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Abstract:
This paper presents an integrated framework for the dynamic performance estimation (DPE) of
mechatronic scanners in the design phase, which is based on frequency domain models of system
components and signals in the system. It considers stochastic noise sources (e.g. sensor noise) as
well as deterministic signals (e.g. reference trajectory) and propagates each signal to the desired
performance output (e.g. actuator current) via obtained transfer functions. The framework is
evaluated for a 2 inch fast steering mirror (FSM) dedicated as optical scanner by comparing
estimated and measured values for positioning uncertainty, rms coil current and rms tracking
error. The estimated positioning uncertainty for the FSM with a range of 52.4 mrad deviates
only 0.74 µrad from the measured value. The estimated values for three tested raster trajectories
also show good agreement with the measurements resulting in averaged relative deviations of
12% for the rms current values and between 15-17% for the rms tracking error.
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1. INTRODUCTION

In the design phase of mechatronic scanning systems a
reliable estimation of the resulting performance of the
feedback and/or feedforward controlled system is a valu-
able input for the designer. A reliable virtual prototyping
framework enables (i) the cutting of costs in the design
phase (ii) a speed-up of the design process and (iii) en-
hanced insights into the system design and the interrela-
tions between components [Munnig Schmidt et al. (2014)].
Considerable research efforts have thus been invested into
the development of generic computer-based design tools
to predict the interaction between subsystems and conse-
quences of design choices for mechatronic motion systems
in the conceptual design phase [Coelingh et al. (1998)].
Approaches employing genetic algorithms for evaluating
combinations of sub-concepts from mechanics and control
[Avigad et al. (2003)] or a mechatronic design quotient
as multicriteria index, reflecting the system-based evalu-
ation of a mechatronic design, are reported [Behbahani
and de Silva (2008)]. These more general design tools
may provide good starting points for a system design but
seem not applicable for shaping the properties of e.g. a
particular high performance system.

Concepts more focused on predicting and optimizing the
performance of mechatronic high precision systems include
the prediction of the resolution in nano-positioning system
from the measured closed-loop actuator voltage [Fleming
(2014)] and the concept of dynamic error budgeting (DEB)
for determining the resolution of high precision machines
[Jabben (2007), Monkhorst (2004)]. The latter has been
used frequently for analysis, design an optimization in sev-
eral applications including PMSM driven telescope mounts

[Riel et al. (2016)], one degree of freedom nano-metrology
platforms [Saathof et al. (2017)] and long stroke linear
nano-positioners [Okyay et al. (2018)], confining itself to
stochastic disturbances. Both concepts target primarily
the determination of the resulting steady state positioning
uncertainty as the sole performance output of the system.

However, for mechatronic scanning systems, such as fast
steering mirrors (FSMs) used in scanning optical sensors
[Schlarp et al. (2019)] or material processing [Hedding
and Lewis (1990)], there may be additional performance
outputs, such as energy consumption or tracking error,
which are of interest in the design phase. For systems
tailored to a certain application e.g. the information on
which trajectory type (raster, Lissajous, spiral, etc.) with
which combinations of frequency and amplitude can be
continuously tracked within the thermal limits of the
actuator and power electronics may be of highest interest
[Csencsics and Schitter (2017b)].

The contribution of this paper is an integrated framework
enabling the dynamic performance estimation (DPE) of
arbitrary performance outputs within a feedback and/or
feed-forward controlled mechatronic system under the con-
sideration of stochastic as well as deterministic signals. It
is based on a frequency domain description of signals enter-
ing the system, allows the assessment of components and
feasible scan trajectories and is experimentally validated
using a commercial FSM.

2. DYNAMIC PERFORMANCE ESTIMATION

The DPE framework enables the prediction of arbitrary
performance outputs of a mechatronic system based on
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frequency domain models for components, i.e. transfer
functions (TFs), and signals in the system, i.e. power spec-
tral density (PSD) models. The DPE is able to consider
deterministic signals in addition to stochastic signals and
thus extends the idea of DEB [Jabben (2007)], determining
the positioning uncertainty of a mechatronic system in
standstill by considering only stochastic disturbances.

