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Abstract
This work tackles the problem of reconstructing vehicle trajectories with the side information of
physical constraints, such as inter-vehicular distance and speed limits. It is notoriously difficult to
perform a regression while enforcing these hard constraints on time intervals. Using reproducing
kernel Hilbert spaces, we propose a convex reformulation which can be directly implemented
in classical solvers such as CVXGEN. Numerical experiments on a simple dataset illustrate the
efficiency of the method, especially with sparse and noisy data.
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1. INTRODUCTION

This article addresses the problem of shape-constrained
regression. This problem can be found in many domains
of engineering, under various terminologies such as: es-
timation under constraints, constrained curve fitting or
constrained smoothing to name a few. Taking into account
the constraints is well known to improve reconstruction
performance (Alouani and Blair, 1991; Chang et al., 2009).
Prime examples of applications can be found in chemi-
cal engineering (Arora and Biegler, 2004), biology (Mo-
tulsky and Christopoulos, 2004), among others. Shape-
constrained regression is of interest in transportation sys-
tems, especially in the context of the vehicle to infrastruc-
ture (V2I; Agosta et al. 2016) concept which is central
in the research field of Intelligent Transportation Systems
(ITS; Work et al. 2009; De Wit et al. 2015; Liang et al.
2016). To illustrate this point, the application problem
considered in this article consists in reconstructing the
trajectory of several vehicles under constraints, based on
a set of noisy position measurements. The vehicles are
represented as point-like objects traveling along a one-
dimensional path. The constraints are interpreted as some
side information, i.e. external or prior knowledge. In our
context, the constraints model the fact that the vehicles
are non-overtaking and have non-negative curvilinear ve-
locity.

? ZSz benefited from the support of the Europlace Institute of
Finance and that of the Chair Stress Test, RISK Management and
Financial Steering, led by the French École Polytechnique and its
Foundation and sponsored by BNP Paribas.

Due to its practical importance, several approaches have
long been developed to handle such side information,
through Kalman filtering and its advanced forms (EKF,
UKF, to name a few), where inequality constraints have
been addressed using the notion of Pseudo-Measurements
(Tahk and Speyer, 1990). In particle filtering (see Papi
et al. (2012) and references therein), affine inequality
constraints on dynamics can be dealt with, at the ex-
pense of sub-optimality of the solution, using projection
of the probability density function with simple saturation
functions (Agate and Sullivan, 2004). Other approaches
propose to reject estimates that try to escape the region
of the state space where the inequality constraints are
satisfied (Wang et al., 2002).
Alternatively, in many instances, the problem is recast
as a nonlinear programming problem (Arora and Biegler,
2004). A usual approach relies on smoothing splines, which
constitutes a principled way to perform regression on mea-
surements (Buisson et al., 2016). However, the discretiza-
tion of the constraints at the hard-to-select “knot points”
is known to be tiresome. For our part, we perform the
regression in a reproducing kernel Hilbert space (RKHS).
We use fundamental properties of RKHSs to replace the
infinite number of constraints (the constraints being de-
fined on a whole time interval) with finite many, without
resorting to discretization. The problem is recast with
second-order cone constraints. This allows for an efficient
implementation of our problem on convex optimization
solvers, such as CVXGEN (Mattingley and Boyd, 2012).
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The paper is organized as follows. In Section 2 we for-
mulate the problem of reconstructing trajectories under
distance and speed constraints on a time interval as a
regularized convex constrained optimization problem in
a functional space, first expressed for splines and then
in RKHSs. Section 3 is about the optimization of our
proposed formulation. Importantly, we explain how this
reformulation makes the problem tractable using classical
convex programming solvers. In Section 4, we illustrate
the approach on a real trajectory dataset, underlining the
stability of the reconstruction w.r.t. noise. Conclusions are
drawn in Section 5.

2. PROBLEM FORMULATION

In this section we formulate our problem after introducing
a few notations.
Notations: Let R, R+, N = {0, 1, . . .} and N∗ = {1, 2, . . .}
stand for the real, non-negative real, natural numbers
and positive integers respectively. We use the [N ] :=
{1, . . . , N} shorthand. The jth (j ∈ N) derivative of a
function f is denoted by f (j); we write f ′ for j = 1. The
space of continuously differentiable real-valued functions
on T × T ⊆ R2 is denoted by C(1,1)(T × T ). The
concatenation of vectors v1 ∈ Rd1 , . . . ,vM ∈ RdM is
written as [v1; . . . ; vM ] ∈ R

