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Abstract: Range anxiety is one of the barriers for the customer acceptance of Battery
Electric Vehicles (BEVs). To cope with this limitation, this paper presents a Predictive Energy
Management System (PEMS) that can reduce total battery energy consumption by using
available up-coming route information such as traffic flow, speed limits and road slope. The
developed PEMS contains two optimization layers: the first layer generates a speed profile for
the upcoming route that minimizes driving energy, while simultaneously controlling the average
driving speed; the second layer reduces the energy consumption of the Heating, Ventilation, and
Air Conditioning (HVAC) system, while guaranteeing driver thermal comfort. The proposed
PEMS results in an algorithm capable of running in real time, due to the use of simplified
vehicle and powertrain component models. Simulation results show potential energy savings of
7.1% compared to a baseline strategy, i.e. a non-predictive energy management system.

Keywords: dynamic programming, energy management systems, electric vehicles, optimal
control, supervisory control, speed control, temperature control.

1. INTRODUCTION

The use of vehicles based on petroleum fuel has been
predominant for the last century. However, due to the
negative environmental impact and depletion of petrol
resources, alternatives such as Battery Electric Vehicles
(BEVs) are regarded as promising solutions for reducing
fuel dependency, see Onat (2015). BEVs use electricity
as energy source which results in zero tank-to-wheel emis-
sions. However, one of the main limiting factors for its
widespread adoption is the range anxiety that results from
constraints in the amount of energy that can be stored in
high-voltage batteries, see Egbue and Long (2012).

Efforts to increase the BEVs range include improving
the efficiency of either the hardware or the software
used in the powertrain. Improving the hardware focuses
on enhancing the efficiency of the vehicle components
(e.g. battery packs, power electronics, and so on). For
example, de Santiago et al. (2012) shows an overview of
different Electric Machines technologies. Improving the
software focuses on improving the Energy Management
System (EMS) from particular components or from the
vehicle as a whole. An example of improved EMS for
components, is the Battery Management System presented
by Cao et al. (2008), which enhances battery efficiency.
Another example is the Predictive Energy Management
System (PEMS) of the Heating, Ventilation, and Air
Conditioning (HVAC) system of Schaut and Sawodny
(2019), which enhances the thermal system efficiency; an
example of improved EMS of the vehicle as a whole is the
predictive EMSs of Morlock et al. (2017), which uses road
profile to minimize powertrain energy. This paper focuses

? The findings of this paper were obtained within the European
project HiFi-ELEMENTS.

on predictive EMSs for the entire vehicle, including the
thermal system.

Model predictive control is a commonly used supervisory
control strategy since it allows to minimize power-related
cost functions, while guaranteeing compliance to a set of
constraints. For example, a PEMS for the whole vehicle
that generates a speed profile is presented by Morlock et al.
(2017) and Yan et al. (2014). Morlock et al. (2017) showed
that this EMS can reduce energy losses up to 28% with
“aggressive” drivers. These EMSs use road profile infor-
mation and multiple driver profiles to generate a driving
strategy that reduces power energy in the electric power-
train. Another example of predictive EMSs was presented
by Eckstein et al. (2016b,a), which focuses on reducing the
energy consumption of the HVAC. Reducing the energy
consumption of the HVAC is a relevant objective, since the
HVAC can reduce the range of a passenger BEV from 17%
to 37% in summer time, as reported by Zhang et al. (2017).
The predictive EMSs of Eckstein et al. (2016b,a) use road
information to determine when and how to optimally use
the HVAC, such that energy savings are maximized while
passengers’ thermal comfort is guaranteed.
All of these EMSs have a single optimized variable: either
longitudinal vehicle speed or HVAC energy. Combining
the benefits of both speed and HVAC power optimization
in a single EMS has not been explored before.

Contributions This paper presents a multi-layer Pre-
dictive Energy Management System (PEMS) for a BEV,
which consists of two optimization layers. The first layer
generates a speed profile that minimizes driving energy,
while controlling the average driving speed. Savings are
achieved by exploiting knowledge of the road profile,
speed limits, and traffic conditions, to minimize powertrain
losses. The second layer uses the generated speed profile
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from the first layer to determine the optimal power flow
to the HVAC that minimizes the total battery energy
consumption, while guaranteeing thermal comfort for the
driver. The proposed PEMS uses simplified models of the
vehicle and the powertrain components, which results in
an algorithm capable of running in real time. .

