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Abstract: In this manuscript, we consider the stability problem of Lur’e systems with slope-
restricted nonlinearities. We focus on a specific parametrisation of the Lyapunov-Lur’e functional
in the literature, and extend it to a higher order. Meanwhile, we show this Lyapunov-Lur’e
functional based stability criterion is equivalent to the search for noncausal FIR multipliers
with a restricted form for the SISO case. Finally, we discuss the restrictions of this Lyapunov-
Lur’e functional approach with some numerical examples.
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1. INTRODUCTION

This manuscript focuses on the stability of a Lur’e sys-
tem (Lurie and Postnikov, 1944) in discrete-time, as shown
in Fig. 1, where the plant G is linear time-invariant (LTI)
and stable, and the nonlinearity (uncertainty) operator
ϕ is memoryless, sector-bounded in the range [0,Ψ] and
slope-restricted in the range [0,Γ]. A classic problem is
to find the largest 1 possible Ψ and Γ that preserve the
stability, and this problem is still open due to the lack of
necessary and sufficient condition.
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Fig. 1. The Lur’e system.
The stability of Lur’e systems is mainly studied in two
frameworks: Lyapunov stability and input-output stabil-
ity. Asymptotic stability is studied in the Lyapunov frame-
work, which is based on internal state variables of the un-
forced systems; ℓ2-stability is studied in the input-output
approach, which is based on the input-output mapping of
the forced systems. As asymptotic stability and ℓ2 stability
imply each other (Vidyasagar, 2002), it can be instructive
to explore the relation between the two approaches. The
well-known Popov theorem and small-gain theorem can be
constructed in both frameworks (Khaill, 2002; Vidyasagar,
2002), but both of them are conservative in general.
In the Lyapunov approach, the most recent results are
provided by Park et al. (2019), where a Lyapunov-Lur’e
functional is used for systems with sector and slope re-
stricted nonlinearities. In a Lyapunov-Lur’e functional, a
Lur’e term is added to the original quadratic term:∫ σ2

σ1

ϕ j(σ)dσ ≥ 0. (1)

1 The definition of largest is not standard for MIMO system.

where the operator ϕ j is the jth element of a MIMO opera-
tor ϕ and signals σ1 and σ2 are inputs to ϕ j. Furthermore,
the sector and slope conditions can be utilised in the Lur’e
term by extending (1) as∫ σ2

σ1

(ψ j −ϕ j(σ))dσ ≥ 0 and
∫ σ2

σ1

(γ j −ϕ j(σ))dσ ≥ 0, (2)

where ψ j and γ j are the jth diagonal elements of Ψ and Γ
respectively. With the Lyapunov-Lur’e functional with (1)
and (2), three main facts are considered to influence the
conservativeness by Park et al. (2019). First, as studied
in Park and Kim (1998); Ahmad et al. (2013); Park
et al. (2015), a tighter estimation of the upper bound and
lower bound of (1) deserves a less-conservative stability
condition. Second, it is a natural idea to obtain less-
conservative results by including more data points. In
other words, more combinations of yi, yi+1, yi+2, etc. are
desired to be included in (1) (2). Finally, some other sector
and slope conditions can be added to the final stability
LMI. Similar analysis for the continuous-time case is in
Turner and Kerr (2014), where the L2 gain bounds are
also provided.
In the input-output approach, recent results are provided
by Wang et al. (2014); Fetzer and Scherer (2017); Carrasco
et al. (2020), which deals with SISO and MIMO case
respectively. Particularly, the search on a wide subclass
of LTI Zames-Falb multipliers (Willems and Brockett,
1968), called finite-impulse-response (FIR) multipliers, are
proposed by Carrasco et al. (2020). The search on the
multiplier M is conducted in frequency domain,