∑
m∈[M]

dm . The zero (resp.
all-ones) element of Rd is denoted by 0d (resp. 1d). The
transpose of a vector v ∈ Rd is denoted by vT , its
Euclidean norm being ‖v‖2 =

√∑
i∈[d] v

2
i . Let S be a

closed subspace of a Hilbert space F and S⊥ = {f ∈
F : 〈f, g〉F = 0 for all g ∈ S} its orthogonal complement.
Then every f ∈ F has a unique decomposition of the form
f = g + h (g ∈ S, h ∈ S⊥), i.e F can be decomposed as
F = S ⊕ S⊥.
Our goal is to reconstruct the trajectories of a set of
vehicles from noisy observations. The vehicles are assumed
to form a convoy (i.e. they do not overtake and keep a min-
imum inter-vehicular distance between each other), and we
have speed limits on the vehicles. These two requirements
represent our hard constraints to be fulfilled. We model
the trajectories of the vehicles using reproducing kernel
Hilbert spaces (RKHS). In the sequel, we introduce this
function class and our optimization problem starting from
splines (arising from a specific RKHS) and assuming that
our convoy has a single vehicle (hence only the speed
constraint applies).

Convoy with one vehicle (Q = 1): Assume that
our convoy is made of a single vehicle. Our datapoints
consist of N noisy position measurements {xn}n∈[N ] ⊂ R
recorded at time points {tn}n∈[N ] ⊂ T := [0, T ]. In order
to capture the (t, x) relation, one can use for example
splines. Specifically, let us assume that the modelling
class is the Sobolev space 1 F := Wm

2 (T ). Then the
classical polynomial spline approach can be expressed as
the minimization problem

1 Classically, the Sobolev space of order m is defined as W m
2 (T ) :=

{f : T → R | f (j) is absolutely continuous for all j ∈ {0, . . . , m −
1}, and

∫
T [f (m)]2(t)dt <∞}.

min
f∈F

[
1
N

∑
n∈[N ]

|xn − f(tn)|2

︸ ︷︷ ︸
approximation error

+λ
∫
T
|f (m)(t)|2dt︸ ︷︷ ︸

smoothing term

]
, (1)

where λ > 0 defines the trade-off between the approxima-
tion error (first term) and smoothness (second term). It is
well-known (Berlinet and Thomas-Agnan, 2004) that the
Sobolev space F can be decomposed as Wm

2 (T ) = F1⊕F2
with

F1 = span
(

1, t, . . . , tm−1

(m− 1)!

)
,

F2 =
{
f ∈Wm

2 (T ) | f (j)(0) = 0 (∀j ∈ {0, . . . ,m}) ,

‖f‖2
F =

m∑
j=0
|f (j)(0)|2 +

∫
T

∣∣∣f (m)(t)
∣∣∣2 dt = ‖f1‖2

F1
+ ‖f2‖2

F2

where f = f1 +f2 (f1 ∈ F1, f2 ∈ F2). In (1), the projection
onto F1 is not penalized, and one can rewrite (1) as

min
f∈F

 1
N

∑
n∈[N ]

|xn − f(tn)|2 + λ ‖f2‖2
F2

 . (2)

For further details on splines the reader is referred to
Wahba (1990); Berlinet and Thomas-Agnan (2004); Wang
(2011).
It turns out that not every function class F with a
F1 ⊕ F2 decomposition is practically useful. In order
to get computationally tractable schemes the relevant
assumptions are that (i) F1 = span

(
{ϕj}j∈[J]

)
is a

finite-dimensional space spanned by some basis functions
{ϕj}j∈[J] and (ii) F2 = Fk is a so-called RKHS (Aronszajn,
1950) associated to a kernel k : T × T → R. This leads
to the kernel ridge regression (also called abstract spline)
extension of the polynomial spline fitting problem

min
b∈R, f∈Fk

 1
N

∑
n∈[N ]

|xn − (b+ f(tn)) |2 + λ ‖f‖2
Fk

 , (3)

where F1 was chosen to be one-dimensional (J = 1) con-
taining only the identically constant functions. Using the
RKHS norm as a regularizer in (3) ensures the uniqueness
of the solution. We will discuss RKHSs (Fk) and kernels
(k) at the end of the section.
Finally, let us formulate our proposed optimization task
for a single vehicle taking into account the minimum speed
constraint 2 (vmin) as well:

min
b ∈ R, f ∈ Fk

 1
N

∑
n∈[N ]

|xn − (b+ f(tn)) |2 + λ ‖f‖2
Fk


s.t.

