
An Approach to State Signal Shaping by
Limit Cycle Model Predictive Control ?
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Politècnica de València, Spain (email: jsanchis@isa.upv.es).

Abstract: A novel nonlinear model predictive control approach for state signal shaping is
proposed. The control strategy introduces a residual shape cost kernel based on the dynamics of
circular limit cycles from a supercritical Neimark-Sacker bifurcation normal form. This allows
the controller to impose a fundamental harmonic state signal shape with a specific frequency and
amplitude. An application example for harmonic compensation in distribution grids integrated
with renewable energies is presented. The controller is tasked with the calculation of the reference
current for an active power filter used for load compensation. The results achieved are successful,
reducing the harmonic distortion to satisfactory levels while ensuring the correct frequency and
amplitude.

Keywords: Nonlinear predictive control, optimal control theory, optimal operation and control of
power systems, modeling and simulation of power systems, control system design.

1. INTRODUCTION

Typically, model predictive control (MPC) algorithms
are used for reference following control problems, due
to their handling of constraints and efficient solving
methods in the linear case (Maciejowski, 2002). However,
there are applications where the state dynamics need to
preserve a certain shape, rather than following a reference
over time, e.g. multiple robots formation coordination in
robotics (Egerstedt and Hu, 2001). These kinds of problems
in the signal processing area are often referred to as signal
shaping (Brandonisio and Kennedy, 2014).

Recently, an MPC approach was developed for linear state
signal shaping in Cateriano Yáñez et al. (2018). The
proposed controller was used to mitigate the harmonic
distortion in an electric grid by defining a harmonic linear
shape class to control the shape of the system states. While
the frequency and shape were controlled, the amplitude of
the signals was out of reach, due to the linear limitation
of the shape class. An extension to this approach as a
quadratic program is presented by Weihe et al. (2020),
where the amplitude is successfully constraint but not set
to the desired value. This paper proposes a limit cycle
model predictive control (LCMPC), a nonlinear MPC
approach that aims to directly control the amplitude using
a limit cycle kernel as a nonlinear shape class, while also
maintaining the correct shape and frequency.

? This contribution was partly developed within the project
NEW 4.0 (North German Energy Transition 4.0) which is funded
by the German Federal Ministry for Economic Affairs and En-
ergy (BMWI).

The LCMPC in contrast to a standard tracking MPC, does
not require a time varying-reference to be calculated a
priori for the optimization. For the LCMPC, the “reference”
is the limit cycle autonomous system, which is embedded
into the cost function, thus dynamically generated within.

This paper is organized as follows. Section 2 introduces
periodic orbits, particularly limit cycles. In section 3,
the LCMPC is developed. Section 4 gives an application
example for harmonic compensation. Finally, section 5
draws conclusions.

2. PERIODIC ORBITS

Consider a non-constant solution x(t) of a dynamical
system. Such a solution is considered to be periodic if
there is a constant T > 0, such that

x (t) = x (t+ T ) ∀t, (1)

where the minimum possible T is the period. The im-
age x (t) of the periodicity interval [0, T ] is called a periodic
orbit (Ivancevic and Ivancevic, 2007).

The following subsections will further explore the properties
of periodic orbits of special interest. Subsection 2.1 intro-
duces the concept of limit cycles. This concept is further
extended for maps in subsection 2.2. Finally, subsection 2.3
introduces a special case of the limit cycle which is the
base for the proposed control concept.

2.1 Limit cycles

A periodic orbit Γ on a plane is called a limit cycle, if for
some point that is not on the periodic orbit, the limit set
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is exactly Γ, as time goes forward towards +∞, known
as ω-limit set; or backward towards −∞, known as α-
limit set (Ivancevic and Ivancevic, 2007). This concept is
exemplified by the following system.

Given the vector field
dx1
dt

= αcµcx1 − ωx2 − αcx1
(
x21 + x22

)
, (2a)

dx2
dt

= ωx1 + αcµcx2 − αcx2
(
x21 + x22

)
, (2b)

where {αc, µc, ω} ∈ R>0 are parameters of the system
in (2). There is a periodic orbit of circular shape that arises
from the system (Guckenheimer and Holmes, 1983). This
behavior becomes evident when transforming (2) to polar
coordinates

dr

dt
= αcr

(
µc − r2

)
, (3a)

dθ

dt
= ω, (3b)

where the role of the parameters can be easily identified,
being αc an intensifier parameter, µc the square radius of
the circular orbit, and ω the angular frequency in rad

s .

