) = (ηkτ(t)− τ2(t))ζT (t)Mᾱζ(t) (25)

V3(t) = (ηk−τ(t))ρ
T (t)Nᾱρ(t) (26)

V4(t) = (ηk−τ(t))

∫ t

t−τ(t)

χT (s)Pαᾱχ(s)ds (27)

with χ(t) = col {x(t), ẋ(t)} and:

ζ(t)=col

{

x(t), x(t−τ(t)),

∫ t

t−τ(t)

x(s)ds,

∫ t

t−τ(t)

ẋ(s)ds

}

,

ρ(t) = col

{
∫ t

t−τ(t)

x(s)ds,

∫ t

t−τ(t)

ẋ(s)ds

}

.

Assuming L = LT > 0, the whole LKF (23) is continuous
and positive at each sample time tk since we have V1(tk) >
0 and Vℓ(t

−

k ) = Vℓ(tk) = 0, for ℓ = 2, ..., 4. Hence, since the
LKF V (t) is continuous ∀t ∈ [tk, tk+1), if it can be proven
to be monotonously decreasing during this interval, then
it is positive ∀t ∈ [0,+∞) and the closed-loop dynamics
(5) is stable. That is to say if, ∀t ∈ [tk, tk+1):

V̇ (t) = V̇1(t)) + V̇2(t)) + V̇3(t)) + V̇4(t)) < 0 (28)
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To make up the stability conditions, let us consider the
following extended state vector:

ξ(t) = col

{

x(t), x(t−τ(t)),

∫ t

t−τ(t)

x(s)ds, ẋ(t)

}

(29)

The derivative of V1(t) is:

V̇1(t)=2xT (t)Lẋ(t)=ξT (t)Φ0
1ξ(t),Φ

0
1 =





0 0 0 L

0 0 0 0
0 0 0 0
L 0 0 0



 (30)

Then, for V2(t) we have:

V̇2(t) =(ηk − 2τ(t))ζT (t)Mᾱζ(t)

+ 2(ηkτ(t)− τ2(t))ζT (t)Mᾱζ̇(t)
(31)

i.e. since ζ(t) = E1ξ(t) and ζ̇(t) = E2ξ(t):

V̇2(t) =τ
2(t)ξT (t)Φ2

2ᾱξ(t)

+ τ(t)ξT (t)Φ1
2ᾱξ(t) + ξT (t)Φ0

2ᾱξ(t)
(32)

with Φ2
2ᾱ=−H

(
E
T
1MᾱE2

)
,

Φ1
2ᾱ=H

(
ηkE

T
1MᾱE2−E

T
1MᾱE1

)
and Φ0

2ᾱ=ηkE
T
1MᾱE1.

Now the derivative of V3(t) is:

V̇3(t)=−ρT (t)Nᾱρ(t)+2(ηk−τ(t))ρ
T (t)Nᾱρ̇(t) (33)

Since ρ(t) = E4ξ(t) and ρ̇(t) = E5ξ(t) we can write:

V̇3(t) = τ(t)ξT (t)Φ1
3ᾱξ(t) + ξT (t)Φ0

3ᾱξ(t) (34)

with Φ0
3ᾱ=H

(
ηkE

T
4NᾱE5

)
−ET

4NᾱE4 and Φ1
3ᾱ=−H

(
E
T
4NᾱE5

)
.

Taking the derivative of V4(t) we get:

V̇4(t)=(ηk−τ(t))χ
T (t)Pαᾱχ(t)−

∫ t

t−τ(t)

χT (s)Pαᾱχ(s)ds

(35)

Assuming Pαᾱ =
[
P11αᾱ P12ᾱ

∗ P22αᾱ

]

leads to:

V̇4(t)=(ηk−τ(t))χ
T (t)Pαᾱχ(t)−

∫ t

t−τ(t)

xT (s)P11αᾱx(s)ds

−

∫ t

t−τ(t)

ẋT (s)P22αᾱẋ(s)ds−2

∫ t

t−τ(t)

xT (s)P12ᾱẋ(s)ds

(36)
That is to say:

V̇4(t)=(ηk−τ(t))χ
T (t)Pαᾱχ(t)−

∫ t

t−τ(t)

xT (s)P11αᾱx(s)ds

−

∫ t

t−τ(t)