Re{M(z)(1+ΓG(z))}> 0 ∀|z|= 1. (3)
In contrast to Lyapunov function and continuous-time
Zames-Falb multipliers (see the tutorial paper Carrasco
et al. (2016)), the class of discrete Zames-Falb multipliers
is given as a necessary and sufficient condition (Willems
and Brockett, 1968), leading to complete argument which
has been used to establish a new conjecture (Wang et al.,
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2018), where the existence of a Zames-Falb multipliers is
a necessary and sufficient condition for stability.
In this paper, we provide an insight into the parametrisa-
tion of the Lyapunov-Lur’e functional by Park et al. (2019)
and its relation to the multiplier search by Carrasco et al.
(2020). The main results and contributions are in Section
3. First, we construct a Lyapunov-Lur’e functional with
more information based on the analysis by Park et al.
(2019). Specifically, we further include the sector condition
at yi+2, and the slope conditions between (yi,yi+2) and
(yi+1,yi+2) in the Lur’e terms. Meanwhile, we add the
sector condition at yi+3, and the slope conditions between
(yi,yi+3) to construct the LMI. Then, we interpret this
parametrisation of Lyapunov-Lur’e functional in frequency
domain, and show that it is equivalent to the search on
a restricted form of third order FIR multipliers in the
SISO case. Finally, some restrictions on the Lyapunov-
Lur’e functional stability criterion are discussed. In Section
4, a few examples verify the relations between the two
criteria.

2. PRELIMINARIES

Consider the feedback interconnection in Fig. 1, the LTI
system G has the state-space representation

G(z)∼
{

xi+1 = Axi −Bϕ(yi)

yi =Cxi
, (4)

where xi ∈ Rn and yi ∈ Rm are the state and output of
G at time instant i respectively; the matrices A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rm×n, and A is Schur. With some abuse
of notation, the memoryless nonlinearity operator ϕ is
defined by a static multivariable function ϕ : Rm 7→ Rm is
sector bounded and slope restricted, i.e.

ϕ(yi)≡
[
ϕ1(y1

i ) ϕ2(y2
i ) · · · ϕm(ym

i )
]T

, (5)

0 ≤
ϕ j(σ)

σ
≤ ψ j ∀σ ̸= 0, (6a)

0 ≤
ϕ j(σ2)−ϕ j(σ1)

σ2 −σ1
≤ γ j ∀σ1 ̸= σ2, (6b)

where ψ j and γ j ( j = 1,2, · · · ,m) are the jth elements in the
positive diagonal matrices Ψ and Γ respectively. We denote
nonlinearities that satisfy (6) as ϕ ∈ [0,Ψ] and ϕ ∈ S[0,Γ].
The expression G∗(z) denotes the complex conjugate trans-
pose of G(z) on |z| = 1, i.e. G∗(z) = GT

( 1
z

)
, where the

superscript T indicates the transpose. For a matrix M,
He{M} = M + MT ; M > 0 means M is positive definite;
⋆ represents terms of a symmetric matrix which can be
inferred by symmetry.
Some preliminaries in Park et al. (2019) are repeated here
for completeness, and see details there and the references
therein.
Lemma 1. (Park et al. (2015)). For the a nonlinearity ϕ in
(5) and satisfying (6), lower and upper bounds of the Lur’e
term are given by L ≤

∫ σ2
σ1

ϕ j(σ)dσ ≤U , where

L ≡ ϕ j(σ1)(σ2 −σ1)+
1

2γi

{
ϕ j(σ2)−ϕ j(σ1)

}2
, (7a)

U ≡ ϕ j(σ2)(σ2 −σ1)−
1

2γi

{
ϕ j(σ2)−ϕ j(σ1)

}2
. (7b)

Moreover, following Park et al. (2019) conditions in (6)
can be rewritten as follows

ϕ j(σ)

{
σ − 1

ψi
ϕ j(σ)

}
≥ 0, (8a)

[ϕ j(σ2)−ϕ j(σ1)]

{
(σ2 −σ1)−

1
γi
[ϕ j(σ2)−ϕ j(σ1)]

}
≥ 0,

(8b)
for any σ , σ1, and σ2. In particular, if setting σ2 = yi+n and
σ1 = yi in (8b), this inequality implies a nth step (order)
relation.
The details to parametrise a Lyapunov-Lur’e functional
candidate will be provided as the main results in Section
3.
We consider a subclass of discrete-time LTI Zames-Falb
multipliers (see definition of Zames-Falb multipliers in
Willems and Brockett (1968)).
Definition 1. (FIR multipliers (Carrasco et al., 2020)).
The convolution operator M is a noncausal FIR Zames-
Falb multipliers if

M(z) =−hnbz−nb · · ·−h1z−1 +h0 −h−1z · · ·−h−n f zn f , (9)
where the causal part is with the backward-shift operator
z−ib (ib = 1,2, · · · ,nb), and the anticausal part is with the
forward-shift operator zi f (i f = 1,2, · · · ,n f ). The coeffi-
cients h−i f > 0, hib > 0, and satisfy ∑nb

ib=1 hib +∑
n f
i f =1 h−i f ≤

h0, where we can set h0 = 1 without loss of generality.