2.1 Stochastic signals (DEB)

In the DEB approach the single sided PSD is used to define
the power of a signal per unit of frequency. For a time
signal n(t) with zero mean the PSD Sn(f) is linked to the
variance (equaling the mean square value) by

σ2
n = x2n,rms =

∞∫
0

Sn(f)df. (1)

This relation resembles Parseval’s theorem relating power
in the time and frequency domain. The PSD of the signal
n entering the system at a certain point can be propagated
to a desired performance output y via

Sn→y(f) = |Gy,n(jω)|2 Sn(f) (2)

with Gy,n(s) being the transfer function from input n to
output y. The resulting overall PSD at the performance
output y can then be obtained by summation of the PSDs
of all disturbances and signals in the system

Sy(f) =
∑
i

|Gy,ni
(jω)|2 Sni

(f). (3)

and the resulting rms value of the performance output can
be calculated via (1).

2.2 Extension to deterministic signals (DPE)

When considering periodic signals the PSD will show infi-
nite peaks (Dirac pulse), which hinders their consideration
for a performance estimation in the frequency domain. In
practice, however, these peaks will not be infinite, as the
PSD of a periodic signal is calculated discretely, e.g. using
the Fast Fourier transform (FFT), and the energy content
is distributed over a small frequency range ∆f . In the DPE
framework the FFT of the periodic signal is thus used to
approximate the single sided PSD by its discrete version
Sk(k · ∆f), feeding it directly to the respective input
and propagating the discrete PSD values to the desired
performance output. The discrete PSD of the performance
output is obtained by summation of the discrete PSD of
the propagated periodic signal and discretized versions of
the propagated noise PSD models. To estimate the rms
value of the performance output y, the integral over the
PSD in (1), for calculating the cumulative power spectrum
(CPS), is replaced by a discrete summation

yrms =
√
CPSy(fN ) =

√√√√ N∑
k=1

Sk,y(k ·∆f) ·∆f. (4)

with ∆f the frequency sampling rate of the PSD,
fN the Nyquist frequency of the sampled system and
N = fN/∆f . This enables an integrated DPE framework

able to consider stochastic as well as deterministic signals,
providing good estimates of several performance outputs
of the close-loop controlled mechatronic system, as will
be shown in the following. The effects of a potential DC
offset on the respective performance output may easily be
calculated by the static gain of the system.

3. EXPERIMENTAL SYSTEM DESCRIPTION AND
IDENTIFICATION

Fig. 1. Commercial fast steering mirror system (OIM102,
Optics in Motion LLC, Long Beach, USA). The 2”
mirror is actuated by voice coil actuators, while an
internal optical sensor measures the mirror position.

To validate the framework for DPE a commercial FSM
system (Type: OIM102, Optics in Motion LLC, Long
Beach, USA) with a 2 inch mirror and a maximum range of
±26.2 mrad (±1.5 deg) is used (see Fig. 1). The two system
axes are actuated by two pairs of voice coil actuators with
moving magnets and static coils, operated in push-pull
configuration. The position of the flexure guided mover is
measured by an internal optical position sensor. In order
to have all signals in the system accessible, the commer-
cial drive electronics and control system is replaced. The
actuator coils of each axis are directly driven by a cus-
tom made voltage controlled current amplifier (OPA544T,
Texas Instruments Inc., Dallas, TX, USA). The controller
is implemented on a rapid prototyping platform (Type:
DS1202, dSPACE GmbH, Germany) running with a sam-
pling frequency of fs = 50 kHz. The rapid prototyping
system also implements a rotation matrix to transform
the actuator into the sensor coordinate system, which are
initially 45◦ rotated with respect to each other [Csencsics
and Schitter (2017b)]. To determine the overall current
consumption of the FSM driven in a single (sensor) axis
the currents of both actuator axes thus need to be added.

For system identification a system analyzer (3562A,
Hewlett-Packard, Palo Alto, CA, USA) is used. The me-
chanical system with the mirror, the amplifier and the
internal sensor are together considered as the plant G(s).
The input of the rapid prototyping system, implementing
the rotation matrix, is the system input while the position
sensor signal is considered as system output. The measured
TFs of both mirror axes are identical, as depicted in Fig. 2,
and show a suspension mode at about 12 Hz. The cross-
coupling between the axes (data not shown) is more than
40 dB lower than the single axis TFs, enabling the use
of single-input-single-output controllers. The TF of the
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current amplifier (data not shown) with the input voltage
of the amplifier as input and the output current considered
as the system output shows a flat response with a -3 dB
bandwidth of 30 kHz and an amplifier gain of 0.2 V/A.
System parameters relevant for the subsequent estimation
are summarized in Table 1.
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Fig. 2. Frequency responses of the FSM system plant G(s).
The response of the FSM x- (solid green) and y-axis
(solid red) with suspension modes at 12 Hz are shown
together with the system model (dashed blue).