ẋT (s)P22αᾱẋ(s)ds−x
T (t)P12ᾱx(t)

+xT (t−τ(t))P12ᾱx(t−τ(t))
(37)

Assuming P11αᾱ > 0 and applying Lemma 4 on the first
intergal term, we have:

V̇4(t)≤(ηk−τ(t))χ
T (t)Pαᾱχ(t)

− η−1
k

∫ t

t−τ(t)

xT (s)P11αᾱ

∫ t

t−τ(t)

x(s)ds

−

∫ t

t−τ(t)

ẋT (s)P22αᾱẋ(s)ds− xT (t)P12ᾱx(t)

+ xT (t−τ(t))P12ᾱx(t−τ(t))

(38)

Assuming P22αᾱ > 0, for the second integral term, note
that: ∫ t

t−τ(t)

ẋT (s)ds =
[
I −I 0 0

]

︸ ︷︷ ︸

E

ξ(t) (39)

Hence, applying Lemma 3, for any matrix Yαᾱ we have:

V̇4(t) ≤(ηk−τ(t))χ
T (t)Pαᾱχ(t)

−η−1
k

∫ t

t−τ(t)

xT (s)P11αᾱ

∫ t

t−τ(t)

x(s)ds

+ξT (t)
(
−ETYαᾱ−Y

T
αᾱE + τ(t)Y T

αᾱP
−1
22αᾱYαᾱ

)
ξ(t)

−xT (t)P12ᾱx(t)+x
T (t−τ(t))P12ᾱx(t−τ(t))

(40)

Or, equivalently:

V̇4(t)≤τ(t)ξ
T (t)Φ1

4αᾱξ(t) + ξT (t)Φ0
4αᾱξ(t) (41)

with Φ1
4αᾱ=Y

T
αᾱP

−1
22αᾱYαᾱ−P̃αᾱ, P̃αᾱ =





P11αᾱ 0 0 P12ᾱ

0 0 0 0
0 0 0 0
∗ 0 0P22αᾱ



 ,

Φ0
4αᾱ=

−H
(
ETYαᾱ

)
+






ηkP11αᾱ−P12ᾱ 0 0 ηkP12ᾱ

0 P12ᾱ 0 0

0 0 −η−1
k

P11αᾱ 0
∗ 0 0 ηkP22αᾱ




.

So, from (30), (32), (34) and (41), the inequality (28) is
satisfied if:

P(τ(t))=τ2(t)ξT (t)Φ2
2ᾱξ(t)

+τ(t)ξT (t)(Φ1
2ᾱ+Φ1

3ᾱ+Φ1
4αᾱ)ξ(t)

+ ξT (t)(Φ0
1+Φ0

2ᾱ+Φ0
3ᾱ+Φ0

4αᾱ)ξ(t) < 0

(42)

Note that, ∀ξ(t) the polynomial P(τ(t)) = 0 is convex if:

ξT (t)Φ2
2ᾱξ(t) > 0 ⇔ Φ2

2ᾱ > 0 (43)

In that case, the inequality (42) is satisfied if:

P(0) < 0 and P(ηk) < 0 (44)

Focus first on the inequality (43) and assume:

Mᾱ=M
T
ᾱ =





M11ᾱM12ᾱM13ᾱ M14ᾱ

∗ M22ᾱM23ᾱ M24ᾱ

∗ ∗ M33ᾱ M34ᾱ

∗ ∗ ∗ M44ᾱ



 (45)

Thus, from (32) we have:

Φ2
2ᾱ=−

[
M0

ᾱ Wᾱ

∗ 0

]

(46)

with M0
ᾱ=

[
H(M13ᾱ+M34ᾱ) MT

23ᾱ−M34ᾱ MT
33ᾱ

∗ 0 0
∗ 0 0

]

,

and Wᾱ=

[
H(M14ᾱ)+M11ᾱ+M44ᾱ

M24ᾱ−M44ᾱ+MT
12ᾱ−MT

14ᾱ
M34ᾱ+MT

13ᾱ

]

.

