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Abstract: The Battery Energy Storage System (BESS) plays an important role in the smart
grid and the ancillary market offers high revenues. It is reasonable for the owner of the BESS
to maximise their profits by deciding how to bid with their rivals and balance between the
different market offers. Therefore, this paper proposes an optimal bidding model of the BESS
to maximise the total profit from the Automation Generation Control (AGC) market and
the energy market, while taking the charging/discharging losses and the life of the BESS
into consideration. Taking advantages of function approximation approaches, a reinforcement
learning algorithm is introduced to the designed model, which can cope with the continuous
and massive states of the proposed model and avoid the dimension curse. The resultant novel
bidding model would help the BESS owners to decide their biddings and operational schedules
profitably. Several case studies illustrate the effectiveness and validity of the proposed model.

Keywords: Battery Energy Storage System (BESS), optimal bidding, reinforcement learning.

1. INTRODUCTION

The Battery Energy Storage System (BESS) will play an
important role in the future smart grid. With the rapid
development of battery technology, the BESS can bring
more benefits for the owners, while its construction cost
is gradually reduced (NEE (2018)). There will be more
companies focusing on the development and construction
of the BESS. As its capacity increases, the BESS will par-
ticipate in different markets and benefit from multiple ser-
vices (Michael et al. (2018)). Additionally, the frequency
regulation market demands rapid response and offers high
rewards (PJM (2011)), so that the BESS owners will put
more attention on the regulation market with their BESS,
which will lead to further competitions in the future smart
grid. Therefore, how to allocate the capacity of the BESS
and make bidding decisions have become important issues.

The technology of the BESS has been developed rapidly
in the last decades. Some researchers built batteries with
higher energy density, which could store more energy with
the same volume (Albertus et al. (2018); Monti et al.
(2019)). In the industry, some nickel, cobalt and man-
ganese (NCM) 811 batteries were produced and applied to
a part of the smart grid (Strehle et al. (2019); Coffin and
Horowitz (2018)). Some researchers tried to extend the life
of the battery, which can significantly reduce the batteries’
costs. Liu et al. (2018b) studied the life of the widely
used Li-ion battery. They used the lithium phosphorous
oxynitride (LiPON) layer to extend at least 10 years of
storage life and improve the capacity retention during stor-

age ageing at elevated temperature. Geaney and O’Dwyer
(2017) studied the fundamental operation and the stability
of the Li-O2 battery, which emphasised the importance of
selecting proper discharge/charge rate and the discharge
depth for other cathode/electrolyte combinations to im-
prove the cycle life performance of Li-O2 batteries. More
studies are related to the modelling and optimisation of the
batteries. For example, Rashid and Gupta (2017) did some
physical experiments on lithium batteries and put forward
relevant numerical simulation models. Dong et al. (2019)
studied the distributed battery optimisation strategies and
applied in power system demand side management.

One major application for the BESS is frequency reg-
ulation services in the Automation Generation Control
(AGC) market. Compared with other storage systems, the
BESS has the advantages of easy storage, high reliabil-
ity and fast response, which are more suitable for the
frequency regulation market. Moreover, the AGC market
offers 3 times mileages for RegD (Dynamic Regulation)
service, which will bring high revenue for the BESS owners.
As a result, more BESS owners were expected to compete
in the AGC market and some researchers had been paying
more attention to the AGC market (Xu et al. (2014a);
Tan and Zhang (2017)). In Xu et al. (2014a), a control
strategy for the BESS in frequency regulation was pro-
vided, considering the ageing cost while keeping the state
of charge (SoC) of the BESS. In Tan and Zhang (2017), a
coordinated control strategy of the BESS was proposed to
ensure the wind power plants’ commitment to frequency
ancillary services, focusing on reducing the BESS’s size
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and extending the lifetime of the BESS. However, these
mentioned literature only considered the application of the
BESS in one market. With the emergence of large-capacity
BESS, some articles studied the operation strategies of
the BESS in multiple markets, so as to maximise the
overall profit of the BESS by controlling the placement
proportion of the BESS in different markets. For example,
He et al. (2016) integrated the energy storage system and
solar power plant. They considered the energy, reserve
and regulation market, and proposed an optimal operation
strategy for the solar power plants.

Another problem missed by these literature is that the
bidding strategies only solve the allocation problem of a
single BESS, in which their bidding rivals are neglected.
With the entry of the rivals, the bidding market of the
BESS presents some challenges. During the process of
bidding, the bidder does not know the rivals’ bidding
price and bidding quantity, which is hard to solve by
traditional optimisation algorithms. Furthermore, since
bidding is a highly random and uncertain process, the
bidders cannot know the specific revenue model during
bidding. They only know the market clearing results from
the system operator (SO) in the smart grid. Fortunately,
there were many types of bidding researches in other
applications (Li et al. (2018); Nanduri and Das (2007)) and
the effectiveness of the reinforcement learning algorithm
in bidding problems were proved. Li et al. (2018) applied
the model-free reinforcement learning algorithm to solve
the optimal carbon capture problem in the wholesale
market bidding case. Nanduri and Das (2007) formulated a
stochastic game model for the energy market and proposed
a reinforcement learning based solution methodology.

