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Abstract: Developing a good soft sensor for prediction has been a major interest, given the time lag to 
obtain quality data. Deep learning based variational autoencoders (VAE) have been implemented in 
industrial plants because of their capacities in dealing with the complex stochastic nonlinearity with 
better probabilistic interpretation. However, unsupervised VAE is inapplicable to the prediction. This 
article proposes a nonlinear soft sensor, which is an extension of the VAE framework with differential 
entropy (VAE_DE) loss function to construct a prediction model. The proposed VAE_DE model 
structure allows all the available data to be used for training although the data consist of process-quality 
data pairs and/or solely process data. Also, VAE_DE enhances the prediction performance and its 
robustness through capturing the inter-correlations between process data and quality data in the nonlinear 
probabilistic model. Under the proposed framework, VAE_DE model can be used for quick quality 
estimates of process data with unavailable quality data. The prediction quality of the proposed method is 
testified through a numerical case and an industrial case. 
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

1. INTRODUCTION 

Soft sensors have been widely applied to chemical plants as a 
mean of estimation of the product quality through utilization 
of process variables. Traditional means of soft sensors are 
expressed by first principal models, which are derived from 
physical principles, such as mass and energy balances of the 
system. However, constructing first principal models require 
full understanding of the system. In such a situation, it is 
difficult to consider the complexity of chemical processes.  

Meanwhile, data-driven models have been rising in 
popularity with the abundance of available process data. 
Commonly-used methods include principal component 
regression (PCR) (Lin et al., 2007), partial least squares 
(PLS), independent component analysis (Kaneko et al., 2009), 
artificial neural networks (ANN) (Shang et al., 2014; Yao et 
al., 2017), and support vector machines (SVM) (Yan et al., 
2004). Some conventional methods, such as PCR and PLS, 
are limited to linear assumption, so they do not perform well 
in nonlinearity exhibited in most chemical processes.  

Nonlinear models, such as SVM, and kernel methods, allow a 
more accurate representation of the chemical process as they 
directly get the global optimum of the variables through 
eigenvector decomposition. SVM and kernel methods 
generally expand the original data to a higher dimension to 
allow linear representation of the data based on the chosen 
kernel function. However, these methods, especially SVM 
and the kernel method, are computationally expensive. Their 
computational load increases exponentially as there are more 
samples easily collected in most chemical processes. The 

kernel based model may also lead to singularity during taking 
the eigenvalue and the eigenvector of the process variables, 
especially when a lot of process variables inputted into the 
model may not exhibit any relation to the quality variables. In 
addition, the performances of the kernel based models also 
depend on the selected kernel function to map data to a 
higher dimension. Also, selecting the dimension of the 
projection is quite tricky.  

ANN is preferable as users can flexibly determine the 
structure layer and the activation function of each layer. It 
also allows the parameters to be automatically updated 
through the backpropagation technique. But the parameters 
are not directly inferentiable to describe the relation between 
the process and quality variables. The network performance 
is determined by its loss function. The network structure 
allows neural networks to be flexible, so the neural networks 
can model nonlinearities without being bounded by a specific 
kernel function, such as SVM and kernel methods, and the 
flexibility in choosing a loss function allows users to choose 
the way the network is trained. The next problem is how to 
increase the robustness of the prediction from the neural 
network output to correspond to the stochastic nature of 
chemical processes.  

Variational autoencoder (VAE) models based on probabilistic 
deep learning have been rising in popularity because of their 
high capacity of dealing with complex nonlinearity. It also 
exhibits the stochastic nature and proves to have better 
probabilistic interpretation than shallow models with 
deterministic analysis. Albeit the promising VAE structure 
can provide a deep orthogonal latent variable model for 
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complex nonlinear processes, VAE is an unsupervised 
structure, which cannot be directly and easily applied to 
traditional soft sensor modeling problems.  

In this paper, a novel differential entropy soft sensor model is 
proposed. It is the extension of the vanilla VAE, named 
variational autoencoders with differential entropy (VAE_DE) 
learning. In the proposed method, the VAE_DE model is 
trained by all the available data no matter whether the data 
belongs to labelled data or unlabelled data. The use of the 
entire dataset would not only provide consistency during 
training the VAE_DE model but also enhance the prediction 
performance and robustness by prioritizing the soft sensors to 
capture the inter-correlation between the process and quality 
data in the nonlinear probabilistic model. Under the proposed 
framework, the VAE_DE model can provide quick quality 
estimates of the unlabelled data. The details will be discussed 
as follows. First, the problem description is given in Section 
2. The proposed VAE_DE formulation details are explained 
in Section 3. Subsequently, the numerical and industrial case 
studies for the performance assessment of the model is 
conducted and compared with the conventional methods in 
Section 4. The conclusion is made in the end of the paper.  