Table 1. System parameters.

Parameter Value

Sampling frequency fs 50 kHz
Nyquist frequency fN 25 kHz
Number of bits 16
Input range ±10 V
LSB voltage q 0.301 mV
Amplifier gain ga 0.2 A/V
Sensor gain gs 10/26.2 V/mrad

4. SYSTEM AND SIGNAL MODELING

Before applying the DPE framework the components as
well as the noise and signal sources in the system have
to be modeled in the frequency domain and according
TFs have to be obtained. For this purpose the schematic
block diagram in Fig. 3 is considered. It has inputs for
the reference signal and the noise sources related to the
D/A converter, amplifier, sensor and A/D converter. The
performance outputs of interest are the mover position θx,
the coil current icoil and the tracking error ex.

4.1 System Modeling

To model the measured frequency response of the plant
dynamics (see Fig. 2) a second order model

G(s) = K · ω2
0

s2 + 2ζω0s+ ω2
0

· e−sTs (5)

with a DC gain K = 19.95 V/V, a suspension mode at
11.9 Hz (ω0 = 74.77 rad/s), a damping ratio of ζ = 0.08
and Ts = 20 µs, representing the sampling delay, is used.
The modeled TF is also depicted in Fig. 2.

The dynamics of the amplifier (data not shown) can also
be modeled by a highly damped second order system

GA(s) = KA ·
ω2
0

s2 + 2ζω0s+ ω2
0

≈ KA (6)

with actuator gain KA = 0.2 A/V, ω0 = 1.885e5 rad/s and
damping ratio ζ = 0.8. As the -3 dB bandwidth of 30 kHz
is, however, already larger than the Nyquist frequency of
the digital system fN = 25 kHz, the amplifier dynamics in
the frequency range of interest can be well approximated
by the constant actuator gain KA.

The optical position sensor system is based on a position
sensitive device with analog readout. As there are no
additional dynamics obtained in the system identification
and spectrum of the sensor noise (see Fig. 4) due to the
optical principle and analog readout, the bandwidth of the
sensor is considered to be significantly higher than the
frequency range of interest, such that it can be modeled
by a constant gain

GS(s) = Ksens = 0.382 V/mrad. (7)

The transfer functions of the A/D and D/A converter
can be modeled by the dynamics of their anti-aliasing
and reconstruction filter, respectively [Riel et al. (2016)].
With cut-off frequencies well beyond 10 kHz, their gains
are considered unity for this investigation. To consider the
delay of the rapid prototyping system a time delay of half
the sampling time is used for each converter, resulting in

GAD(s) = GDA(s) = e−sTs/2. (8)

With the dynamics of amplifier, sensor, A/D and D/A
converter the dynamics P (s) of the mechanical system
with the actuator can be calculated from the measured
frequency response G(s) via

P (s) =
G(s)

GDA(s)GA(s)GS(s)GAD(s)
. (9)

4.2 Position Controller Design and Implementation

As the commercial FSM is a low stiffness system, for which
the crossover frequency of the loop gain is typically placed
on the mass line [Csencsics and Schitter (2017a)] and as the
built-in feedback controller of the commercial FSM is also
a PID controller, a PID structure is chosen for designing
the feedback controller. The controller is tuned for a loop
gain crossover frequency of fc = 280 Hz [Munnig Schmidt
et al. (2014)], in order to resemble the closed-loop response
with the built-in commercial controller. This results in a
second order controller of the form

C(s) = KPID ·
s2 + 2ζωz + ω2

z

s · (s+ ωp)
(10)

withKPID = 100.7, ωp = 6.16e3 rad/s, ωz = 286 rad/s and
ζ = 0.836. The integrative behavior, which increases the
loop gain at low frequencies, is stopped at 45 Hz to enable
phase recovery until the crossover frequency at 280 Hz.
The differential action generates a phase lead of 55◦ around
the crossover and is stopped by a pole at 980 Hz.