Let Uαᾱ ∈ R
3n×3n regular and consider the null terms

WT
ᾱU

−1
αᾱWᾱ−W

T
ᾱU

−1
αᾱWᾱ = 0 andM0

ᾱ−M0
ᾱ = 0. Applying

the Schur complement we can write:
[

Uαᾱ −M0
ᾱ +M0

ᾱ Wᾱ

WT
ᾱ WT

ᾱ U−1
αᾱWᾱ

]

= 0 (47)

Thus, we can also write:

Φ2
2αᾱ=−

[
M0

ᾱ Wᾱ

WT
ᾱ 0

]

=

[

Uαᾱ −M0
ᾱ 0

0 WT
ᾱ U−1

αᾱWᾱ

]

(48)

Hence, considering now Φ2
2αᾱ in (42) as the right-hand

matrix of (48), the inequality (43) holds if:

Uαᾱ > 0 and Uαᾱ−M
0
ᾱ > 0 (49)

Now, before dealing with (44), we will introduce the closed-
loop dynamics into the stability conditions. To do so, note
that (5) is equivalent, withGαᾱ =

[
Aα BαKᾱX

−1 0 −I
]
,

to Gαᾱξ(t) = 0. Moreover, (42) can be rewritten as:

ξT (t)
(
τ2(t)Φ2

2αᾱ+τ(t)(Φ
1
Σᾱ +Φ1

4αᾱ)+Φ0
Σαᾱ

)
ξ(t)<0 (50)
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with Φ1
Σᾱ=Φ

1
2ᾱ+Φ1

3ᾱ and Φ0
Σαᾱ=

∑3
q=1Φ

0
qᾱ+Φ0

4αᾱ.

So, we can apply Lemma 5 and the inequality (50) is
satisfied if there exists R ∈ R

4n×n such that:

τ2(t)Φ2
2αᾱ+τ(t)(Φ

1
Σᾱ +Φ1

4αᾱ) +Φ0
Σαᾱ+RGαᾱ+G

T
αᾱR

T <0
(51)

Hence, (44) is satisfied if the following inequalities hold:

Φ0
Σαᾱ+RGαᾱ+G

T
αᾱR

T <0 (52)

η2kΦ
2
2αᾱ+ηk(Φ

1
Σᾱ+Φ1

4αᾱ)+Φ
0
Σαᾱ+RGαᾱ+G

T
αᾱR

T <0 (53)

Let X regular and R =
[
X−1 ε1X

−1 ε2X
−1 ε3X

−1
]T

.
To deal with (52), pre- and post-multiplying it respectively

by diag [X X X X ]
T
and its transpose, we obtain:

Λ11
αᾱ = Φ̄0

Σαᾱ+IεḠαᾱ+Ḡ
T
αᾱI

T
ε <0 (54)

Then, to deal with (53), apply first the Schur complement
on Φ1

4αᾱ and Φ2
2αᾱ written as the right-hand matrix of

(48), then pre- and post-multiplying it respectively by

diag [X X X X X ]
T
and its transpose, we obtain:

[
Λ22
αᾱ ∗ ∗

ηkYαᾱ −ηkP22αᾱ ∗

ηkW̃ᾱ 0 −Uαᾱ

]

< 0 (55)

with Λ22
αᾱ=η

2
kM̃

0
ᾱ+ηk(Φ̄

1
Σᾱ− P̃αᾱ)+Φ̄0

Σαᾱ+IεḠαᾱ+Ḡ
T
αᾱI

T
ε ,

M̃0
ᾱ =

[
Uαᾱ−M0

ᾱ 0
0 0

]

, W̃ᾱ = [0Wᾱ ] and where, in (54) and

(55), Iε = [ I ε1I ε2I ε3I ]
T
, Ḡαᾱ = [AαX BαKᾱ 0 −X ]

and all decision matrices inside Φ̄2
2αᾱ, Φ̄

1
Σᾱ, Φ̄

1
4αᾱ and Φ̄0

Σαᾱ

belong to the bijective change of variables D̄ = XTDX,
D={L,M11ᾱ,. . .,M44ᾱ,N11ᾱ,. . . ,N22ᾱ,P11αᾱ,P12ᾱ,P22αᾱ}.
Finally, concatenating (49), (54), (55), P11αᾱ > 0 and
P22αᾱ > 0 into the same parameterized LMI Λαᾱ < 0, then
applying Theorem 1, we obtain the conditions expressed
in theorem 2. ✷

Remark 1. The conditions expressed in Theorem 2 are not
strictly LMI because of the parameters ε1, ε2 and ε3.
However, as state in many previous works applying the
Finsler’s Lemma, see e.g. (Oliveira et al., 2011; Bourahala
et al., 2017; Cherifi et al., 2018, 2019), these parameters
are usually tuned offline by grid search.