2. Methodology 

For a clear grasp of the concept of the proposed method, first 
the concept of VAE is discussed briefly. Then the supervised 
VAE prediction model is proposed; the soft sensor model 
training is fully explored along with both the VAE model and 
the proposed loss function to allow the full utilization of the 
whole dataset regardless whether the collected data are 
labelled or unlabelled. 

2.1 Variational Autoencoder (VAE)  

Suppose a given labelled data composed of x  process data 
and y quality data. The key idea behind VAE is to minimize 

the Kullback-Leibler divergence of the approximate posterior 
distribution  | ,q z x y   and the true posterior distribution 

 | ,pθ z x y , 
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Through Bayes’ theorem, the true posterior  | ,pθ z x y  can 

also be represented by 
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Substituting Eq.(2) into Eq.(1), and rearranging the equation, 
one can get 
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where    | ,qE
 z x y �   is an expectation operator in regard to 

approximate posterior distribution  | ,q z x y .  However, the 

true posterior distribution  | ,pθ z x y  is usually intractable 

as the real marginal distribution  ,pθ x y  is intractable. 

Therefore, instead of maximizing the marginal distribution 

 ,pθ x y , the variational lower bound, also called evidence 

lower bound (ELBO), is usually maximized, 
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In Eq.(4), ELBO will be naturally maximized when the KL 
divergence (Eq.(1)) can be minimized to zero, as the KL 
divergence is always positive. However, it should be noticed 
that the above structure of the VAE model only takes the 
process and quality variables as inputs to the model and 
reconstructs back the latent variables and take them as the 
predicted values of the same input variables. That is, given 
process variables, the original VAE model cannot be used for 
the prediction of quality data. In this paper, the supervised 
VAE model is proposed with the capability of quality 
prediction. The following section will explain how to derive a 
supervised VAE network. 

2.2 Variational Autoencoder with differential entropy 
training based prediction model (VAE_DE) 

A soft sensor is built upon the assumption that a prediction 
value of quality data can be achieved by an accurate model 
with the input of the process variables. In the original VAE, 
another model with the process data as the input should be 
constructed to output the prediction of the quality data. To 
improve the accuracy of the prediction, the model needs a 
loss function that trains the model with the consideration of 
the existing correlation between process data and quality data. 
The previously defined VAE model takes in labelled data as 
an input. Alternatively, a new neural network model can be 
used to take in the correlation between x  process variables 
(the input) and y quality variables (the output). Thus, the true 

and approximate posterior distribution are re-defined by 
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Through Bayes’ theorem, the true posterior  , |p z y x  can 

be represented by 
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Assume that only z latent variables can be reconstructed 
back to x  process data and y quality data. It is a reasonable 

assumption as, in z  latent variables, there are common 
relations between x  process variables and y  quality 

variables. Thus,  | ,pθ x z y  can be re-written as 

    | , |p pθ θx z y x z   (8) 

Substituting Eq.(8) into Eq.(5): 
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The new ELBO is defined as: 

          , | log | , | || ,qL E p KL q p
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                                                                                             (10) 

Expanding each term on the right-hand side of Eq.(10), a 
simpler form can be provided, 

         | , |qL E L H p
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where    | ,qE L


  y x X Y  is expectation of  ,L X Y  from 

Eq.(4) with regard to the prediction model  |q y x , and 

  |H pθ y x is differential entropy of the prediction 

network. The derivations of Eq.(11) are detailed in Appendix. 
Based on the defined loss function in Eq.(11),  |pθ y x  

allows the inference of quality data estimate through process 

data. However, to compute the term of    | ,qE L


  y x X Y , the 

previously defined model in Eq.(4) needs to be used because 

 ,L X Y  requires process and quality data as inputs to the 

model. However, it is important to note that Eq.(11) merely 
focuses on the expectation of the prediction model only. It 
does not consider the correlation between process and quality 
data so that the robustness of the prediction quality estimate 
toward the real quality data can be weakened. Labelled data 
can improve the prediction model to mimic the real quality 
data distribution while unlabelled data can improve the 
performance of overall model with additional training data. 
Therefore, it is necessary to provide a new loss function with 
the advantages of both labelled and unlabelled data. This will 
be detailed in the next section. 