The controller is discretized using Pole-Zero-Matching
[Franklin et al. (1997)] for the sampling frequency of
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Fig. 3. Block diagram of the position control loop of the FSM x-axis with the individual system components, considered
noise and signal sources and the performance outputs coil current icoil, angular position θx and error ex.

fs = 50 kHz and implemented on the dSpace system.
The measured loop gain and complementary sensitivity
function (data not shown) show a phase margin of 46◦

and a -3 dB bandwidth of 550 Hz. As the dynamics of
both axes are identical the same controller can be applied.

4.3 Noise and Signal Modeling

The noise characteristics of the individual components
in the design phase can typically be modeled based on
already existing knowledge or specifications provided in
the component data sheets [Fleming (2014)]. For accurate
validation of the DPE the noise models of the components
are obtained based on previous noise measurements.

A/D Converter. The main noise sources of an ADC
can be divided into (i) quantization noise, due to the
quantization error made at every sampling step, and (ii)
electrical noise of the component [Monkhorst (2004)].
With the 16 bit converters of the rapid prototyping system
and an input range of ±10 V the least significant bit
(lsb) voltage q = 20/216 = 0.305 mV can be obtained.
The quantization noise is modeled as white noise with
zero mean and a standard deviation of [Oppenheim et al.
(1998)]

σADq =
q√
12

= 0.088 mVrms. (11)

The electrical noise is obtained with a short circuited
input of the ADC and results in a standard deviation
σADe = 0.29 mVrms, which is significantly larger than
the quantization noise. For consideration of low frequency
noise components, the ADC noise is modeled by a com-
bination of white and 1/f noise with a corner frequency
fnc,AD = 5 Hz obtained from the spectrum of the measured
electrical noise [Riel et al. (2016)]. The white gaussian
noise up to the Nyquist frequency fN is defined by stan-
dard deviations σADq and σADe, resulting in the PSD
model

SAD(s) =
σ2
ADq + σ2

ADe

fN
· s+ 2πfnc,AD

s
. (12)

D/A Converter. Since the quantization error in-
troduced by the DAC is similar to that of the ADC
and since both have the same lsb voltage value q, the
same standard deviation can be used for the quantization
noise: σDAq = σADq = 0.088 mVrms. The electri-
cal noise is again obtained by setting the input value

of the DAC to zero and measuring the analog output,
which results in white noise with a standard deviation of
σDAe = 0.13 mVrms. The model for the PSD of the DAC
up to the Nyquist frequency fN results to

SDA(s) =
σ2
DAq + σ2

DAe

fN
= 0.9 · 10−12 V2

rms/Hz. (13)

Amplifier. To get a measure for the noise of the
amplifier, the input is short circuited and the output
current is measured, resulting in a standard deviation
of σA = 0.12 mArms. The measured signal shows a flat
spectrum, such that the PSD model up to fN can again
be calculated by [Jabben (2007)]

SA(s) =
σ2
A

fN
= 5.6 · 10−13 A2

rms/Hz. (14)

Position sensor. For obtaining a model for the po-
sition sensor noise, the FSM is situated on a vibration
isolation table, the actuator coils are left open and the
output signal of the sensor is measured. To also consider
the effects of low frequency noise, the sensor noise is
modeled by a combination of white and 1/f noise with
a corner frequency of fnc,S = 100 Hz obtained from the
spectrum of the measured noise signal [Riel et al. (2016)].
With the standard deviation of σS = 0.73 mVrms the PSD
model up to fN results to

SS(s) =
σ2
S

fN
· s+ 2πfnc,S

s
. (15)

The measured and modeled PSD of the sensor noise is
illustrated in Fig. 4. The peak value around 10 Hz is
explained by the mechanical resonance of the suspended
mover, which was not fixed during the measurement, and
may be excited by remaining vibrations (e.g. from ground).

Reference signal. As raster trajectories have several
frequency components and are commonly used scan tra-
jectories in various optical scanning [Schlarp et al. (2019)]
and other imaging applications [Schitter et al. (2008)], a
triangular signal with harmonics up to the 11th order

θx,ref = A
8

π2

11∑
k=1

(−1)k−1
sin(2k − 1)2πfrt)

(2k − 1)2
(16)

is used as reference for the fast scanning system axis. The
single sided PSD of the reference signal, which is directly
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Fig. 4. Measured and modeled PSD of the sensor noise.
The white noise level is determined via the measured
standard deviation of the time signal.

calculated by using the FFT. For simplicity the reference
signal of the slow scanning axis is kept at zero, resulting
in a one dimensional scanning motion.