An example with all the system parameters set to 1 is shown
in the phase portrait in Fig. 1. From the vector field, an
unstable equilibrium at the origin and a stable circular limit
cycle of radius 1 arise. The limit cycle is stable because all
the system parameters are elements of R>0, which leads to a
supercritical Hopf bifurcation normal form (Guckenheimer
and Holmes, 1983).

Fig. 1. Super critical Hopf bifurcation normal form phase
portrait with αc = µc = ω = 1

The appearance of the Hopf bifurcation, also known as
the Poincaré-Andronov-Hopf bifurcation, occurs when the
stability of an equilibrium point in a continuous-time
dynamical system changes via a pair of purely imaginary
eigenvalues. Hence a limit cycle arises. The bifurcation
can be supercritical or subcritical, leading to a stable or
unstable limit cycle respectively (Ivancevic and Ivancevic,
2007). The normal form used is away from the bifurcation
point µc = 0.

This region of attraction of the limit cycle is of special
interest in the context of harmonic shape control. By

formulating a controller that imposes these dynamics into
a second-order plant, it could drive such plant states
into a circular limit cycle of choice. This would ensure
a fundamental harmonic shape for the plant states of
the desired amplitude |√µc| and angular frequency ω,
regardless of their initial conditions.

2.2 Limit cycles for maps

In section 2.1, the fundamentals of limit cycles were
introduced in continuous time. However, to explore its full
potential for digital control, an analysis in the discrete-time
domain is required.

The normal forms of the Neimark-Sacker bifurcation,
which is the discrete-time case of the Hopf bifurcation
for maps (Ding and Zhang, 2009), are a suitable starting
point for this analysis.

For discrete time t = kτ , with sampling time τ , the normal
form in polar coordinates is given as

rk+1 = rk + µrk + αr3k, (4a)

θk+1 = θk + φ, (4b)

which consists of a third order simplification of the radius r
map, with parameters µ and α, and a linear simplification
for the angle θ map, with parameter φ = ωτ (Ding and
Zhang, 2009). This simplification was done to match the
order of the continuous-time system depicted in (3).

Let (4) be transformed into Cartesian coordinates as

xk+1 =
(
1 + µ+ αxT

kxk
)
Rφxk, (5)

where

x = [x1 x2]
T

, (5a)

Rφ =

[
cos (φ) − sin (φ)
sin (φ) cos (φ)

]
. (5b)

2.3 Supercritical Neimark-Sacker bifurcation normal form

For µ > 0 and α < 0 the discrete-time system in (5) has
an unstable fixed point at the origin and a stable unique
circular limit cycle around it (Kuznetsov, 1998), see Fig. 2.
From (4a), the radius of the circular limit cycle is given by

ρ =

√
−µ
α

. (6)

Depending on the radius of a trajectory starting point,
different dynamics can be observed. Let

ρ0 =

√
− (1 + µ)

α
, (7a)

ρ∞ =

√
− (2 + µ)

α
. (7b)

Besides r = 0, trajectories starting at r = ρ0, will lead
directly to the unstable fixed point at the origin and remain
there unless disturbed. This can be seen by setting r = ρ0
in (4a).

In the case of trajectories starting at r > ρ∞, they will
tend towards infinity. Once again, this can be observed by
setting r = ρ∞ + ε in (4a), where ε > 0. In each iteration
of the map, the magnitude of r is increasing to ∞+, thus r
is divergent.
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Fig. 2. Supercritical Neimark-Sacker bifurcation nor-
mal form phase portrait with µ = 0.05, α = −0.05,
ω = 2π50, and τ = 0.2 ms

Therefore, trajectories starting in 0 ≤ r ≤ ρ∞, except
for r = ρ0, will end in the final set given by the circular
limit cycle of radius ρ.

3. LIMIT CYCLE MODEL PREDICTIVE CONTROL

The basis of an MPC is the solution of an optimization
problem such as

min
Z
J (Z), (8)

where J is the cost function and Z the set of decision vari-
ables (Maciejowski, 2002). The cost function is calculated in
discrete time for a finite prediction horizon Hp ∈ N. In this
condensed formulation, the cost function J also includes
model parameters of the target system. The proposed
controller targets linear systems, which are governed by
the discrete-time state space equations given as

xk+1 = Axk + Buk + Fvk, (9a)

yk = Cxk + wk, (9b)

with state vector x ∈ Rn, control input u ∈ Rm, mea-
sured input disturbance v ∈ Rd, output y ∈ Rr, output
disturbance w ∈ Rr, system matrix A ∈ Rn×n, input ma-
trix B ∈ Rn×m, input disturbance matrix F ∈ Rn×d, and
output matrix C ∈ Rr×n. Fig. 3 shows a general control
closed loop for the MPC, where v̂ is the measured input
disturbance prediction, which could differ from v.