3. MAIN RESULTS

3.1 Lyapunov-Lur’e stability criterion

In spirit of Park et al. (2019), the theorem below guar-
antees the stability of Lur’e systems with slope-restricted
nonlinearities.
Theorem 1. Consider the feedback system in Fig. 1, with
G in (4), and ϕ in (5) satisfies (6), i.e. G is stable and
G ∼ [A B;C 0], ϕ ∈ [0,Ψ] and ϕ ∈ S[0,Γ]. The feedback
system is stable if there exist a symmetric matrix P ∈
R(3n+3m)×(3n+3m), positive diagonal matrices M11, M12, M21,
M22, M31, M32, N11, N12, N21, N22. N31, N32, L0, L1, L2, L3,
S1, S2, S3 ∈ Rm×m, such that

P̂ = P+Ξ > 0, (10)
Ω̂ = Ω1 +Ω2 +Ω3 < 0, (11)

where Ξ = [Ξ]6×6 is defined in (12), and Ω1, Ω2, Ω3 are
defined in (13), (14), (15) respectively.

Ξ11 =CT (M12+M32)ΓC+CT N12ΨC; Ξ21 =−CT M12ΓC;

Ξ22 =CT (M12 +M22)ΓC+CT N22ΨC; Ξ31 =−CT M32ΓC;

Ξ32 =−CT M22ΓC; Ξ33 =CT (M22 +M32)ΓC+CT N32ΨC;
Ξ41 =−(M12 +M32 +N12)C; Ξ42 = M12C; Ξ43 = M32C;

Ξ44 = (M11 +M12 +M31 +M32 +N11 +N12)Γ−1; Ξ51 = M12C;

Ξ52 =−(M12 +M22 +N22)C; Ξ54 =−(M11 +M12)Γ−1;

Ξ53 =M22C; Ξ55 =(M11+M12+M21+M22+N21+N22)Γ−1;
Ξ61 = M32C; Ξ62 = M22C; Ξ63 =−(M22 +M32 +N32)C;

Ξ64 =−(M31 +M32)Γ−1; Ξ65 =−(M21 +M22)Γ−1;

Ξ66 = (M21 +M22 +M31 +M32 +N31 +N32)Γ−1. (12)
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Ω1 =


−P−Ξ

⋆
⋆
⋆
⋆
⋆
⋆

0 0 0 0 0 0 0


. (13)

Proof. See the sketch of the proof in Appendix A.
Remark 1. The matrix Ω is expressed as the summation of
Ω1, Ω2, Ω3, and some terms are added and subtracted at
the same time. This particular expression is not required
for Theorem 1, but it will be used in the next part.
Remark 2. Compared to the most recent Lyapunov liter-
ature (Park et al. (2019)), we further include conditions
involving three future steps in the proof, i.e. yi+1, yi+2,
yi+3; hence it implies Theorem 1 is a third order technique.

3.2 Frequency domain interpretation for SISO case

In this part, we consider a special case of Theorem 1 with
m = 1 (SISO) and Ψ = Γ. Motivated by the analysis in
Ahmad et al. (2015), the stability conditions are converted
to a frequency domain inequality via the KYP lemma
(Rantzer (1996)).
Theorem 2. Consider the feedback system in Fig. 1 in
the SISO case. If conditions in Theorem 1 are satisfied
with some Ψ = Γ, then there exists an FIR Zames-Falb
multiplier in the form

M(z) =−h3z−3 −h2z−2 −h1z−1 +h0 −h−1z−h2z2 −h3z3,
(16)

such that Re{M(z)(1+ΓG(z))}> 0, ∀|z|= 1.

Proof. In (11), Ω1 +Ω2 can be written as

Ω1 +Ω2 =

[
ÂT P̂Â− P̂ ÂT P̂B̂

⋆ B̂T P̂B̂

]
, (17)

where P̂ is defined in (10), and the state-space matrices
are

Â =


0 I 0 0 0 0
0 0 I 0 0 0
0 0 A 0 0 −B
0 0 0 0 I 0
0 0 0 0 0 I
0 0 0 0 0 0

 , B̂ =


0
0
0
0
0
I

 ,

which correspond to the augmented state

x̂i =
[
xT

i xT
i+1 xT

i+2 ϕ(yi)
T ϕ T (yi+1) ϕ T (yi+2)

]T
.