vmin ≤ f ′(t), ∀t ∈ T .
(4)

Convoy with multiple vehicles (Q > 1): We now
extend our formulation (4) to handle a convoy. Assume
that the convoy contains Q vehicles, and that we have
Nq noisy position measurements for each of its members{

(tq,n, xq,n)n∈[Nq ]
}
⊂ T × R (q ∈ [Q]) where the time

2 We will discuss in Section 3 the similar vmax requirement.
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points might differ per vehicle. Assuming (without loss of
generality) that the vehicles are ordered by index (q = Q
being the last, while q = 1 is the first in the lane) the non-
overtaking property with given minimum inter-vehicular
distance dmin ≥ 0 can be formulated as dmin + bQ +
fQ(t) ≤ bQ−1 + fQ−1(t), . . ., dmin + b2 + f2(t) ≤ b1 + f1(t)
for all t ∈ T . This gives our final optimization problem
describing the trajectory reconstruction of the convoy:

min
f1,...,fQ ∈Fk,
b1,...,bQ ∈R

1
Q

Q∑
q=1

 1
Nq

Nq∑
n=1
|xq,n − (bq + fq(tq,n)) |2


+ λ‖fq‖2

Fk

 (5a)

s.t.
dmin + bq+1 + fq+1(t) ≤ bq + fq(t),∀q ∈ [Q− 1], t ∈ T ,

(5b)
vmin ≤ f ′q(t), ∀q ∈ [Q], t ∈ T . (5c)

We now return to the discussion on the RKHS Fk, the
class of functions we use for modelling. A Hilbert space
Fk of T → R functions is called a RKHS (Aronszajn,
1950) with reproducing kernel 3 k : T × T → R if (i)
kt(·) := k(·, t) ∈ Fk for all t ∈ T and (ii) f(t) = 〈f, kt〉Fk

for all t ∈ T and f ∈ Fk. This second (reproducing)
property expresses that the function evaluation (f 7→ f(t))
in a RKHS is reproduced by taking the inner product
with kt; hence the name. Examples for kernels include the
Gaussian (kG) or the 3/2-Matérn kernel (kM ) defined on
R as

kG (t, s) = e−(t−s)2/(2σ2), (6)
kM (t, s) = (1 +

√
3|t− s|/σ)e−

√
3|t−s|/σ, (7)

where σ > 0 is the “bandwidth”. Constructively, Fk =
span (kt : t ∈ T ); this means that for the Gaussian kernel
the elements of Fk are the limits of sums of Gaussians
with real coefficients. For instance {kM (·, t) : t ∈ R} spans
W 2

2 (R).
The properties of the kernel determine that of the elements
of the associated RKHS Fk. For example if the kernel
is bounded (i.e., supt,s∈T k(t, s) < ∞), the same holds
for the elements of Fk. A similar conclusion is valid if k
is (i) continuous and bounded, (ii) m-times continuously
differentiable, or (iii) analytic. A second equivalent defini-
tion of kernels is often important from an optimization
point of view. A symmetric function k : T × T → R
(k(t, s) = k(s, t) for all t, s ∈ T ) is called kernel if the asso-
ciated Gram matrix G = [k(ti, tj)]i,j∈[n] is positive semi-
definite for any choice of n ∈ N∗ and t1, . . . , tn ∈ T . This
property of G will result in a convex objective function.
For further details on RKHS and kernels, the reader might
consult Berlinet and Thomas-Agnan (2004); Steinwart and
Christmann (2008); Saitoh and Sawano (2016).
Having covered our proposed trajectory inference formu-
lation of the convoy (5a)-(5c) and basic properties of
RKHSs, in the next section we focus on the optimization
of our objective function.
3 We abbreviate the function s ∈ T 7→ k (s, t) ∈ R as k(·, t).

3. OPTIMIZATION

The primary challenge one has to resolve in the optimiza-
tion problem (5a)-(5c) is the infinite number of constraints
(due to T ) in (5b) and (5c). In the literature, such require-
ments are typically tackled by requiring the constraints to
hold only at a finite number of time points; unfortunately
this discretization approach does not guarantee that the
constraints are fulfilled elsewhere. In contrast, we propose
a strengthened optimization problem which implies both
(5b)-(5c) and is computationally tractable.
We assume that k is defined on a set containing T and
that its restriction to T belongs to C(1,1)(T × T ) with
bound κ := supt,s∈T

√
k (t, s), which holds for example

with κ = 1 for the Gaussian and Matérn kernels. Let
the union of the measured time points be {tm}m∈[M ] :=
∪q∈[Q],n∈[Nq ]{tq,n}. We look for solutions of the form fq =∑
m∈[M ] aq,mktm (aq := (aq,m)m∈[M ] ∈ RM ).