2.3 VAE_DE Training phase  

Given a total of N number of data, consisting of lN  number 
of labelled data ( x  process data and y quality data) and uN  

number of unlabelled data ( x  process data). The labelled 

data is represented by    
1

, ,
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i i i
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unlabelled data is given by    
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   X x , where the 

superscript u indicates unlabelled, l indicates labelled, and 
subscript i indicates the index from N available samples. 
Based on the previous discussion, it is best to use all the 

available data without the need to differentiate the training 
process. This means that the training data for constructing the 
VAE_DE model consists of labelled data or unlabelled data 
(process data only); thus, the overall training function from 
the perspective of the labelled data in Eq.(4) and the 
unlabelled data in Eq.(11) can be represented by: 
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where l uN N N  . The problem of the loss function using 
the labelled data in Eq.(4) is that it cannot train and obtain a 
prediction model at all. Thus, with the derived relation 
between the labelled loss function and unlabelled loss 
function in Eq.(11), the labelled loss function can be 
modified as: 
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Through Eq.(13), the prediction network can be trained by 
the labelled data while it cannot be trained through Eq.(4). 
Substituting Eq.(13) into Eq.(12) yields: 
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With the loss function stated in Eq.(14), the additional log 
likelihood term of the prediction distribution expresses the 
difference between the predictions and the real values of 
available quality variables, to train the prediction model 
which can mimic the real quality data distribution as closely 
as possible.  

To train the VAE_DE model based on the overall loss 
function in Eq.(14), the detailed graphical representation of 
the flowchart of the proposed VAE_DE model is shown in 
Fig. 1. First, all the process variables will be fed through the 
prediction network to generate the predicted quality variables. 
If the process data belongs to labelled data, the log likelihood 
between the prediction and the labelled counterpart is 
calculated (red dotted box in Figure 1); then the entropy of 
the generated prediction is also calculated (brown box with 
H). The prediction is assimilated with the process data as 
inputs to the VAE model encoder to obtain the mean and the 
covariance of the latent variables while the KL divergence is 
computed by the dissimilarity of the latent variables 
distribution to its prior distribution with the Gaussian 
distribution mean of 0 and the covariance of 1. Then the prior 
is reconstructed back to its original data space through each 
decoder respectively. The reparameterization trick is applied 
on both quality data prediction and the latent variables.  

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

12115



 
 

     

 

 
Fig. 1 VAE_DE flowchart diagram 

 

3. Case Studies 

In this section, the performance of the proposed VAE_DE 
method is tested against other conventional methods in a 
numerical case and an industrial case. The details of the 
implementation of each method are given below. 

3.1 Numerical case 

The process data and quality data are generated by two latent 
variables. Both of them contain noises that affect each 
variable.  

 

 
 
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2 1
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1 2
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  (15) 

where the latent variables ( 1z  and 2z ) as well as noises ( 1w , 

2w , and 3w ) are distributed in Gaussian distributions with 

the mean and the variances listed as follows: 

 
   
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1 2

1 2 3
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z N z N

w N w N w N
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Through the function given above, 1,200 labelled samples 
and 1,200 unlabelled samples are generated for the data 
infested with noise and the real data without noise. Half of 
the samples are used as a training dataset and the other as a 
test dataset. The data are preprocessed by getting the 
normalized values through each variable’s mean and variance 
before the data are inputted to the model.  

The structure of VAE_DE (the encoder, decoder, and 
prediction networks) is consisted of 3 hidden layers with 30 

units in each layer with tanh activation functions. The 
number of latent variables in the bottleneck section between 
the encoder and the decoder is set to be 2. In addition, to 
prevent negative covariance value, the covariance for the 
final activation function in the latent variable is softplus. The 
networks are trained for 400, 800, and 1,200 times based on 
the loss function given in Equation (12). Fig. 2 shows the 
prediction on the data with and without noise. To assess the 
prediction performance, the root mean square error (RMSE) 
of the test dataset is calculated for the prediction values in 
regard to the data with noise and the data without noise. It is 
defined as follows: 

  2

1

1 N

i i
i

RMSE y y
N 

  
  (17) 

where iy  and iy


 denote the i-th quality value and its 

prediction value, respectively. The quality value iy  also 

corresponds to the data infested with noise and the real data 
without noise. 

