
Zonotope-based Interval Estimation for
Discrete-Time Linear Switched Systems ⋆

Wenhan Zhang ∗ Zhenhua Wang* ∗ Tarek Räıssi ∗∗
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Abstract: This paper is concerned with the interval estimation for discrete-time linear switched
systems affected by unknown disturbances and noises. A novel interval estimation approach is
proposed by integrating robust observer design with zonotopic techniques. By introducing L∞
technique into observer design, the proposed approach is effective in attenuating the influence
of unknown disturbances and noises, and improving the accuracy of interval estimation. Based
on the designed observer, the interval estimation can be obtained by using zonotopic analysis.
Numerical simulation results are conducted to demonstrate the feasibility and effectiveness of
the proposed approach.
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1. INTRODUCTION

Switched system, which is an important class of hybrid
dynamical system, consists of continuous or discrete-time
subsystems and a switching signal which determines the
switching from one mode to another at every switching
point. Switched system is an effective tool for describ-
ing practical industrial systems, including flight control
systems (Vu and Morgansen, 2010) and network control
systems (Donkers et al., 2011). Due to their powerful
modelling capability, the stability analysis and control syn-
thesis for switched systems have been extensively studied
in the literature, see, e.g. Liberzon (2003); Zhao et al.
(2012); Niu and Zhao (2013).

Apart from the stability analysis and controller synthe-
sis issues, state estimation is also very important for
switched systems. State estimation has widely investigated
in the control community such as fault diagnosis tech-
niques (Wang et al., 2017), unknown input observer design
(Guo et al., 2018) and robust controller design (Aslam
et al., 2019). Consequently, many scholars work on the
state estimation for switched systems in the past decades.
Specifically, the robust state estimation techniques have
drawn growing attention due to the uncertainties such as
process disturbances and measurement noises always exist
in practical systems. In Bejarano and Pisano (2011), the
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authors proposed a reduced-order unknown input switched
observer for uncertain switched systems. For switched sys-
tems with unknown inputs, a high-order robust observer
synthetic method was presented in Rı́os et al. (2012). For
a class of nonlinear switched systems, the state estimation
was achieved in Rı́os et al. (2015) with the aid of hy-
brid observer design and parameter identification. In Yang
et al. (2017), a robust switched observer was designed to
estimate state via the augmented approach. A robust esti-
mator design method was proposed for switched systems in
Delshada et al. (2018), which can attenuate the influence of
unknown input on state estimation. However, these above-
mentioned methods all use the H∞ technique to reduce
the effects of uncertainties and improve the estimation
accuracy. Note that H∞ norm is a measurement of energy-
to-energy gain. As pointed out in Wang et al. (2017), the
practical signals are not necessarily energy-bounded but
have bounded peak values. Consequently, L∞ norm, which
aims to minimize the peak-to-peak gain, can be considered
as an alternative solution to analyse the state estimation
robustness performance.