Then, applying the KYP lemma, LMI (11) can be con-
verted to the frequency domain inequality[

(zI − Â)−1B̂
I

]∗
Ω3

[
(zI − Â)−1B̂

I

]
< 0, ∀|z|= 1. (18)

Substituting Ω3 inside, (18) is equivalent to
He

{
LS(G(z)+Ψ−1)+M(z)(G(z)+Γ−1)

}
> 0, ∀|z|= 1,

(19)
where LS = L0 +L1 +L2 +L3, and M(z) is in (16) with

h0 = 2(M11 +M12 +M21 +M22 +M31 +M32 +S1 +S2 +S3)

+N11 +N12 +N21 +N22 +N31 +N32 > 0;
h1 = M11 +M12 +M21 +M22 +N11 +N21 +N31 +S1 > 0;

h−1 = M11 +M12 +M21 +M22 +N12 +N22 +N32 +S1 > 0;
h2 = M31 +M32 +S2 > 0; h3 = S3 > 0. (20)

It is clear that h0 = h−1 + h1 + 2h2 + 2h3, so M(z) here
is a third order noncausal FIR multiplier in (9) with
nb = n f = 3.

3.3 Discussions

Using insights provided by Theorem 2, the following
proposition can be used to simplify Theorem 1 for SISO
systems.
Proposition 1. Consider the feedback system in Fig. 1 in
the SISO case. If conditions in Theorem 1 are satisfied with
some Ψ = Γ, then it is also satisfied with M11, M12, M21,
M22, M31, M32, N21, N22. N31, N32, L0, L1, S1 being zero.

Proof. By Theorem 2, it is without loss of generality to
set h1 = N11, h−1 = N12, h2 = S2, h3 = S3 in (9) from the
multiplier point of view. Equivalently, other variables in
the multiplier can be set as zero. In addition, the sector
conditions at yi and yi+1 are included in V 3,1 and ∆V 3,1,
and N11, N12 are nonzero, then L0 and L1 can be set as
zero.

Furthermore, in (9), the coefficients of second order terms:
h2 and h−2, and the coefficients of third order terms: h3
and h−3, can have different values respectively. However,
the restricted form h2 = h−2, h3 = h−3, is forced in (16).
As a result, the search on second and third order terms is
restricted and may fail, then the multiplier would perform
as a first order multiplier.

4. NUMERICAL RESULTS

In Park et al. (2019), its results are proved to be less
conservative than other Lyapunov literature, so the com-
parison of different Lyapunov criteria are not repeated. In
this manuscript, we focus on Lyapunov-Lur’e functional
and its relation to FIR multipliers, so we introduce some
special examples to stress the relation, which are not
included in other existing literature. We assume that the
nonlinearity is repeated, so each ϕ j has the same bound k,
i.e. ψ j = γ j = k, ∀ j.
Examples
(1) G1(z) = 0.1z

z2−1.8z+0.81
(2) G2(z) = 2z+0.92

z2−0.5z

(3) G3(z) = 0.2343z2+0.1224z+0.04805
z3+1.611z2+1.065z+0.08843

(4) G4(z) = 1.341z4−1.221z3+0.6285z2−0.5618z+0.1993
z5−0.935z4+0.7697z3−1.118z2+0.6917z−0.1352

(5) G5(z) = z4−1.5z3+0.5z2−0.5z+0.5
4.4z5−8.957z4+9.893z3−5.671z2+2.207z−0.5

(6) G6(z)= 2.685z5+1.404z4−1.399z3−0.7952z2+0.4009z+0.008153
z6+0.4768z5−0.4619z4−0.383z3+0.1349z2+0.04182z−0.009093

(7) G7(z) =
[ 0.2

z−0.98
−0.2

z−0.92
0.3

z−0.97
0.1

z−0.91

]
The numerical results are listed in Table 1, which are
obtained using SDP toolbox Yalmip (Löfberg, 2004) with
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Ω2 =



0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0
CT (M12 +M32)ΓC
+CT N12ΨC+P11