 

Fig. 2 The prediction of the proposed VAE_DE method 
compared with the real data with and without noise (1,200 
iterations) 

Comparing the proposed method with the other conventional 
methods, PPCR, PPLS, KPCR, and KPLS are used to predict 
the quality data. For the applications of both KPCR and 
KPLS, the Gaussian radial basis function is selected as the 
kernel to handle the nonlinear properties of the generated data. 
The parameters of each method are properly tuned to 
generate the best prediction performance. All the methods, 
except for VAE_DE, uses only labelled data as training data, 
and the remaining unlabelled data as the testing data. The 
prediction results of the quality data by KPCR, and KPLS are 
shown in Fig. 3 (a) and (b) respectively. The prediction result 
of remaining method will be tested by RMSE criteria.  

RMSE predicted by these 5 methods are shown in Table 1. It 
can be observed that the prediction result of the proposed 
VAE_DE is becoming better with more training iterations to 
learn the important features to represent the quality data. 
Although initially the RMSE of the VAE_DE method with 
400 iterations lose to the KPLS method, the currently trained 
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VAE_DE model still has not fully caught the data 
representation. When trained further, the VAE_DE model is 
becoming more accurate and can represent the real data 
without noise better than the data infested with noise. The 
VAE_DE result is superior because the neural network 
allows deep nonlinear transformation, unlike the cases with 
KPCR and KPLS, both of which only allow shallow 
nonlinear transformation. With deep nonlinear transformation 
through many hidden layers, the model is more capable of 
representing highly complex systems. However, it also needs 
more training to adjust parameters and catch the nonlinear 
behavior of systems. 

(a) 

 

(b) 

 

Fig. 3 Prediction results in the numerical case by: (a) KPCR; 
(b) KPLS 

Table 1 The RMSE values of numerical case prediction result  

Methods RMSE (noise infested data) RMSE (no noise) 

PPCR 0.7878 0.7715 

PPLS 1.399 1.361 

KPCR 0.960 0.982 

KPLS 0.557 0.530 

VAE_DE(400 iters) 0.680 0.665 

VAE_DE(800 iters) 0.471 0.425 

VAE_DE(1200 iters) 0.419 0.345 

 

3.2 Ammonia synthesis process 

Ammonia is an essential ingredient for a lot of applications, 
such as the key ingredient in the production of fertilizers. The 
pre-decarburization process is one of the most important parts 
in this synthesis process. The carbon dioxide from the 
process gas is absorbed, and the absorbed CO2 gas is used for 
the future production process.  The flowchart of this process 
in Fig. 4 consists of 4 major devices (the feed gas separator, 
the PG separator, the heat exchanger, and the absorption 
column). The absorption column is the main device 
responsible for capturing CO2 in the feed gas. 

 

Fig. 4 The decarburization step of ammonia synthesis process 

To maximize the production of ammonia, CO2 in the process 
gas should be absorbed as much as possible. The goal is to 
minimize the amount of CO2 residue in the process gas 
output, and there are 19 process variables in the process. 
There are 1,800 data samples; the first half of the samples 
have quality data, and the remainder does not. The labelled 
and the unlabelled data are divided in half for training and 
testing. Those methods, except for VAE_DE, uses only the 
labelled data as the training set, and the remaining unlabelled 
data as the testing set. Given available process data, various 
methods are used to predict the next CO2 residue in the 
process gas. The prediction results of PPCR, PPLS, KPCR, 
KPLS and VAE_DE are 1.0358, 1.554, 2.01, 0.853, 0.536, 
respectively. The prediction result of KPLS and VAE_DE for 
all data is shown in Fig. 5, VAE_DE prediction is more 
accurate than KPLS, due to better representation of non-
linear process with its deep non-linear probability model, 
compared to KPLS shallow non-linear representation. 

4. CONCLUSIONS 

This paper proposes a nonlinear probabilistic method for 
training a soft sensor using different forms of data no matter 
whether they are labelled or unlabelled. This method also 
provides a consistent training method for all the networks in 
the proposed VAE-DE model. The proposed method is 
shown to be superior to other methods because of its complex 
nonlinear representation of the system in deep neural 
networks. 
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Fig. 5 VAE_DE and KPLS predictions vs. real industrial data 
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Appendix. VAE_DE complete derivation 

Expanding each term in Eq.(10): 
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Expanding KL divergence term to integral format: 
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Substitute the derivations back to Eq.(10): 
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