On the other hand, the above-mentioned results are all
point-estimation of state. Since the existence of mod-
el and/or signals uncertainties in practical systems, the
point-estimation usually cannot converge to the real state.
Thus, interval estimation approaches via interval observer
and zonotopic techniques get more attention in recent
years. The fundamental idea of interval observer is to
design two sub-observers such that their error dynamics
are both cooperative and stable. The two sub-observers
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can provide the upper and lower bounds of the real system
states. During the past decade, several interval observer
design works have been devoted to various linear or nonlin-
ear regular systems (Räıssi et al., 2012; Efimov and Räıssi,
2016; Meslem et al., 2018). Specially, Ethabet et al. (2017)
addressed the interval observer design issue for continuous-
time linear switched systems. The interval observer for
discrete-time linear switched systems was designed in D-
inh et al. (2019). Nevertheless, it is not a trivial work
to construct a cooperative and stable error system, and
even impossible for some dynamical systems. Although the
cooperative constraint can be relaxed by coordinate trans-
formations, it still has several deficiencies. First, the coor-
dinate transformations may lead to some conservatisms in
the interval estimation. Second, the performance of the
interval observer heavily depends on a predefined matrix
in the design, but there is no systematic and effective
approach proposed on how to choose this predefined ma-
trix. Fortunately, the zonotope-based interval estimation
methods can provide a good balance between computa-
tion complexity and estimation accuracy, and have gained
much attention by many researchers (Tang et al., 2019).
Especially, Alamo et al. (2005) proposed a guaranteed
state estimation approach for nonlinear systems with the
aid of zonotopic techniques. Le et al. (2013) presented a
novel interval estimation method via zonotopes for un-
certain multivariable systems. For time-varying dynam-
ics systems with measurement uncertainties, Combastel
(2015) designed a zonotopic Kalman observer to achieve
the interval estimation. In addition, some criteria such as
P -radius (Le et al., 2013) and F -radius (Combastel, 2015)
to decrease the size of zonotopes have been used to improve
the estimation accuracy. However, these methods by using
zonotopic technique are all the state estimation for state-
space systems. In fact, there are only a limited number of
papers on the case of zonotope-based interval estimation
for switched systems.

Motivated by the above-mentioned discussion, this paper
proposes a zonotope-based interval estimation approach
for linear switched systems with unknown inputs. The
main contributions are summarized as follows:

1) An interval estimation method that combines the
observer design with zonotopic technique is proposed
for linear switched systems.

2) By using zonotope approach, the proposed method
can overcome the cooperative constraints used in the
interval observer design.

3) With the L∞ technique used to reduce the influence
of unknown inputs, the proposed method provides a
systematic way to improve the estimation accuracy.

2. PRELIMINARIES

Notation: Rn and Rm×n are the n and m× n dimensional
Euclidean space, respectively. For a matrix X ∈ Rm×n,
XT and X(i, j) represent its transpose and the element
of X in the i-th row and the j-th column. The matrix
Y ≻ 0 (Y ≺ 0) indicates that Y ∈ Rn×n is a positive
(negative) definite matrix. For a vector ζ ∈ Rn, ∥ζ∥ and
ζ(i) denote its Euclidean norm and the i-th component.
The symbols ⊕ and ⊙ represent the Minkowski sum and
the linear image operators. The asterisk ⋆ represents the

symmetric term in a symmetric matrix. For a signal xk ∈
Rn, its L∞ norm is defined as:

∥x∥∞ = sup
k≥0

∥xk∥, ∥xk∥ =
√
xT
k xk. (1)

In this paper, the following definitions and properties will
be used.

Definition 1. (Zhang et al., 2020) Given a set Φ ⊂ Rn,
its interval hull Box(Φ) is defined as follows:

ϕ ∈ Φ ⊆ Box(Φ) = [ϕ, ϕ], (2)

where [ϕ, ϕ] is the smallest interval vector containing Φ.

ϕ ∈ Rn and ϕ ∈ Rn are the upper and lower bounds of ϕ,

which satisfy ϕ ≤ ϕ ≤ ϕ, ϕ ∈ Φ.

Definition 2. (Combastel, 2005) An m-order zonotope
Z ⊂ Rn (n ≤ m) is a linear image of a hypercube
Bm = [−1, +1]m, which can be defined as follows:

Z = ⟨c, Z⟩ = c⊕ ZBm = {z = c+ Zb, b ∈ Bm} (3)

where c ∈ Rn is the center of Z, and Z ∈ Rn×m is its
generation matrix, which defines the shape of Z.

Property 1. (Scott et al., 2014) For zonotpes, the follow-
ing properties hold:

Γ⊙ ⟨c, Z⟩ = ⟨Γc,ΓZ⟩ (4)

⟨c1, Z1⟩ ⊕ ⟨c2, Z2⟩ = ⟨c1 + c2, [Z1 Z2]⟩ (5)

where c, c1, c2 ∈ Rn are known vectors, Z ∈ Rn×m,
Z1 ∈ Rn×m1 , Z2 ∈ Rn×m2 and Γ ∈ Rl×n are determined
matrices.