MPC Plant
u

vv̂ w

y

Fig. 3. Model predictive control closed loop

For the LCMPC, the key feature is the integration of the
limit cycle dynamics from section 2, directly into the core
of its cost function formulation, further detail is provided
in subsection 3.1. Subsection 3.2 addresses the prediction
layer with the linear systems prediction equations for states.
Finally, subsection 3.3 gives an input parameterization
scheme, narrowing the solution space.

3.1 Cost function kernel formulation

In order to integrate the limit cycle dynamics into the core
of the cost function, a limit cycle residual cost is defined
as a kernel. Taking the state space map in (5) as starting
point, the kernel in discrete time is formulated as

02×1 = xk+1 − (1 + µ) Rφxk − αRφxkx
T
kxk, (10)

where 02×1 is a vector of zeros in Z2×1.This kernel
expression is then squared and accumulated for the whole
prediction horizon Hp, leading to the cost function

J (X) = XTQ2X + 2αXT
(
L ◦

(
XXTQ4

))
X (11)

+α2XT
(
L ◦

(
XXT

(
L ◦

(
XXT

)))
X
)

,

where

X =
[
xk+1 xk+2 · · · xk+Hp

]T
, (11a)

Q2 =



(1 + µ)2 I2×2 − (1 + µ) RT
φ 02×2 · · ·

− (1 + µ) Rφ

(
1 + (1 + µ)2

)
I2×2

. . .
. . .

02×2

. . .
. . .

. . .

...
. . .

. . .
. . .

...
. . .

. . .
. . .

...
. . .

. . .
. . .

02×2 · · · · · · · · ·
· · · · · · · · · 02×2

. . .
. . .

. . .
...

. . .
. . .

. . .
...

. . .
. . .

. . .
...

. . .
. . .

. . . 02×2

. . .
. . .

(
1 + (1 + µ)2

)
I2×2 − (1 + µ) RT

φ

· · · 02×2 − (1 + µ) Rφ I2×2


, (11b)

L =



12×2 02×2 · · · · · · 02×2

02×2

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
..
.

. . .
. . . 12×2 02×2

02×2 · · · · · · 02×2 02×2

 , (11c)

Q4 =



(1 + µ) I2×2 02×2 · · · · · · · · · 02×2

−Rφ

. . .
. . .

. . .
. . .

...

02×2

. . .
. . .

. . .
. . .

...
..
.

. . .
. . .

. . .
. . .

..

.
...

. . .
. . .

. . . (1 + µ) I2×2 02×2

02×2 · · · · · · 02×2 −Rφ 02×2


,(11d)

with dimensions, X∈R2Hp, Q2∈R2Hp×2Hp, L∈R2Hp×2Hp,
and Q4∈R2Hp×2Hp; where ◦ is the Hadamard product
and {0j×j ,1j×j , Ij×j}∈Zj×j≥0 are matrices of zeros, ones,
and identity respectively.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6136



This nonlinear cost function defines the future state
trajectories vector X as the set of decision variables of
the underlying optimization problem. Finding the optimal
decision variable set will ensure the minimum residual limit
cycle cost, meaning that the controller should steer the
plant such that its future state trajectories X follow exactly
this optimal set. Therefore, the prediction of X is critical
to find the correct input sequence to steer the plant, this
is further detailed in subsection 3.2.

3.2 Linear system predictions

From this subsection and on, predictions of variables will
be identified by a hat symbol “ ˆ ”. As stated at the end of
subsection 3.1, the cost function only requires predictions
of the future states x̂. Therefore, a prediction of the future
state trajectories x̂ up to a prediction horizon Hp, can be
iteratively calculated with (9a). Given the initial states xk,
considering a prediction for the future measured input
disturbances v̂, and a future input sequence û (Maciejowski,
2002); the linear system prediction equations in vector form
are

X (U) = Ψxk + ΘU + ΓV, (12)

where

X =
[
x̂k+1 · · · x̂k+Hp

]T
∈ RnHp , (12a)

Ψ =
[
A A2 · · · AHp

]T
∈ RnHp×n, (12b)

Θ =


B 0r×m · · · 0r×m

AB B · · · 0r×m
...

...
. . .

...
AHp−1B AHp−2B · · · B

∈ RnHp×mHp, (12c)

U =
[
ûk · · · ûk+Hp−1

]T
∈ RmHp , (12d)

Γ =


F 0r×d · · · 0r×d

AF F · · · 0r×d
...

...
. . .