This paper is divided as follows. Section 2 introduces the
simplified vehicle and component models. These simplified
models are used in Section 3 to design the multi-layer
PEMS. Simulation results are presented and analysed in
Section 4. Conclusions are given in Section 5.

2. VEHICLE AND POWERTRAIN MODEL

In this section, the simplified vehicle and component mod-
els that are used by the multi-layer PEMS are presented.

2.1 Vehicle model

The longitudinal dynamics of the vehicle are described
with a single first-order differential equation, which is
taken from (Guzzella et al., 2007, Chapter 2):

mV̇x = Fx − Fdrag −mg(sinα+ crrcosα), (1)

where Fdrag [N ] the force due to air drag, Vx [m/s] is
the longitudinal speed, Fx [N ] is the force applied at the
wheels, and α [rads] is the road slope. The air drag is
further defined as:

Fdrag =
1

2
CdAV

2
x . (2)

The model coefficients are described in Table 2.

2.2 Powertrain component models

The electric energy consumption is calculated from the
power at the wheel Pwh[w] and the thermal system
PHVAC , based on the powertrain topology shown in Fig 1.
Here, a High-Voltage Battery (HVB) supplies power to
a thermal system and the vehicle power train, i.e. high-
voltage DC/DC converter, a motor Inverter (INV), an
Electric Motor (EM), and a fixed-gear transmission (TM).
The powertrain components are described in Pham et al.
(2016). The models are summarized in Table 1. These

TMEM + INVDC/DC

HVB
+-

𝑃𝑃𝑤𝑤𝑤𝑃𝑃𝑚𝑚𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖

𝑃𝑃𝑑𝑑𝑑𝑑Thermal 
System + 
T.Mgmt

𝑃𝑃𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

Fig. 1. Powertrain topology. The powertrain consists of a
High-Voltage Battery (HVB), a high voltage DC/DC
converter (DC/DC), an Electric Machine with an
Inverter (EM+INV), and a Transmission (TM).

Table 1. Powertrain models.

Component

power [W ]
Equation

Wheel Pwh = FxVx

Motor

output

Pm =
Pwh
ηtrans

∀Pwh > 0

Pm = Pwhηtrans ∀Pwh < 0

Inverter

input
Pinv =

(1−α1)−
√

(α1−1)2−4α2(α0+Pm)

2α2

DC/DC

input

Pdc = Pinv
ηdc

∀Pdc > 0

Pdc = Pinvηdc ∀Pdc < 0

Battery

terminal
Ps = Pdc + PHVAC

Battery

stored
Pbatt =

1−
√

1−4β0(Ps)

2β0

HVAC

input

PHVAC =
Q̇inlet

CoP+ ∀Q̇inlet > 0

PHVAC =
Q̇inlet

CoP− ∀Q̇inlet < 0

models range from constant efficiency to quadratic rela-
tions between input and output power. Note that the sign
convention is chosen such that a power flow that discharges
the battery is defined as positive. The thermal model is
further detailed in Section 2.3. Model parameters used
for the both the vehicle and thermal model are shown in
Table 2.

2.3 HVAC model

The magnitude of the HVAC power depends on the input
cabin heat flow Q̇inlet [J ], as defined below:

Q̇inlet = Cpρṁ(Tinlet − Tcab),

where ṁ [kg/s] is the (fixed) mass flow of the air inlet,
and Tcab [K] and Tinlet [K] are the cabin and inlet
temperatures respectively.

The simplified cabin thermal system is given by:

CthṪcab =
(Tamb − Tcab)

Rth
+ Q̇inlet+

KsunEsun +KpasNpas, (3)

with Tamb [K] is the ambient temperature. The thermal
model parameters are defined in Table 2.