Given N ∈ N∗ and a finite family of functions {gn}n∈[N ] ⊂
Fk, let u = (un)n∈[N ] ∈ RN such that un ≥ supt∈T gn(t).
Then, our strengthened convex optimization problem ex-
presses as:

min
a1,...,aQ ∈RM ,
b1,...,bQ ∈R,

α1,...,αQ ∈RN
+ ,

β1,...,βQ ∈RN
+

1
Q

Q∑
q=1

1
Nq

[
aTq (GMΠT

q ΠqGM + λNqGM )aq

(8a)

+Nqb2
q + 2

(
bq1Nq

− xq
)T ΠqGMaq − 2bq1TNq

xq

]
s.t.

κ
∥∥∥G1/2

0 [aq − aq+1;αq]
∥∥∥

2
≤ bq − bq+1 − dmin −αTq u,

(8b)
∀q ∈ [Q− 1],

κ
∥∥∥G1/2

D [aq;βq]
∥∥∥

2
≤ −vmin − βTq u, ∀q ∈ [Q],

(8c)
where xq = (xq,n)n∈[Nq ] ∈ RNq , Πq ∈ RNq×M

is the projector from RM to RNq , the Fk-function
∂2k(·, t) is the derivative of k(·, t) w.r.t. the second
variable, G0 ∈ R(M+N)×(M+N) is the Gram matrix
of (kt1 , . . . , ktM , g1, . . . , gN ), GD ∈ R(M+N)×(M+N) is
the Gram matrix of (∂2k(·, t1), . . . , ∂2k(·, tM ), g1, . . . , gN ),
GM ∈ RM×M is the Gram matrix of (kt1 , . . . , ktM ).

In practice, one can set for instance N = M and
gm = −ktm for all m ∈ [M ]; this is the choice made
in Section 4. Furthermore, constraint (8c) can be overly
conservative. An alternative is to cover T with inter-
vals Im := [tm − δm, tm + δm] with δm > 0, set um =
supt∈Im

gm(t) and replace (8c) by

κ
∥∥∥G1/2

m [aq;βq,m]
∥∥∥

2
≤ −vmin − βq,mum, ∀q ∈ [Q], m ∈ [M ]

(8d)

with Gm ∈ R(M+1)×(M+1) being the Gram matrix of
(∂2k(·, t1), . . . , ∂2k(·, tM ), gm).
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Remarks:

• While the derivation of the optimization problem (8a)-
(8c) is involved (using convex analysis in Hilbert spaces),
we can give the intuition with even more strengthened
constraints (but which are less useful in practice), the
proof of which is straightforward. Consider requirement
(5b) for a fixed q ∈ [Q−1]; (5c) can be handled similarly.
In case of (5b), one has to satisfy

sup
t∈T

[
fq+1(t)− fq(t)︸ ︷︷ ︸
=〈fq+1−fq,kt〉Fk

]
≤ bq − bq+1 − dmin, (9)

where on the l.h.s. we applied the reproducing property
of k. Since ‖kt‖2

Fk
= 〈kt, kt〉Fk

= k(t, t) ≤ κ2 for any t ∈
T , it is sufficient for (9) to hold that fq, fq+1, bq, bq+1
satisfy

sup
g∈Fk, ‖g‖Fk

≤κ
〈fq+1 − fq, g〉Fk

≤ bq − bq+1 − dmin.

Applying the Cauchy-Schwarz inequality, one gets
κ ‖fq+1 − fq‖Fk

≤ bq − bq+1 − dmin. (10)

Under the parameterization fq =
∑
m∈[M ] aq,mktm

(aq,m ∈ R) and applying again the reproducing property
of k, (10) reads, equivalently, as

κ
∥∥∥G1/2

M (aq − aq+1)
∥∥∥

2
≤ bq − bq+1 − dmin. (11)

This inequality is a special case of (8b) with αq = 0.
• Solution of (8a)-(8c) in practice: the convex problem