⋆ ⋆ ⋆ ⋆ ⋆

0
−CT M12ΓC

−ATCT M32ΓC
+P21 +AT P31

CT (M12 +M22)ΓC
+ATCT (M22 +M32)ΓCA

+CT N22ΨC+ATCT N32ΨCA
−He{ATCT M22ΓC}+P22
+He{AT P32}+AT P33A

⋆ ⋆ ⋆ ⋆

0 0 0 0 ⋆ ⋆ ⋆

0
−
(

M12 +M32
+N12

)
C

+P41

M12C+M32CA
+P42 +P43A

0

 M11 +M12
+M31 +M32
+N11 +N12

Γ−1

+P44

⋆ ⋆

0
BTCT M32ΓC

+M12C+P51 −BT P31

−(M12 +M22 +N22)C
+M22CA+BTCT M22ΓC
−BTCT (M22 +M32)ΓCA
−BTCT N32ΨCA+P52

−BT P32 −BT P33A+P53A

0
−BTCT M32

−(M11 +M12)Γ−1

+P54 −BT PT
43

BTCT (M22 +M32)ΓCB
+BTCT N32ΨCB
−He{M22CB}

+

 M11 +M12
+M21 +M22
+N21 +N22

Γ−1

+P55 −He{P53B}
+BT P33B

⋆

0 M32C+P61

M32C
−
(

M22 +M32 +N32
)

CA
+P62 +P63A

0
−(M31 +M32)Γ−1

+P64

(
M22 +M32 +N32

)
CB

−(M21 +M22)Γ−1

+P65 −P63B

 M21 +M22
+M31 +M32
+N31 +N32

Γ−1

+P66



. (14)

Ω3 =



0 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 0 ⋆ ⋆ ⋆ ⋆ ⋆

0 0 0 ⋆ ⋆ ⋆ ⋆(
L0 +S1
+S2 +S3

)
C −N12C−S1C −S2C−S3CA

−2
(

S1 +S2
+S3

)
Γ−1

−2L0Ψ−1
⋆ ⋆ ⋆

−N11C−S1C

 M11 +M12
+M31 +M32
+N11 +N22

C

+(L1 +S1)C

−
(

M11 +M12
+N22

)
C

−(M31 +M32)CA

(N11 +N12)Γ−1

+2S1Γ−1
−2

 M11 +M12
+M31 +M32
+N11 +N12

Γ−1

−2S1Γ−1 −2L1Ψ−1

⋆ ⋆

−S2C −
(

M11 +M12
+N21

)
C

 M11 +M12
+M21 +M22
+N21 +N22

C

−
(

M21 +M22
+N32

)
CA

+(L2 +S2)C

2S2Γ−1 +S3CB
BTCT (M31 +M32)(
2M11 +2M12
+N21 +N22

)
Γ−1

He
{(

M21 +M22
+N32

)
CB

}
−2

 M11 +M12
+M21 +M22
+N21 +N22

Γ−1

−2S2Γ−1 −2L2Ψ−1

⋆

−S3C −(M31 +M32)C

−
(

M21 +M22
+N31

)
C

+

 M21 +M22
+M31 +M32
+N31 +N32

CA

+(L3 +S3)C

2S3Γ−1 2(M31 +M32)Γ−1

−

 M21 +M22
+M31 +M32
+N31 +N32

CB

−(L3 +S3)CB(
2M21 +2M22
+N31 +N32

)
Γ−1

−2

 M21 +M22
+M31 +M32
+N31 +N32

Γ−1

−2S3Γ−1 −2L3Ψ−1



.

(15)

Table 1. Maximum slope bound by multiplier and Lyapunov approaches
Ex (1) Ex (2) Ex (3) Ex (4) Ex (5) Ex (6) Ex (7)

Carrasco et al. (2020) (n f = nb = 1) 12.9960 0.9108 0.6659 0.1695 2.5904 0.3468 N/A
Carrasco et al. (2020) (n f = nb = 3) 12.9960 0.9115 1.3651 0.4347 3.2253 0.4088 N/A
Park et al. (2019) 12.9960 0.9108 0.6659 0.1695 2.5904 0.3468 3.8091
Theorem 1 12.9960 0.9108 0.6659 0.1695 2.5904 0.3468 3.8091
Proposition 1 12.9960 0.9108 0.6659 0.1695 2.5904 0.3468 3.8052
Nyquist Value 36.1000 1.0870 2.2855 1.1766 7.9070 0.4938 3.8500