3. MULTI-LAYER ENERGY MANAGEMENT
STRATEGY

This section presents the formulation of the PEMS con-
sisting of two layers: one for speed profile and one for
HVAC power. Each layer requires an optimization algo-
rithm. Dynamic Programming (DP) is selected as method
to solve these optimization problems, since this method
can find the global optimum for any (nonlinear) optimal
control problem, provided that the discretization grid is
chosen correctly. However, this method typically faces a
trade-off between optimality and computational demand,
since its computational cost increases exponentially with
the number of states of the dynamic model (see Guzzella
et al. (2007)).
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Fig. 2. Schematic overview of the multi-layer PEMS.

To keep the computational cost to a minimum, the opti-
mal control problem, consisting of finding optimal HVAC
power and optimal speed profile is separated into two
single-state optimization problems, which are solved se-
quentially. For this reason, it can be seen as a multi-layer
energy management strategy. In the case of passenger cars,
this approach will not significantly affect the optimality
of the found solution, since the HVAC power flows are
relatively small as compared to the power flows resulting
from driving the vehicle. At each time-step, the control
problem of finding the optimal speed profile is solved first,
since the HVAC control problem needs the predicted input
power flow to the DC/DC converter Pdc. A schematic
overview of the proposed optimization algorithm is shown
in Figure 2.

3.1 Speed profile optimization

The vehicle speed profile optimization seeks to minimize
total battery energy consumption, which is related to vehi-
cle speed Vx and tractive force Fx as shown in differential
Eq. 1 and Table 1. Although Eq. 1 is time-based, distance-
based prediction is preferred since the speed constraints

Table 2. Model parameters.

description value units

Vehicle parameters

m vehicle mass 2000 kg

crr rolling resistance 0.006 −
CdA Air drag and frontal area

coefficient
0.6 kg/m

Powertrain parameters

ηtrans transmission efficiency 0.98 −
α2 EM coefficient 5.6× 10−7 1/W

α1 EM coefficient −43×10−4 −
α0 EM coefficient 785 W

ηdc DC/DC converter
efficiency

0.99 −

β0 battery power loss coeffi-
cient

41× 10−7 1/W

CoP+ heating coefficient of per-
formance

2.14 −

CoP− cooling coefficient of perfor-
mance

-2.14 −

Thermal parameters

Cth thermal capacitance 113× 103 J/K

Cp specific heat 1000 J/Kg

Rth thermal resistance 15× 10−6 K/J

Esun sun Irradiance 265 W/m2

Ksun Irradiance area 1.77 m2

Kpas passenger metabolism 104 W

Npas Number of passengers 4 −

(e.g. legal speed limit) depend on the location of the vehicle
rather than time.

To derive a distance-based prediction model, Eq. 1 is
discretized as:

m
∆Vx
∆t

= Fx − F̄drag −mg(sinα+ crrcosα), (4)

where F̄drag [N ] is the average air drag force during
the discretization interval, ∆Vx [m/s] is the discrete-time
approximation of the change in vehicle speed, and ∆t [s] is
the time interval needed to move one step in the prediction.
The speed increase is further defined as

∆Vx = Vx − Vx(0), (5)

where Vx(0) [m/s] and Vx [m/s] are the speed at the start
and end of the discretization interval respectively. Eq. 5
and Eq. 4 can be used to compute the vehicle speed Vx.
However, Eq. 4 requires a definition of the average air drag
force and it is still dependent on the time interval ∆t.
An analytical expression for F̄drag is introduced to reduce
the error in ∆Vx-estimation. Such an error would occur
if Fdrag is calculated only using the speed at the start
of the discretization interval. These final two steps (i.e.
air drag definition and time interval dependency removal),
which result in an expression for ∆Vx are explained in the
following paragraphs.

Average air drag computation: the average air drag
force is computed assuming a linear increase in vehicle
speed during the discretization interval:

Vx(t) = Vx(0) +
∆Vx
∆t

t. (6)

Furthermore, the average air drag is defined as the time
integral of air drag, divided by the length of the time
interval:

F̄drag =
1

∆t

∫ ∆t

0

CdAV
2
x (t)dt. (7)

Substitution of Eq. 6 in Eq. 7 and solving the integral
yields:

F̄drag = CdA

(
V 2
x (0) + ∆VxVx(0) +

1

3
∆V 2

x

)
. (8)

Note that Eq. 8 has no dependency on ∆t.