(8a)-(8c) can be readily implemented with classical
solvers such as CVXGEN (Mattingley and Boyd, 2012).
It has a quadratic objective function and constraints
involving a Euclidean norm and affine terms, i.e. second-
order cone constraints. Hence, our problem scales at
worst as O((Q(N + M))3) (Alizadeh and Goldfarb,
2003). Computing the Gram matrices G boils down to
using the reproducing property for function values and
for their derivatives. For all t ∈ T and h ∈ Fk, this
writes as

h(t) = 〈h, kt〉Fk
, h′(t) = 〈h, ∂2kt〉Fk

,

which implies that

〈h1, h2〉Fk
=
∑
i∈[N1]

∑
j∈[N2]

cidjk(ti, sj)

whenever h1 and h2 can be written in the form of
h1 =

∑
i∈[N1] cikti and h2 =

∑
j∈[N2] djksj

(ci, dj ∈
R, ti, sj ∈ T ). Hence, it is worthwhile to choose
{gn}n∈[N ] ⊂ span({kt}t∈T ); this being a mild assump-
tion as span({kt}t∈T ) is dense in Fk. Under this require-
ment on {gn}n∈[N ], all the inner products appearing
in G are easy to compute. As these Gram matrices
are positive semi-definite (see the end of Section 2), one
can take the matrix square roots G1/2 in (8b) and (8c),
which can be replaced by the output of their Cholesky
decomposition. These computations need to be done
only once, prior to the numerical resolution of (8a).

• Maximum speed constraint: in addition to the minimum
speed constraint (5c), one might also have an upper
bound on the speed of the vehicles:

f ′q(t) ≤ vmax, ∀q ∈ [Q], t ∈ T .

Such a requirement can be encoded similarly to (8c):
introducing an additional variable γq ∈ RN+ , it is
sufficient to add the

κ
∥∥∥G1/2

D [−aq;γq]
∥∥∥

2
≤ vmax − γTq u, ∀q ∈ [Q] (12)

constraint to the optimization problem (8a)-(8c).
• Group of convoys: one could also consider an extension
of the presented trajectory inference formulation (8a)-
(8c) to groups of cars forming convoys for given time
intervals. In this case, one should just replace the
time interval T and the car indices [Q] with some
subsets in the constraint (8b), and change the bound u
accordingly. The less restrictive formulation (8d) of (8c)
exploits the same idea.

4. NUMERICAL EXPERIMENTS

In this section, we demonstrate the efficiency of the pro-
posed trajectory reconstruction approach with speed and
inter-vehicular distance constraints. The goal of the exper-
iments is two-fold:
• Experiment-1: We show that trajectory reconstruction
not taking into account the speed and inter-vehicular
distance requirements can easily lead to inconsistencies,
whereas our constrained solution remains consistent. We
illustrate the idea on GPS-like data from a highway
section including a traffic jam.
• Experiment-2: We complement the first experiment
by investigating how severe the error in the trajectory
reconstruction is as a function of the measurement noise.
For large levels of noise, enforcing the constraints is quite
beneficial.

We start by describing our dataset. We use trajectories
from the recent MoCoPo benchmark (Buisson et al., 2016).
These trajectories t 7→ (x, y) correspond to cars driving on
a two-lane highway. For illustration purposes, we select
six vehicles (Q = 6) following each other in the same lane
with no overtaking and including a traffic jam. Including
the traffic jam section makes the estimation extremely
challenging as the measurement noise in the positions can
easily lead to the (false) prediction that the vehicles are
moving forward and back.
After projecting the two-dimensional position coordinates
(x, y) to the distance travelled along the lane (from now
on referred to as x), we sub-sample it by decreasing the
25Hz measurement frequency to 1Hz which is a usual
value for GPS measurements. We then consider 20% of the
measurements to be missing resulting in M = N = 350
data points, and corrupt the remaining data by adding
Gaussian noise to it with standard deviation σnoise. We
also apply a pre-processing step, taking out an affine
component. This can be interpreted as modelling the
discrepancy with respect to a reference trajectory (acting
as a virtual vehicle in the middle of the convoy) rather than
the trajectories themselves. It corresponds to replacing the
position measurement xq,n with xq,n − f0(tq,n) for all q ∈
[Q], n ∈ [Nq]. Here f0(t) = v̄ t+x̄ is obtained by performing
linear regression on the points {(tq,n, xq,n)}q∈[Q],n∈[Nq ]. In
the implementation of (8c), we thus change accordingly
vmin to vmin − v̄.
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(a) Measurements and reconstructed trajectories t 7→ fq(t). Each
colour represents a vehicle. Grey area: when some vehicles are out of
the road section.
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(b) Reconstructed pairwise distances t 7→ fq(t) − fq+1(t) (q =
1, . . . , 5) compared to the dmin = 10m threshold. Solid lines: con-
strained estimator. Dashed lines: unconstrained estimator. The
colour of the lines correspond to that of the leading vehicle.
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(c) Reconstructed velocities t 7→ f ′q(t) compared to the vmin =
0ms−1 threshold. The notation is the same as in (b).