solver sdpt3 (Tütüncü et al., 2003). The multiplier results
are obtained by the search of FIR multipliers in (Carrasco
et al., 2020). In particular, Example 1 has been used to
show that Kalman conjecture is false for second order
plants (Heath et al., 2015). The results by Park et al.
(2019) are included for comparison.
As shown in the table, for SISO systems (Ex.(1)-(6)), The-
orem 1 can be simplified as Proposition 1 without increas-

ing the conservativeness, but not in the MIMO case (Ex
(7)). However, the stability criteria based on Lyapunov-
Lur’e functionals (Park et al. (2019) and Theorem 1)
are possible to deteriorate as first order FIR multipliers,
although Theorem 1 is proved equivalent to a restricted
form of third order multipliers.
In particular, we take Ex.(2) as an example to show
the difference on resultant multipliers. By Carrasco et al.
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(2020), the maximum slope is 0.9115, where the third order
multiplier is
M(z) =−0.8325z−3 −0.0155z−1 +1−0.1232z2 −0.0287z3,

whose parameters are asymmetric, and the third order
causal term is dominant. In contrast, the equivalent third
order multiplier obtained by Theorem 1 is

M(z) =−0.11424z−3 −0.11424z−2 −0.4288z−1

+1−0.11424z−0.11424z2 −0.11424z3,

where the coefficients are scaled to make h0 = 1. Due to
the symmetry on second and third order coefficients, the
first order causal term becomes dominant. Hence, this
multiplier would be considered as first order, with the
maximum slope 0.9108.
Similarly, the additional information with third order
relations, such as the slope condition between yi and yi+3 in
Theorem 1, compared to Park et al. (2019), did not reduce
the conservativeness, because the equivalent multipliers
are forced to be first order.
In conclusion, it is important to improve the parametrisa-
tion of Lyapunov-Lur’e functionals to break the restriction
on its equivalent FIR multipliers. On the other hand, the
relations for the MIMO case is still open.

5. CONCLUSION

In this manuscript, we extended the Lyapunov-Lur’e func-
tional in Park et al. (2019), and demonstrate it is equiv-
alent to a restricted form of third order noncausal FIR
multipliers for SISO systems. However, the Lyapunov-
Lur’e functional performed as first order noncausal FIR
multipliers in the numerical examples, which implies the
necessity to break the symmetry in the parametrisation in
future work.
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Appendix A. PROOF OF THEOREM 1

Without loss of generality, we assume the matrices Ma ≡
diag(m1,a,m2,a, · · · ,mm,a), Nb ≡diag(n1,b,n2,b, · · · ,nm,b), where
a and b are 11,12,21,22,31,32, and all entries are positive.
In addition, we assume the matrix P is comprised of sub-
matrices Pp,q with appropriate dimensions, where p and q
are 1,2, . . . ,6.
First, we consider the Lyapunov-Lur’e functional candi-
date,

Vi =V 1
i +V 2,1

i +V 2,2
i +V 2,3

i +V 3,1
i +V 3,2

i +V 3,3
i , (A.1)

where V 1
i = ηT

i Pηi;

V 2,1
i = 2

m

∑
j=1

m j,11

∫ y j,i+1

y j,i

{
ϕ j(σ)−ϕ j(y j,i)

}T dσ

+2
m

∑
j=1

m j,12

∫ y j,i+1

y j,i

{
γ j (σ − y j,i)− (ϕ j(σ)−ϕ j(y j,i))

}T dσ ;

V 2,2
i = 2

m

∑
j=1

m j,21

∫ y j,i+2

y j,i+1

{
ϕ j(σ)−ϕ j(y j,i+1)

}T dσ

+2
m

∑
j=1

m j,22

∫ y j,i+2

y j,i+1

{
γ j
(
σ − y j,i+1

)
−
(
ϕ j(σ)−ϕ j(y j,i+1)

)}T dσ ;
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V 2,3
i = 2

m

∑
j=1

m j,31

∫ y j,i+2

y j,i

{
ϕ j(σ)−ϕ j(y j,i)

}T dσ

+2
m

∑
j=1

m j,32

∫ y j,i+2

y j,i

{
γ j (σ − y j,i)− (ϕ j(σ)−ϕ j(y j,i))

}T dσ ;

V 3,1
i = 2

m

∑
j=1

n j,11

∫ y j,i

0

{
ϕ j(σ)