Time interval dependency removal: to move the
discretization of Eq. 4 from the time to the distance
domain, consider the average speed V̄x as:

V̄x =
∆s

∆t
=

∆Vx
2

+ Vx(0),

which can be rearranged to an expression for ∆t:

∆t =
2∆s

2Vx(0) + ∆Vx
. (9)

Computation of the speed increase: finally, replacing
Eq. 8 and Eq. 9 into Eq. 4 yields:(

m

2∆s
+

1

3
CdA

)
∆V 2

x +Vx(0)
( m

∆s
+ CdA

)
∆Vx = Fx−

CdAVx(0)2 −mg(crrcosα+ sinα) (10)

Under the assumption of a linear speed increase, Eq. 10
is a quadratic equation in ∆Vx independent of ∆t. As a
result, solving for ∆Vx and replacing the result in Eq. 6
provides the means to compute the future speed of the
vehicle.
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Cost definition: the cost function is defined as:

C = f(Fx, Vx) =

N∑
i=1

Pbatt (Fx(i), Vx(i)) ∆t(i)

+

N∑
i=1

β∆t(i), (11)

where β is a tuning parameter, ∆t(i) the time interval
needed to move one step in the prediction, and N the
control horizon. The cost function consist of the discrete
time integral of the battery power and a term controlled by
a β that penalizes slow driving. The optimization problem
is defined as follows:

min
Fx

C

s.t. V x(s(i)) ≤ Vx,i(s(i)) ≤ V x(s(i))

Pn(Vx) ≤ Pn ≤ Pn(Vx),

(12)

where s(i) represents the distance in the location i. As can
be seen from Eq. 12, the control problem is subject to the
following constraints:

• Minimum and maximum speed V x and V x: as men-
tioned previously, the speed constraints are provided
on a distance-based, since legal traffic speed limits are
based on the location of the vehicle. These limitations
are implemented as hard constraints.

• Minimum and maximum power constraints Pn and
Pn: the powertrain components such as electric motor
and battery are limited in terms of minimum and
maximum power. In this constraint, n refers to each of
the powertrain components such as electric motor and
battery. These limitations are implemented as hard
constraints. Note that e.g. a motor torque constraint
can be reformulated as a speed-dependent power
constraint, hence the notation in Eq. 12.

• Average speed: a soft constraint on average speed is
added to the cost function in Eq. 11. This constraint
ensures that the vehicle does not slow down surround-
ing traffic. Because an additional distance state would
be needed to enforce a hard constraint on average
speed (i.e. requiring a minimum travelled distance
over the horizon), a soft constraint is used instead.
This constraint is controlled using β.

3.2 Thermal optimization

The state dynamics for cabin temperature are given by
differential Eq 3. The objective function of the thermal op-
timization is then defined as minimizing the battery energy
consumption over the control horizon via optimization of
the HVAC input power:

min
Tinlet(t)

∫ t

0

Pbatt (PHVAC(t), Pwh(t)) dt

s.t. T cab ≤ Tcab ≤ T cab

T inlet ≤ Tinlet ≤ T inlet

(13)

As previously mentioned, the sign convention is chosen
such that a positive power flow discharges the battery. Pwh

represents the power demand at the wheel that follows
from the speed optimization (see Figure 1). PHVAC is
defined in Table 1.

The optimization is subject to constraints on the maxi-
mum and minimum cabin temperature (T cab,T cab), as well
as constraints on maximum and minimum cabin air inlet
temperature (T inlet,T inlet). The maximum and minimum
cabin temperatures are set to provide a thermal comfort
zone for the driver, while allowing a buffer for the opti-
mizer to store or release energy in form of temperature.

4. SIMULATION RESULTS

This section provides with a set of simulations that show
the potential energy savings of the proposed PEMS.