...
AHp−1F AHp−2F · · · F

∈ RnHp×dHp, (12e)

V =
[
v̂k · · · v̂k+Hp−1

]T
∈ RdHp . (12f)

Using this set of equations, the decision variable X can be
expressed in terms of the future input sequence vector U,
which in turn becomes the new decision variable of the
optimization problem. This allows the controller input
action u to be directly aligned with the optimization
decision variable.

3.3 Input Fourier parameterization

Assuming a periodic future input sequence û, typical for
harmonic compensation applications, it can be approxi-
mated for a fixed bandwidth up to the hth harmonic as

û(kτ) ≈
h∑
n=1

fn sin (nωkτ) + gn cos (nωkτ) , (13)

where fn and gn are Fourier coefficients for the nth

harmonic of the fundamental angular frequency ω.

This approximation can be extended up to the prediction
horizon Hp in the following vector form

U (P) = (M⊗ Im×m) P, (14)

where

M =


0 · · · 0

sin (ωτ) · · · sin (hωτ)
.
.. · · ·

.

..
sin (ωτ (Hp−1)) · · · sin (hωτ (Hp−1))

∣∣∣∣∣∣∣∣ · · ·∣∣∣∣∣∣∣∣
1 · · · 1

cos (ωτ) · · · cos (hωτ)
... · · ·

...
cos (ωτ (Hp−1)) · · · cos (hωτ (Hp− 1))

∈RHp×2h, (14a)

P =
[
f1 · · · fh |g1 · · · gh

]T
∈ R2mh, (14b)

and ⊗ is the Kronecker product.

By this approximation, the future input sequence vector U
in (12) can be parameterized, leading to

X (P) = Ψxk + Θ (M⊗ Im×m) P + ΓV. (15)

Under this parameterization, the decision space of the op-
timization variable U is reduced to harmonic combinations
up to the hth harmonic order that lead to the Fourier
coefficients in P. Therefore, P becomes the new decision
variable set, thus reformulating the LCMPC nonlinear
optimization problem into

min
P

J (P). (16)

4. APPLICATION EXAMPLE

In modern electrical power systems, the increasing share
of renewable energy sources leads to voltage and frequency
fluctuations that greatly affect the power quality of the
distribution grid. Moreover, the abundance of switching
power electronics in their generation process also introduces
harmonic distortion to the distribution grid (Liang, 2017).

The focus on this application example is the compensation
of the harmonic distortion introduced to the distribution
grid, as it is suitable for the harmonic dynamics imposed
by the proposed controller.

A typical solution to address harmonic distortion is the
implementation of an active power filter (APF). For
successful compensation, the selection of a suitable control
scheme that steers the APF is key (Rao et al., 2008). This
is where the LCMPC comes into action.

This section is structured as follows. Subsection 4.1 in-
troduces the electric grid circuit model as the base for
the simulations. In subsection 4.2, the base model is
transformed into normal form. Subsection 4.3 describes
all the simulation parameters and considerations. Finally,
section 4.4 presents the results of the simulations.

4.1 Electric grid circuit Model

To show the capabilities of the proposed controller, a
minimal electric grid circuit model is used, as shown in
Fig. 4. The ideal supply voltage vs represents the external
distribution grid, the resistance R1 = 100 Ω corresponds
to the transmission line between the grid and the point of
common coupling (PCC). The APF is represented by the
ideal controlled current source that feeds in the compen-
sation current ic. The harmonic distortion is injected into
the PCC by the ideal controlled current source that feeds in
the disturbance current id. Finally, the load current il flows
through the series connection of the resistor R2 = 10 Ω,
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the inductor L2 = 100 mH, and the capacitor C2 = 10 mF,
that comprise the load voltage vl.

+

−
vs

R1 PCC

ic id

C2

L2

R2

il

vl

Fig. 4. Electric grid circuit model

The aforementioned electric grid circuit model is taken into
continuous-time state space form as

ẋ (t) = Acx (t) + bcu (t) + Fcv (t) , (17a)

y (t) = Ccx (t) , (17b)

with state vector x = [ql il]
T

, where ql is the charge of il; in-

put u = ic; measured input disturbance vector v = [id vs]
T

;

and output vector y = [vc il]
T
, where vc is the voltage of

the capacitor C2. The parameters of the model are

Ac =

[
0 1

− 1
C2L2

−R2+R1

L2

]
, (17c)

bc =
[
0 R1

L2

]T
, (17d)

Fc =

[
0 0
R1

L2

1
L2

]
, (17e)

Cc =

[
1
C2

0
0 1

]
. (17f)