}T dσ +2
m

∑
j=1

n j,12

∫ y j,i

0

{
ψ jσ −ϕ j(σ)

}T dσ ;

V 3,2
i = 2

m

∑
j=1

n j,21

∫ y j,i+1

0

{
ϕ j(σ)

}T dσ +2
m

∑
j=1

n j,22

∫ y j,i+1

0

{
ψ jσ −ϕ j(σ)

}T dσ ;

V 3,3
i = 2

m

∑
j=1

n j,31

∫ y j,i+2

0

{
ϕ j(σ)

}T dσ +2
m

∑
j=1

n j,32

∫ y j,i+2

0

{
ψ jσ −ϕ j(σ)

}T dσ ;

with ηi =
[
xT

i xT
i+1 xT

i+2 ϕ(yi)
T ϕ T (yi+1) ϕ T (yi+2)

]T .
By Lemma 1, the following inequalities hold.

V 2,1
i ≥ (yi+1 − yi)M12Γ(yi+1 − yi)

+He
{

ϕ T (yi)M12(yi+1 − yi)−ϕ T (yi+1)M12(yi+1 − yi)
}

+[ϕ(yi+1)−ϕ(yi)]
T (M11 +M12)Γ−1 [ϕ(yi+1)−ϕ(yi)] ;

V 2,2
i ≥ (yi+2 − yi+1)M22Γ(yi+2 − yi+1)

+He
{

ϕ T (yi+1)M22(yi+2 − yi+1)−ϕ T (yi+2)M22(yi+2 − yi+1)
}

+[ϕ(yi+2)−ϕ(yi+1)]
T (M21 +M22)Γ−1 [ϕ(yi+2)−ϕ(yi+1)] ;

V 2,3
i ≥ (yi+2 − yi)M32Γ(yi+2 − yi)

+He
{

ϕ T (yi)M32(yi+2 − yi)−ϕ T (yi+2)M32(yi+2 − yi)
}

+[ϕ(yi+2)−ϕ(yi)]
T (M31 +M32)Γ−1 [ϕ(yi+2)−ϕ(yi)] ;

V 3,1
i ≥ yT

i N12Ψyi −He
{

ϕ T (yi)N12yi
}

+ϕ T (yi)(N11 +N12)Γ−1ϕ(yi);

V 3,2
i ≥ yT

i+1N22Ψyi+1 −He
{

ϕ T (yi+1)N22yi+1
}

+ϕ T (yi+1)(N21 +N22)Γ−1ϕ(yi+1);

V 3,3
i ≥ yT

i+2N32Ψyi+2 −He
{

ϕ T (yi+2)N32yi+2
}

+ϕ T (yi+2)(N31 +N32)Γ−1ϕ(yi+2).

The above inequalities can be written as

V 2,1
i +V 2,2

i +V 2,3
i +V 3,1

i +V 3,2
i +V 3,3

i ≥ ηT
i Ξηi, (A.2)

where Ξ is given in (12). Therefore, the lower bound of
the Lyapunov-Lur’e functional (A.1) can be expressed as
ηT

i (P+Ξ)ηi, and it is positive for any non-zero ηi if (10)
holds.
Second, we consider the difference of (A.1)

∆Vi ≡Vi+1 −Vi = ∆V 1
i +∆V 2,1

i +∆V 2,2
i +∆V 2,3

i

+∆V 3,1
i +∆V 3,2

i +∆V 3,3
i . (A.3)

Similarly, the following inequalities hold by Lemma 1:

∆V 2,1
i ≤ (yi+2 − yi+1)

T M12Γ(yi+2 − yi+1)

− (yi+1 − yi)
T M12Γ(yi+1 − yi)

+2ϕ T (yi+2)M11(yi+2 − yi+1)−2ϕ T (yi+1)M11(yi+2 − yi+1)

+2ϕ T (yi+1)M12(yi+1 − yi)−2ϕ T (yi)M12(yi+1 − yi)

− [ϕ(yi+2)−ϕ(yi+1)]
T (M11 +M12)Γ−1 [ϕ(yi+2)−ϕ(yi+1)]

− [ϕ(yi+1)−ϕ(yi)]
T (M11 +M12)Γ−1 [ϕ(yi+1)−ϕ(yi)] ;

∆V 2,2
i ≤ (yi+3 − yi+2)

T M22Γ(yi+3 − yi+2)