Property 2. (Combastel, 2005) For an m-order zonotope
Z = ⟨c, Z⟩ ⊂ Rn, its interval hull Box(Z) = [z, z] can be
obtained by

z(i) = c(i) +
m∑
j=1

|Z(i, j)|, i = 1, · · · , n,

z(i) = c(i)−
m∑
j=1

|Z(i, j)|, i = 1, · · · , n.
(6)

According to the Definitions 1 and 2, the interval hull of
zonotope Z = ⟨c, Z⟩ can also be computed by

Z ⊆ Box(Z) = c⊕ Λ(Z)Bn, (7)

where Λ(Z) ∈ Rn×n is a diagonal matrix satisfying the
following form

Λ(Z) =


m∑
j=1

|Z(1, j)| · · · 0

...
. . .

...

0 · · ·
m∑
j=1

|Z(n, j)|

 .

Remark 1. In the Minkowski sum operation of zonotopes,
the column number of the generator matrix will increase
linearly, which may cause the curse of dimensionality.
Fortunately, the reduction operator proposed in Combastel
(2005) can use a lower-dimensional zonotope to contain a
higher-dimensional one, which are summarized as

Z = ⟨c, Z⟩ ⊆ ⟨c,Re↓(Z)⟩
where Re↓(Z) ∈ Rn×s represents the generator matrix of
the lower-dimensional zonotope and s (n ≤ s ≤ m) is the
maximum number of columns of Re↓(Z). The Re↓(Z) can
be computed as follows:
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• Arrange the column vectors of matrix Z in descending
order according to their Euclidean norm and obtain a new
matrix Z̄.

Z̄ = [z1 · · · zm], ∥ zj ∥≥∥ zj+1 ∥, j = 1, · · ·m− 1.

• If m ≤ s, then Re↓(Z) = Z.

• If m > s, then Re↓(Z) = [Z> Λ(Z<)] ∈ Rn×s,
where Z> = [z1 · · · zm−n], Z< = [zm−n+1 · · · zm].

3. PROBLEM FORMULATION

Consider the following discrete-time linear switched sys-
tem with unknown disturbances and noises{

xk+1 = Aσ(k)xk +Bσ(k)uk +Dσ(k)wk

yk = Cσ(k)xk + Eσ(k)vk
, (8)

where xk ∈ Rnx , uk ∈ Rnu , yk ∈ Rny , wk ∈ Rnw

and vk ∈ Rnv represent the vectors of state, control
input, measurement output, unknown disturbances and
measurement noises, respectively. σ(k) is a known piece-
wise constant function which denotes the switching sig-
nal.

{(
Aσ(k), Bσ(k), Cσ(k), Dσ(k), Eσ(k)

)
: σ(k) ∈ N

}
are a

family of matrices parameterized by an index set N =
{1, · · · , N} and N is the number of subsystems. Let q =
σ(k) be the index of the active subsystem, Aq, Bq, Cq,
Dq and Eq are constant matrices with the corresponding
dimensions.

The following assumptions will be used in this paper.

Assumptions 1. The switching signal σ(k) in (8) can be
available in real-time.

Assumptions 2. The initial state x0, disturbances wk

and noises vk are assumed to be unknown but bounded as

|x0 − c0| ≤ x̃0, |wk| ≤ w̃, |vk| ≤ ṽ, (9)

where | · | denotes the absolute value operator, c0 ∈ Rnx ,
x̃0 > 0 ∈ Rnx , w̃ > 0 ∈ Rnw and ṽ > 0 ∈ Rnv are known
vectors.