4. ILLUSTRATIVE EXAMPLE

To illustrate the effectiveness of the proposed method, we
consider the benchmark of the inverted pendulum on a
cart that has been used for comparative purposes in many
previous related T-S model-based sampled-data controller
design studies (see the references shown in Table 1). A T-S
fuzzy model (1) with r = 2 is proposed in (Wang et al.,
1996) for such inverted pendulum. This model, valid for
|x1(t)|<π/2 and |x2(t)| ≤ π, is given by the polytopes:

A1 =

[
0 1
g

4l/3−aml
0

]

, A2 =

[
0 1
2g

π(4l/3−amlβ2)
0

]

,

B1 =

[
0
−a

4l/3−aml

]

, B2 =

[
0

−aβ
4l/3−amlβ2

]

, β = cos(88◦),

and the membership functions:

α1(x1(t)) =

{
1− 2

π
x1(t), if 0 ≤ x1(t) <

π
2
,

1 + 2
π
x1(t), if − π

2
< x1(t) < 0,

α2(x1(t)) = 1− α1(x1(t))

where x1(t) denotes the angle (rad) of the pendulum from
the erect position and x2(t) is the angular velocity (rad/s),

g = 9.8m/s2 is the acceleration of the gravity, m = 2kg
is the mass of the pendulum, M = 8kg is the mass of
the cart, l = 0.5m is the half length of the pendulum,
a = 1/(m + M) and the input u(t) corresponds to the
actuator force applied to the cart (in N).

The conditions of Theorem 2 has been solved with MAT-
LAB using YALMIP and SeDuMi (Lofberg, 2004). The
maximal allowable upper bound η̄ = 51ms has been
found with ε1 = 5.5, ε2 = 3, ε3 = 0.31 and assuming
σ1 = σ2 = 2η̄. The obtained controller gains are given by:

K1 = [0.2231 −0.0321]

K2 = [1.8690 9.5775]
X =

[
0.0065 −0.0186
−0.0174 0.0708

]

As shown in Table 1, the maximal allowable upper bound
η̄ obtained with the present approach outperform previous
related results by at least 21.43%. This shows the signifi-
cant convervatism improvement raised by Theorem 2.

Table 1. Comparison of maximal η̄ obtained
with related previous studies.

Method η̄ (ms)

(Yoneyama, 2010) 9
(Zhu and Wang, 2011) 13
(Zhang and Han, 2011) 16

(Zhu et al., 2012) 19
(Zhu et al., 2013) 24

(Cheng et al., 2017) 42
Theorem 2 51

Applying the designed sampled-data controller (4), Fig.
1(a) shows the closed-loop state trajectories of the inverted

pendulum from the initial condition x(0) = [π/4 0]
T
with

a fixed sampling period ηk = η̄ = 51ms. In addition, Fig.
1(b) shows the same simulation but with random aperiodic
sampling periods ηk ∈ [0, 51ms]. This demonstrate the ef-
fectiveness of the proposed sampled-data controller design
methodology for T-S fuzzy systems.

Fig. 1. Closed-loop simulations of the considered inverted
pendulum with sampled-data controller.

Remark 2. The proposed methodology for T-S systems
includes linear systems as a special case. In this special
case, an experimental validation of the proposed design
procedure on the Quanser AERO 2 DOF Helicopter test-
bed can be found in (Lopes et al., 2020a).
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5. CONCLUSION

In this paper, new LMI-based conditions have been pro-
posed for the design of sampled-data PDC controllers for
continuous-time T-S fuzzy models. Conservatism improve-
ment regarding to previous works has been achieved from
the choice of the considered LKF and the Finsler’s Lemma.
Also, generic conditions have also been proposed to relax
double fuzzy sums with asynchronous MFs involved in T-
S model-based sampled-data control plants. The effective-
ness of the proposed conditions, as well as their conser-
vatism improvement regarding to previous results, have
been illustrated through the well-known benchmark of an
inverted pendulum on a cart.
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