Figure 1: Reconstruction of the convoy trajectory.
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Figure 2: Median, lower and upper quartiles of the RMSE
w.r.t. the ground truth trajectories as a function of the
noise level σnoise.

Unlike the polar coordinates used by Buisson et al. (2016),
and introduced to project 2D to 1D data, we take the
projection step for granted and use information from the
whole convoy to reconstruct the individual trajectories. We
also corrupt the data that came from cameras to resemble
GPS data.
In our first experiment the measurement noise is at an
average level σnoise = 5m. We require the vehicles to
maintain a distance of at least dmin = 5m and a velocity
vmin = 0ms−1; the latter bound encodes that cars cannot
go backward on a highway. We used the 3/2-Matérn
kernel (7) with bandwidth σ equal to the square root of
the median of the squared pairwise distance of the time
points, and applied leave-one-out cross-validation (see e.g.
(Rifkin and Lippert, 2007)) to determine the optimal
regularization parameter λ.
We compare our proposed trajectory reconstruction ap-
proach taking into account both the inter-vehicular dis-
tance and speed constraints (solution of (8a)-(8b)-(8d))
with the unconstrained trajectory estimator (solution of
(8a) without (8b)-(8d)). The estimated trajectories are
depicted in Fig. 1a with the noiseless (used for perfor-
mance evaluation) and the noisy measurements (used for
estimation).
The reconstructed pairwise distances t 7→ fq(t) − fq+1(t)
(q ∈ [Q − 1]) and velocities t 7→ f

′

q(t) (q ∈ [Q]) are
illustrated in Fig. 1b and Fig. 1c. As it can be read
out from Fig. 1b, one pair of vehicles clearly violates
the distance constraint for the unconstrained kernel ridge
regression (KRR), while the proposed scheme respects the
inter-vehicular distance requirement. The situation is even
more severe in case of the estimated speed values: as it
can be seen in Fig. 1c many speed trajectories obtained
by KRR take negative values. In contrast, the proposed
technique correctly handles the speed constraints, even in
the challenging traffic jam scenario. Notice that the values
of velocity never reach vmin due to the conservatism of our
strengthened approach. This experiment demonstrates the
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efficiency of our trajectory reconstruction method for an
average measurement noise level σnoise = 10m.
In order to provide further insight into the behaviour of
our approach, in the second experiment we studied the
effect of the noise level σnoise on the accuracy of the
trajectory estimation. The accuracy of the estimation was
computed as the root-mean-square error (RMSE) w.r.t.
the ground truth trajectories at the time points when all
the vehicles were on the studied road section (white area in
Fig. 1a) at the original 25Hz frequency. The experiment
was repeated 40 times and the resulting median, lower
and upper quartiles are reported in Fig. 2 for varying
noise level. One can see that for large noise level (say
σnoise ≥ 10m) the added constraints offer a more accurate
reconstruction than the unconstrained KRR method even
in RMSE sense. For smaller noise level the precise handling
of the inter-vehicular distance and speed bounds is the
main benefit of the proposed approach while keeping
comparable RMSE w.r.t. KRR. These two experiments
illustrate the efficiency of our trajectory reconstruction
technique which allows taking into account inter-vehicular
distance and speed constraints in a principled way.

5. CONCLUSIONS AND PERSPECTIVES

In this article, a method has been presented to recover the
curvilinear position of vehicles from noisy measurements
while enforcing constraints of minimum inter-vehicular dis-
tance and speed limits at all times. The proposed method
is guaranteed to provide feasible estimates, benefiting from
the RKHS representation of the trajectories. A key feature
is that the inequality constraints can be addressed, without
any discretization, as a finite dimensional convex problem
that can be efficiently solved. The obtained numerical
results show that we get a good root-mean-square error
in short computation time on a small dataset of real
trajectories. We plan to extend this approach to larger
transportation datasets, such as NGSIM (US Department
of Transportation – FHWA, 2008), and to other applica-
tion fields where the positivity and monotonicity appear
naturally as a valuable side-information when performing
a shape-constrained regression.
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