According to Definition 2, (9) can be reformulated as{
x0 ∈ X0 = ⟨c0, Z0⟩,
wk ∈ W = ⟨0,W ⟩,
vk ∈ V = ⟨0, V ⟩,

(10)

where c0 ∈ Rnx is a known vector, Z0 = diag(x̃0) ∈
Rnx×nx , W = diag(w̃) ∈ Rnw×nw and V = diag(ṽ) ∈
Rnv×nv are determined diagonal matrices, respectively.

The interval estimation techniques aim to obtain an in-
terval vector [xk, xk], which can contain the real state xk,
i.e.

xk ≤ xk ≤ xk.

In this paper, an interval estimation approach is proposed
for linear switched systems by combining the robust ob-
server design with the zonotopic analysis. First, a class of
Luenberger observers for system (8) are designed via the
L∞ techniques. Based on the L∞ observers, the state in-
terval estimation will be obtained with the aid of zonotopic
analysis.

4. ROBUST STATE OBSERVER DESIGN

Consider the following structure of observer

x̂k+1 = Aqx̂k +Bquk + Lq(yk − Cqx̂k), (11)

where x̂k denotes the vector of state estimation and Lq ∈
Rnx×ny , q ∈ N represents the observer gain matrix to be
determined.

Define the estimation error as

ek = xk − x̂k, (12)

then the following error dynamics systems are obtained

ek+1 = (Aq − LqCq)ek +Dqwk − LqEqvk, (13)

which can be rewritten as

ek+1 = Aeqek +Dqwk + Leqvk, (14)

where Aeq = Aq − LqCq and Leq = −LqEq, q ∈ N .

To improve the estimation accuracy, L∞ technique is used
to attenuate the influence of unknown inputs. Thus, the
following theorem is proposed to design Lq for the observer
in (11) based on error dynamic systems (13).

Theorem 1. Given constants 0 < λ < 1, γw > 0
and γv > 0, if there exist a scalar µ > 0, matrices
P = PT ≻ 0 ∈ Rnx×nx and Wq ∈ Rnx×ny for ∀q ∈ N
such that (λ− 1)P ⋆ ⋆ ⋆

0 −µInw ⋆ ⋆
0 0 −µInv ⋆

PAq −WqCq PDq −WqEq −P

 ≺ 0, (15)

λP ⋆ ⋆ ⋆
0 (γw − µ)Inw ⋆ ⋆
0 0 (γv − µ)Inv ⋆
Inx 0 0 (γw + γv)Inx

 ≻ 0, (16)

then error system (13) is asymptotically stable and satis-
fies the following L∞ performance

∥ek∥2 ≤ (γw + γv)(λ(1−λ)kV0+ γw∥w∥2+ γv∥v∥2), (17)

where V0 = eT0 Pe0 and P ≻ 0 ∈ Rnx×nx being a designed
matrix. Moreover, if the LMIs in (15) and (16) are solvable,
the matrix Lq can be determined by Lq = P−1Wq, q ∈ N .

Proof : Choose the following common quadratic Lya-
punov function

Vk = eTk Pek, P = PT ≻ 0, (18)

Then, the difference of Vk is

∆Vk = Vk+1 − Vk =

[
ek
wk

vk

]T

Ω

[
ek
wk

vk

]
, (19)

where

Ω =

AT
eqPAeq − P ⋆ ⋆

DT
q PAeq DT

q PDq ⋆

LT
eqPAeq LT

eqPDq LT
eqPLeq

 .

By setting Wq = PLq, q ∈ N then according to Aeq =
Aq − LqCq and Leq = −LqEq, the inequality in (15) is
refactored as(λ− 1)P ⋆ ⋆ ⋆

0 −µInw ⋆ ⋆
0 0 −µInv ⋆

PAeq PDq PLeq −P

 ≺ 0, (20)

Pre- and post- multiplying (20) withInx 0 0 AT
eq

0 Inw 0 DT
q

0 0 Inv LT
eq



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

4783



and its transpose, respectively, we have

Ω +

[
λP ⋆ ⋆
0 −µInw ⋆
0 0 −µInv

]
≺ 0. (21)

Pre-multiplying and post-multiplying inequality (20) with
[eTk wT

k vTk ] and its transpose, we can obtain

∆Vk < −λVk + µwT
k wk + µvTk vk. (22)

When wk = 0 and vk = 0, (22) implies that

∆Vk = Vk+1 − Vk < −λVk < 0 (23)

Consequently, error system (13) is asymptotically stable.