The PEMS is simulated using Matlab/Simulink. The
parameters of a passenger BEV from Table 2 are used.
The controller parameters are ∆s = 10m, β = XX, and
N = 20 (i.e., 2000m). For the speed advisor, the speed
limit depends on the upcoming route, therefore varies
between V x(s(i)) = 50 km/h and V x(s(i)) = 100 km/h, as
shown in the next section. The constraints for the thermal
optimizer are T cab = 21◦C, T cab = 23◦C, T inlet = −10◦C,
and T inlet = 40◦C. The optimal control problem is solved
using a DP algorithm, written in C and implemented
via a Simulink S-function. The algorithm is implemented
in a computer with an Intel i7 4th generation processor
and 16 GB of RAM memory. The resulting algorithm
runs faster than real time. The PEMS is compared to
a baseline strategy, which uses Proportional Integral (PI)
control for speed and/or thermal management system. The
speed PI controller follows the traffic flow as a reference.
The thermal PI controller follows a reference equal to
the average temperature of the DP algorithm (within
the comfort zone of the driver). Both PI controllers were
tuned via trial-error to obtain the best performance with
reasonable system responses. The controllers are tested
using two drive cycles, one showing more frequent changes
of speed limit than the other. The results with each drive
cycle are explained in the next subsections. Energy savings
∆Ebatt are computed using the consumed battery energy
with PI and PEMS strategies, i.e.

∆Ebatt[kWh] = Ebatt,PI [kWh] − Ebatt,PEMS [kWh]

∆Ebatt[%] =
Ebatt,PI [kWh] − Ebatt,PEMS [kWh]

Ebatt,PI [kWh]
× 100,

where Ebatt,PEMS [kWh] and Ebatt,PI [kWh] are the con-
sumed battery energy with the PEMS and PI controller,
respectively.

4.1 Simulation results for cycle with frequent change of
speed limit

This cycle shows a large number of speed changes in order
to demonstrate the benefit of using preview information
for energy savings of the predictive algorithms.

Fig 3 shows the response of the speed profile when using
the developed PEMS compared to the baseline strategy.
It is noted that the PEMS uses DP for both speed and
thermal system, while the baseline strategy uses PI control
for speed and DP for the thermal system. To make a
fair comparison, the final average speed is virtually the
same at the end of the experiment. At the beginning of
the experiment, the PEMS goes to speed limit, while PI
controller goes with the average traffic flow. Because of
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Fig. 3. Comparison of speed profile generation strategies.

this response, there are initially no energy savings, i.e.
∆Ebatt < 0. However, due to the multiple speed changes,
the PEMS achieves a smoother speed profile, which results
in an increase of savings compared to the PI controller.

Fig 4 shows the effect of the PEMS of the HVAC. To make
a fair comparison, the final average cabin temperature
(T̄cab) is virtually the same at the end of the experiment.
The speed profile is kept the same in order to make a
fair comparison between controllers. The PEMS shows
positive energy savings during the whole experiment (i.e.
∆Ebatt > 0). The figure also shows that the there are
peaks of power consumption in the HVAC (i.e. the HVAC
is activated) every-time that the vehicle is regenerating
energy from the brakes. This allows to directly consume
the braking energy in cooling the cabin, rather than storing
it in the battery for later use. The energy savings are
generated by this process.

Table 3 shows the effect of each PEMS on energy sav-
ings over multiple ambient temperatures. The column ti-
tled “thermal PEMS” presents the energy savings, when
PEMS is used for the thermal system while PI control
is used for the speed. Likewise, the column titled “speed
PEMS” presents the energy savings, when the PEMS
is used for speed while a PI control is used for thermal
system. The column called “multi-layer PEMS” shows
the energy savings of using PEMS for both speed and
thermal optimization, compared to the baseline strategy.
In Table 3, energy savings of the PEMS in the HVAC
(column Thermal PEMS ∆EHVAC [%]), range from 12 to
41%. This is reflected on battery savings ranging from 1.1
to 1.6%. One can observe that using PEMS of the thermal
system helps to reduce the energy consumption of the

0 1 2 3 4 5 6 7 8
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50

100
Ambient temperature 40[oC]

0 1 2 3 4 5 6 7 8
22

22.5

23

23.5

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

Distance [km]

0

0.01

0.02

0.03

Fig. 4. Comparison of thermal management strategies.
The speed profile is generated with the predictive
EMS on both controllers. T̄cab is the average cabin
temperature.