4.2 Normal form transformation

The kernel cost function described in subsection 3.1, is
designed for a second order system where the states are
rotating along the circular limit cycle of radius ρ. For
simplicity, the radius can be scaled to unity, ρ = 1, such
that the limit cycle is the unit circle. Therefore, the second
order model from subsection 4.1 needs to be transformed
into normal form, such that its states in undisturbed
steady-state conditions reside within the unit circle. This
is achieved by the transformation

x̃ = M−1x, (18)

where

M =

[
0 ρvC2

ρi 0

]
, (18a)

and ρv≈1.11 and ρi≈3.49 are the steady state undisturbed
amplitudes of vc and il respectively. With this transforma-
tion matrix the model parameters are redefined as

Ã = M−1AcM, (18b)

[
b̃ F̃

]
= M−1 [bc Fc] , (18c)

C̃ = CcM. (18d)

This transformed state-space model is then taken to the
discrete-time domain using the zero-order-hold method,
suitable for a digital controller; leading to the corresponding
discrete-time parameters: A, b, F, and C.

4.3 Simulation setup

The simulation is developed for a power system of fre-
quency f = 50 Hz and supply voltage 400 V. The total
simulation time is 0.1 s, considering a sampling time
of τ = 0.2 ms and a prediction horizon of Hp = 200.

The limit cycle parameters are: µ = 10−2, α = −10−2,
and φ = 2πfτ .The disturbance current id contains a 3rd

and 5th order harmonic distortion with amplitudes of 2 A
and 3 A, and phase shifts of arctan

(
4
3

)
and arctan

(
3
4

)
+ π

2 ,
respectively. For the input Fourier parameterization, the
harmonic upper band is h = 5.

The controller uses a periodic receding horizon regime
to reduce the computation time (Cateriano Yáñez et al.,
2018). In this strategy the optimal input sequence U? is
calculated once per period instead of per sample; together
with the future measured input disturbance prediction V,
which is assumed to be the same as the previous period’s
measurement. This applies as the compensation is for
steady-state periodic distortions. Access to the normal
form initial values x̃0, which also defined the starting phase
and radius, is assumed.

The solver used was fminunc from matlab for gen-
eral unconstrained minimization. The selected algorithm
was quasi-newton with default optimality and step tol-
erances of 10−6. The average computational time per
period was 0.8 s on an Intel® Core™ i7-7700K processor.
If constraints would be needed, e.g. physical limitations of
the actuator, a different solver setup would be required.

4.4 Simulation results

In Fig. 5 from top to bottom, the simulation results are
shown for the capacitor voltage vc, the load current il, and
the APF compensation current ic. The dashed signals show
the reference uncompensated responses, while the solid
line signals show the controlled compensation results. Both
output signals are successfully compensated to fundamental
harmonic shape, lowering the total harmonic distortion
(THD) from 15.8 % to under 1 % and from 59.8 % to un-
der 1 % for vc and il respectively. The THD was calculated
against the 50 Hz fundamental as suggested by Shmilovitz
(2005), thus the low THD values confirm that the frequency
of the results is close to the fundamental. As quality refer-
ence, the results are way below the 8 % THD limit defined
for voltages in the European Norm EN 50160 (CENELEC,
2010).

In order to analyze the circular limit cycle action of the
controller, Fig. 6 shows a phase portrait of the simulation

results for the normalized model states x̃ = [x̃1 x̃2]
T

. The
dashed line corresponds to the uncompensated system as
a reference, while the solid line to the controlled response.
Once again, it can be observed how the controller steers
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Fig. 5. Simulation results for the capacitor voltage vc, load
current il, and compensation current ic

Fig. 6. Normal form model states phase portrait

the states into the unit circle, effectively imposing the limit
cycle dynamics with the right amplitudes.

5. CONCLUSION

The proposed LCMPC approach uses the dynamics of
circular limit cycles to define a residual cost for the shape
of the state signals. This leads the state signals to a
fundamental harmonic shape with a specific frequency and
amplitude, given by the parameters of the limit cycle.

In the application example, the controller manages to
successfully compensate the THD of the load voltage and
current simultaneously to satisfactory levels, while ensuring
the correct frequency and amplitude.

Future research focuses on the cost function convexity,
and analytic Hessian and gradient formulations for lower

computational time. Comparisons with other controllers, as
well as enhanced future disturbance and phase estimation
methods, are to be explored.

This work was developed as part of the Ph.D. research
project from Carlos Cateriano Yáñez under the direct su-
pervision of Gerwald Lichtenberg, and in close collaboration
with Georg Pangalos and Javier Sanchis Sáez.
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