On the other hand, inequality (22) implies that

Vk+1 < (1− λ)Vk + µ∥w̃∥2 + µ∥ṽ∥2,
which means

Vk < (1− λ)kV0 +
k−1∑
ς=0

(1− λ)ς(µ∥w̃∥2 + µ∥ṽ∥2)

≤ (1− λ)kV0 +
1− λk

λ
(µ∥w̃∥2 + µ∥ṽ∥2)

≤ (1− λ)kV0 +
µ∥w̃∥2

λ
+

µ∥ṽ∥2

λ
. (24)

Applying the Schur complement lemma (Boyd et al.,
1994), inequality (16) is equivalent to[

λP ⋆ ⋆
0 (γw − µ)Inw ⋆
0 0 (γv − µ)Inv

]

− 1

γw + γv

[
Inx

0
0

]
[Inx 0 0] ≻ 0, (25)

Pre-multiplying and post-multiplying inequality (25) with
[eTk wT

k vTk ] and its transpose, we have

eTk ek ≤ (γw+γv)(λVk+(γw−µ)∥w̃∥2+(γv−µ)∥ṽ∥2). (26)

Substituting (24) into (26) yields

eTk ek ≤ (γw + γv)(λ((1− λ)kV0 +
µ∥w̃∥2

λ
+

µ∥ṽ∥2

λ
)

+ (γw − µ)∥w̃∥2 + (γv − µ)∥ṽ∥2)
= (γw + γv)(λ(1− λ)kV0 + γw∥w̃∥2 + γv∥ṽ∥2),

which implies error system (13) satisfies the L∞ perfor-
mance in (17). �
Remark 2. To attenuate the influence of wk and vk as
much as possible, the minimal scalars γw and γv can be
determined by the following optimization problem:

min γw + γv, (27a)

s.t. (15)− (16) (27b)

and the feasible solution provides Lq by Lq = P−1Wq.

Remark 3. For brevity, the robust observer in (11) is
determined by a common Lyapunov function, which may
result in some conservatism. In fact, the observer can
be designed based on multiple Lyapunov functions, which
can reduce such conservatism and further improve the
estimation accuracy (Shi et al., 2015; Fei et al., 2017).

5. INTERVAL ESTIMATION OF STATE

After getting observer gain matrices Lq, q ∈ N , the design
of the L∞ observer is completed. The interval estimation

of xk will be obtained with the aid of zonotopic techniques
in this section.

From (12), we can obtain

xk = x̂k + ek. (28)

Thus, if an interval vector [ek, ek] satisfying ek ≤ ek ≤ ek
can be obtained, from (28), the interval vector [xk, xk] are
calculated as {

xk = x̂k + ek,
xk = x̂k + ek.

(29)

Therefore, in the sequel, we first get the interval estimation
of ek, then give that of xk.

With the aid of zonotopic techniques, the following theo-
rem is presented to realise the interval estimation of xk.

Theorem 2. For observer (11) and error dynamics sys-
tems (13), given c0 = x̂0, then state xk is bounded in
a zonotope Xk = ⟨x̂k, Zk⟩ and the interval estimation
[xk, xk] of xk are determined as follows:

xk(i) = x̂k(i) +
nz∑
j=1

|Zk(i, j)|, i = 1, · · · , nx,

xk(i) = x̂k(i)−
nz∑
j=1

|Zk(i, j)|, i = 1, · · · , nx,
(30)

where nz is the column number of Zk and Zk satisfies the
following iteration equation

Zk+1 = [(Aq − LqCq)Re↓(Zk) DqW −LqEqV ] . (31)