− (yi+2 − yi+1)
T M22Γ(yi+2 − yi+1)

+2ϕ T (yi+3)M21(yi+3 − yi+2)−2ϕ T (yi+2)M21(yi+3 − yi+2)

+2ϕ T (yi+2)M22(yi+2 − yi+1)−2ϕ T (yi+1)M22(yi+2 − yi+1)

− [ϕ(yi+3)−ϕ(yi+2)]
T (M21 +M22)Γ−1 [ϕ(yi+3)−ϕ(yi+2)]

− [ϕ(yi+2)−ϕ(yi+1)]
T (M21 +M22)Γ−1 [ϕ(yi+2)−ϕ(yi+1)] ;

∆V 2,3
i ≤ (yi+3 − yi+1)

T M32Γ(yi+3 − yi+1)

− (yi+2 − yi)
T M32Γ(yi+2 − yi)

+2ϕ T (yi+3)M31(yi+3 − yi+1)−2ϕ T (yi+1)M31(yi+3 − yi+1)

+2ϕ T (yi+2)M32(yi+2 − yi)−2ϕ T (yi)M32(yi+2 − yi)

− [ϕ(yi+3)−ϕ(yi+1)]
T (M31 +M32)Γ−1 [ϕ(yi+3)−ϕ(yi+1)]

− [ϕ(yi+2)−ϕ(yi)]
T (M31 +M32)Γ−1 [ϕ(yi+2)−ϕ(yi)] ;

∆V 3,1
i ≤ yT

i+1N12Ψyi+1 − yT
i N12Ψyi

+2ϕ T (yi+1)N11(yi+1 − yi)−2ϕ T (yi)N12(yi+1 − yi)

− [ϕ(yi+1)−ϕ(yi)]
T (N11 +N12)Γ−1 [ϕ(yi+1)−ϕ(yi)] ;

∆V 3,2
i ≤ yT

i+2N22Ψyi+2 − yT
i+1N22Ψyi+1

+2ϕ T (yi+2)N21(yi+2 − yi+1)−2ϕ T (yi+1)N22(yi+2 − yi+1)

− [ϕ(yi+2)−ϕ(yi+1)]
T (N21 +N22)Γ−1 [ϕ(yi+2)−ϕ(yi+1)] ;

∆V 3,3
i ≤ yT

i+3N32Ψyi+3 − yT
i+2N32Ψyi+2

+2ϕ T (yi+3)N31(yi+3 − yi+2)−2ϕ T (yi+2)N32(yi+3 − yi+2)

− [ϕ(yi+3)−ϕ(yi+2)]
T (N31 +N32)Γ−1 [ϕ(yi+3)−ϕ(yi+2)] .

In addition, by relations in (8), it follows
0 ≤ 2ϕ T (yi)L0

[
yi −Ψ−1ϕ(yi)

]
;

0 ≤ 2ϕ T (yi+1)L1
[
yi+1 −Ψ−1ϕ(yi+1)

]
;

0 ≤ 2ϕ T (yi+2)L2
[
yi+2 −Ψ−1ϕ(yi+2)

]
;

0 ≤ 2ϕ T (yi+3)L3
[
yi+3 −Ψ−1ϕ(yi+3)

]
;

0 ≤ 2(ϕ T (yi+1)−ϕ T (yi))S1
[
(yi+1 − yi)−Γ−1(ϕ(yi+1)−ϕ(yi))

]
;

0 ≤ 2(ϕ T (yi+2)−ϕ T (yi))S2
[
(yi+2 − yi)−Γ−1(ϕ(yi+2)−ϕ(yi))

]
;

0 ≤ 2(ϕ T (yi+3)−ϕ T (yi))S3
[
(yi+3 − yi)−Γ−1(ϕ(yi+3)−ϕ(yi))

]
.

Invoking inequalities above, the upper bound of ∆Vi in
(A.3) is

∆Vi ≤ ζ T
i Ω̂ζi, (A.4)

where ζi =
[
xT

i xT
i+1 xT

i+2 ϕ T (yi) ϕ T (yi+1) ϕ T (yi+2) ϕ T (yi+3)
]T ,

and Ω̂ is equivalent to the summation of Ω1, Ω2, Ω3 in (13),
(14), (15) respectively. Therefore, ∆Vi is negative for any
non-zero ζi if (11) holds.
Finally, it is clear that (10) and (11) is sufficient for the
stability.
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