5. EXPERIMENTS AND VALIDATION

The DPE framework is validated by comparing the es-
timated values for the performance outputs positioning
uncertainty, coil current and tracking error, obtained based
on the models from the previous section and TFs ac-
cording to Fig. 3, with measurements of the respective
performance output on the commercial FSM system. For
evaluation of the estimations for scanning operation, raster
trajectories (see (16)) with fundamental frequencies of
fr = {10; 30; 50} Hz and various amplitudes A are used as
fast axis reference, having their 11th harmonic still covered
by the bandwidth of the closed-loop controlled FSM.

For estimating the resulting positioning uncertainty of the
closed-loop controlled system, the reference input is set
to zero and the PSD models of the contributing noise
sources at the position output θx are integrated and
plotted as cumulative power spectra (CPS) in Fig. 5.
The optical position sensor is clearly the dominating
disturbance source, followed by the A/D converter. The
estimated positioning uncertainty is 0.498 µrad (see (4)
and shows reasonable agreement with the measured value
of 1.26 µrad, calculated via the rms value of the measured
time signal.

To predict combinations of trajectories and scan ampli-
tudes that are feasible to be continuously tracked within
the thermal limits of the actuators (and amplifiers), the
rms current consumption is evaluated. The rms current
limit is set to 800 mA, according to previous experiments.
In Fig. 6 the CPS due to the various inputs is depicted
at the coil current output for a reference raster trajectory
with fr = 30 Hz and A = 13.1 mrad. As expected the
reference signal θx,ref (solid cyan) is the dominating com-
ponent for the obtained coil current value (dashed black),
which results to 570 mA rms. For comparison also the
CPS of the measured current (dash-dotted red), which is
the sum of the currents through both actuation axes (see
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Fig. 6. Simulated cumulative power spectrum (CPS) at
the coil current output icoil for a reference raster
trajectory with fr = 30 Hz and A = 13.1 mrad. The
rms current consumption results to 570 mA.

Section 3), is plotted in Fig. 6. It shows good agreement
with the estimated CPS, resulting in a current of 550 mA,
equaling an estimation error of 3.5%.

In Fig. 7a a comparison of estimated and measured rms
coil currents, which are calculated from the measured time
signals, is depicted when the FSM is tracking the 10, 30
and 50 Hz raster trajectories with increasing amplitudes.
The 50 Hz and 30 Hz trajectory reach the current limit at
7.9 mrad and around 19 mrad, respectively, while with the
10 Hz trajectory scan amplitudes up to the system range
are possible. The estimated current values show a linear
tendency and represent good estimations for the measured
current values of all three trajectories with deviations of
12% rms and 20% max. These deviations may result from
unmodeled nonlinearities and crosstalk dynamics.

Considering the rms error for continuous tracking of a
scan trajectory, Fig. 7b shows a comparison between the
estimated values and measured results, which are again
calculated from the measured time signals. The estimated
values show again linear relation to the scan amplitude and
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Fig. 7. Comparison of estimated and measured rms values for the performance outputs coil current and tracking error
when the FSM is tracking 10 Hz, 30 Hz and 50 Hz raster trajectories of arbitrary amplitude.

are again in good agreement with the experimental results.
The relative deviations between estimation and measure-
ment are between 15-17% rms for the tested trajectories.

In summary it is demonstrated that the dynamic perfor-
mance estimation framework can be used for an efficient
prediction of various performance outputs of a mecha-
tronic scanner, including current consumption, tracking
error and positioning uncertainty,

6. CONCLUSION

In this paper an integrated framework for dynamic perfor-
mance estimation of mechatronic scanning systems is pre-
sented, capable of properly predicting various performance
outputs of the system. The estimation relies on frequency
domain models of the individual components and considers
stochastic as well as deterministic signals entering the
system, providing an integrated design tool. The results
of the DPE framework are validated using measurements
on a commercial FSM, showing with averaged deviations
around 12% for current values and between and 15-17%
for tracking error good agreement with the experimental
results. Future work is concerned with improving the mod-
eling, including nonlinearities and crosstalk dynamics.
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