Proof : First, we prove that the interval vector [xk, xk] of
xk can be obtained from (30). When X0 = ⟨x̂0, Z0⟩, then
from (4) and (12), we have

e0 ∈ E0 = ⟨x̂0, Z0⟩ ⊕ (−x̂0) = ⟨0, Z0⟩. (32)

Note that wk ∈ ⟨0,W ⟩, vk ∈ ⟨0, V ⟩ and e0 ∈ ⟨0, Z0⟩, hence
we can conclude that ek ∈ Ek = ⟨0, Zk⟩. From (28), we
have xk ∈ Xk = x̂k ⊕ ⟨0, Zk⟩ = ⟨x̂k, Zk⟩. Using Property
2, the interval estimation of xk are calculated as

xk(i) = x̂k(i) +
nz∑
j=1

|Zk(i, j)|, i = 1, · · · , nx,

xk(i) = x̂k(i)−
nz∑
j=1

|Zk(i, j)|, i = 1, · · · , nx.

where nz is the column number of Zk.

Now, we are ready to prove the iteration equation in (31).
Since ek ∈ Ek = ⟨0, Zk⟩, then according to (10) and (13),

ek+1 ∈ Êk+1 is updated as follows:

Êk+1 =
⟨
0, Ẑk+1

⟩
= (Aq − LqCq)⊙ Ek ⊕Dq ⊙W ⊕ (−LqEq)⊙ V.

According to (4) and (5), Ẑk+1 can be written as

Ẑk+1 = [(Aq − LqCq)Zk DqW −LqEqV ] .

Using the reduction operator in Remark 1, we can obtain
⟨0, Zk⟩ ⊆ ⟨0, Re↓(Zk)⟩, and it follows that ⟨0, Ẑk+1⟩ ⊆
⟨0, Zk+1⟩. Finally, we have ek+1 ∈ Ek+1 = ⟨0, Zk+1⟩. �
Remark 4. Note that the proposed approach does not re-
quires cooperative constraints and can avoid the additional
conservatism caused by coordinate transformation. There-
fore, the proposed approach provides a systematic way to
improve the interval estimation accuracy by combining
robust observer design and zonotopic techniques.
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6. SIMULATION

In this section, a numerical example adapted from Dinh
et al. (2019) is utilized to demonstrate the viability and
validity of the proposed interval estimation approach. Con-
sider the following discrete-time linear switched system{

xk+1 = Aqxk +Bquk +Dqwk

yk = Cqxk + Eqvk
, q = 1, · · · , 3. (33)

where

A1 =

[
0.2 −0.5
0 0.2

]
, A2 =

[
0.3 −2
0 0.6

]
, A3 =

[
0.5 −1.1
0 0.16

]
,

B1 =

[
2
−1

]
, B2 =

[
6
1

]
, B3 =

[
−2
2

]
,

C1 = [0.2 0.8] , C2 = [1 0] , C3 = [0.1 1] ,

D1 = D2 = D3 =

[
1 0
0 1

]
, E1 = E2 = E3 = 1.

The switching signal σ(k) between the three subsystems
is plotted in Fig 1. By choosing λ = 0.5 and solving
the optimization problem (27), we obtain µ = 5.7532,
γw = 5.7548, γv = 5.7543, and the gain matrices L1, L2

and L3 as follows:

L1 =

[
−0.0953
0.1362

]
, L2 =

[
0.5519
−0.0792

]
, L3 =

[
−1.0969
0.1189

]
.

0 5 10 15 20 25 30 35 40 45 50
Times steps

0.5

1

1.5

2

2.5

3

3.5

Fig. 1. Switching signal σ(k)

In the simulation, we choose the input uk = 0.5sin(0.1k)
and the initial state x0 = [1 2]T . Meanwhile, The un-
known inputs are set as wk = [0.1sin(0.5k) 0.1cos(0.5k)]T

and vk = 0.1sin(0.5k). The initial zonotope of x0 are set as
c0 = [1 1]T and Z0 = I2. The generation matrices of W
and V are set as W = 0.1I2 and V = 0.1I1. The reduction
order of Re↓(Zk) is set as m = 20 to avoid the curse of
dimensionality.