HVAC which ultimately contributes to the reduction of
the battery energy. The table also shows that the thermal
PEMS shows potential energy savings across the multiple
ambient temperatures considered in the experiment. It can
also be noticed that when using the multi-layer PEMS,
the energy savings of the individual thermal and speed
optimization roughly result in the total savings of the
multi-layer strategy. Therefore, adding multiple layers is
beneficial to the total energy savings of the vehicle.

4.2 Simulation results for cycle with little change on
maximum speed limit

The aforementioned controllers were also tested on a real
drive cycle. Such cycle corresponds to the road from the
Automotive campus in the city of Helmond to the city
centre of Helmond. Compared to the previous drive cycle,
Helmond drive cycle does not include significant speed
changes while the road elevation is virtually zero. The
results of Helmond drive cycle are shown in Table 4, which
follows the same conditions of Table 3.
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Table 3. Effect of PEMSs on energy savings.
The comparison is made with a PI control
using the generated cycle. Temperature effect
is also shown. ∆EHVAC is computed in the
same way as ∆Ebatt but considering HVAC

power consumption instead.

Tamb
Thermal PEMS

Speed
PEMS

Multi-
layer

PEMS
∆EHVAC

[%]
∆Ebatt

[%]
∆Ebatt

[%]
savings

[%]

-10 21.65 1.3 5.6 6.9

0 41.1 1.6 5.7 7.3

20 35.95 1.1 5.6 6.8

30 21.75 1.5 5.6 7.2

40 12.95 1.5 5.6 7.1

Table 4. Effect of PEMSs on energy savings.
The comparison is made with a PI control
using the cycle from Helmond. Temperature

effect is also shown.

Tamb
Thermal PEMS

Speed
PEMS

Multi-
layer

PEMS
∆EHVAC

[%]
∆Ebatt

[%]
∆Ebatt

[%]
savings

[%]

-10 11.3 1.1 0.4 1.6

0 25.15 1.5 0.6 2.1

20 38.05 1.6 0.6 2.3

30 14.55 1.25 0.55 1.8

40 8 1 0.5 1.6

Table 4 shows that the speed optimization have lower
energy savings in the Helmond drive cycle. This is because
the fewer speed changes give less room to save power by
generating an optimal speed profile that reduces losses in
the powertrain. Therefore, the savings of the speed PEMS
are more significant when frequent changes on speed
are required. Once again, savings are observed across all
the tested ambient temperatures. Likewise, the individual
savings of each layer of the PEMS are virtually added to
the total savings of the multi-layer PEMS.

5. CONCLUSIONS

A multi-layer Predictive Energy Management System
(PEMS) for Battery Electric Vehicle (BEV) has been
presented, which consists of two layers. The first layer gen-
erates a speed profile (i.e. speed optimization) that mini-
mizes driving energy. The second layer minimizes the total
battery energy consumption produced by the Heating,
Ventilation, and Air Conditioning (HVAC) system (i.e.
thermal optimization). Simplified powertrain and vehicle
models are used to accelerate the optimization algorithm
inside of each PEMS layer.

Simulations are used to compare the savings of individual
PEMS layers (i.e. either speed or thermal optimization),
the multi-layer PEMS, and a baseline PI strategy for
speed and/or thermal control. Each individual PEMS
layer and the multi-layer PEMS show energy savings
when compared to the baseline controller. Evaluating
the performance of only the thermal optimization shows
that the thermal PEMS saves energy even when multiple
ambient temperatures are considered. Likewise, evaluating

the energy savings of only the speed PEMS shows that
savings depend on the amount of speed changes forced by
the road profile: more speed changes potentially results in
more energy savings. Moreover, the individual savings of
each PEMS layer, virtually adds up to the total savings
of multi-layer PEMS.

As future work is considered to explore theoretical aspects
such as including uncertainty in traffic conditions into the
PEMS, as well as more practical aspects such as the driver
satisfaction while using the multi-layer PEMS.
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