The simulation results are shown in Fig 2. As we can
see, although there is initial estimation error, the states
estimate can quickly track the real states and provide
accurate interval estimation. To further demonstrate the
superiority of the proposed approach, the zonotope-based
method is compared with the optimal interval observers
proposed in Dinh et al. (2019). Note that the optimal
interval observers proposed in Dinh et al. (2019) have not
considered the influence of unknown measurement noises.
Therefore, we set E1 = E2 = E3 = 0 and vk = 0 of
system (33). By choosing λ = 0.5 and solving (27), we
have µ = 7.5644, γw = 7.5654. The observer gain matrices
L1, L2 and L3 are determined as

5 10 15 20 25 30 35 40 45 50
Times steps

-3

-2

-1

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50
Times steps

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 2. States and their interval estimations by the pro-
posed approach

5 10 15 20 25 30 35 40 45 50
Times steps

-3

-2

-1

0

1

2

3

4

5

5 10 15 20 25 30 35 40 45 50
Times steps

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 3. States and their interval estimations by the pro-
posed approach and by the method in Dinh et al.
(2019)

L1 =

[
−0.2333
0.1902

]
, L2 =

[
0.6087
−0.0929

]
, L3 =

[
−1.4913
0.1845

]
.

The simulation results in Fig 3 show that the proposed
approach can provide more accurate interval estimation
than optimal interval observers. Consequently, the results
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all show the feasibility and effectiveness of our approach
in state interval estimation.

7. CONCLUSIONS

This paper studies interval estimation for discrete-time lin-
ear switched systems with unknown but bounded inputs. A
novel interval estimation approach is proposed via the ro-
bust observer design and zonotopic techniques. Compared
with interval observers, the proposed approach overcomes
the cooperativity constraints and avoids the additional
conservatism caused by coordinate transformation. Nu-
merical simulations have demonstrated the viability and
validity of the proposed interval estimation approach. In
the future, we will focus on using the multiple Lyapunov
functions to further improve the estimation accuracy of
the proposed method and this will be our next research
work.
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Ethabet, H., Räıssi, T., Amairi, M., and Aoun, M. (2017).
Interval observers design for continuous-time linear
switched systems. In the 20th World Congress of the
International Federation of Automatic Control, 6259–
6264, Toulouse, France. IEEE.

Fei, Z., Shi, S., Zhao, C., and Wu, L. (2017). Asynchronous
control for 2-d switched systems with mode-dependent
average dwell time. Automatica, 79, 198–206.

Guo, S., Zhu, F., and Jiang, B. (2018). Reduced-order
switched UIO design for switched discrete-time descrip-
tor systems. Nonlinear Analysis: Hybrid Systems, 30,
240–255.

Le, V., Stoica, C., Alamo, T., Camacho, E., and Dumur,
D. (2013). Zonotopic guaranteed state estimation for
uncertain systems. Automatica, 49(11), 3418–3424.

Liberzon, D. (2003). Switching in systems and control.
Springer Science & Business Media, Berlin Heidelberg,
Germany.

Meslem, N., Loukkas, N., and Martinez, J. (2018). Using
set invariance to design robust interval observers for
discrete-time linear systems. International Journal of
Robust and Nonlinear Control, 28(11), 3623–3639.

Niu, B. and Zhao, J. (2013). Barrier Lyapunov functions
for the output tracking control of constrained nonlinear
switched systems. Systems & Control Letters, 62(10),
963–971.

Räıssi, T., Efimov, D., and Zolghadri, A. (2012). Interval
state estimation for a class of nonlinear systems. IEEE
Transactions on Automatic Control, 57(1), 260–265.
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