Therefore, this paper proposes a novel model that deter-
mines the optimal bidding strategy of a BESS in day-
ahead energy and regulation markets, considering the
charging/discharging losses and the ageing cost of the
BESS. Additionally, the reinforcement learning algorithm
is applied to the proposed model in order to solve the
multiple rival bidding problem. At the same time, the
function approximation approach is introduced in this
paper to address the redundancy caused by massive data
and therefore prevent the dimension curse. Based on the
proposed model, the BESS could obtain a more accurate
and profitable bidding strategy.

The major contributions of this paper are summarised
as follows: First, the bidding model considered in this
paper is more accurate and more applicable. Then, the
proposed bidding strategy can help the BESS owner to win
regulation offers without rivals’ information. Moreover,
this paper applied the function approximation tool to
analyse the discrete-time bids states, which significantly
reduced the training time.

2. MARKET DESIGN

This section studies the bidding mechanism of battery
energy storage system in different power markets.

With the development of battery technology, the capacity
of the BESS is increasing rapidly. According to the impor-
tance of batteries in AGC market service, we assume that
the BESSs have the market power to influence AGC mar-
ket (NEE (2018)). Since the main services and revenues
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Fig. 1. Real-time RegD amd RegA data.

of the BESS come from the AGC market, according to
Michael et al. (2018), supplying sufficient power and en-
ergy capacity for the AGC market has the highest priority
among all the services from the perspective of the system
operator. In this paper, based on the prediction of energy
market and AGC market, the winning bids of the BESS
are determined considering the AGC market conditions.

2.1 Automatic Generation Control (AGC) Market

In the AGC market, the operation of smart grid must be
subjected to keep the supply and demand balance. During
the frequency control, the supply-demand balance of the
whole network is met by adjusting the output of frequency
modulation unit, the BESS.

The AGC market obtain the mismatched power by

∆Ptd = Pload − Penergy − Pplan (1)

where ∆Ptd is the power mismatch; Pload, Penergy and
Pplan are the load demand, renewable power output and
the planned power output, respectively.

In power grid dispatching, area control error (ACE) are
usually sent to AGC with a period of 2-4 seconds.

PACE = ∆Ptd + βf ·∆f (2)

where βf is the coefficient of frequency deviation, ∆f is
the frequency deviation and PACE is the ACE signal.

In the smart grid, ACE signal can be divided into a
dynamic regulation signal (RegD) and a traditional reg-
ulation signal (RegA) by a low-pass filter, as shown in
Fig. 1. According to He et al. (2015), the mileage ratio
of RegD is approximately three times larger than RegA’s
mileage ratio. Thus the service of RegD can obtain higher
revenue and compensation than RegA. Moreover, RegD
has the characteristic of zero mean, which helps to reduce
the requirement of the BESS capacity. Although the mean
value of RegD is zero, due to the loss of charging and
discharging, the SoC of the BESS will continue to decline
unless additional power is injected to compensate the en-
ergy loss for a longer time running. To this end, this paper
includes the charging/discharging loss model of the BESS,
and the details will be introduced in the next section.

2.2 Energy Market

The revenue of energy market is mainly from the planned
output power. Compared with traditional generating
units, a BESS only supplies or consumes small portion
of electricity, the BESSs are supposed to be the price-
takers, who will not affect the electricity price in the
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energy market. The BESS will submit the day-ahead bids
to the energy market system operator, and then the system
operator will allocate the electric energy according to dif-
ferent requirements. Since the BESS has the characteristics
of low cost, good power quality and fast response, we
assume that the battery will win the bids in the energy
market. Therefore, the revenue in the energy market can
be described as:

Re,t = pt · be,t (3)

where pt is the clearing price, be,t is the energy bidding
quantity of the BESS and Re,t is the revenue of the BESS
in energy market at time slot t.

2.3 Model of BESS

The BESS unit should provide AGC services frequently in
long term running. Therefore, two types of the BESS costs
are considered in this paper, i.e., charging/discharging loss
cost and the BESS ageing cost.

Loss Cost of BESS According to Xu et al. (2014b),
charging efficiency and discharge efficiency are different,
and the efficiency of charging/discharging has an approxi-
mate linear relationship with charging/discharging power,
which can be formulated as follows:

ηcharge = αcharge + βcharge · Pcharge (4)

ηdischa = αdischa + βdischa · Pdischa (5)

where (αcharge, βcharge) and (αdischa, βdischa) are the co-
efficients of the charging and discharging process. ηcharge
and ηdischa are the charging and discharging efficiency,
respectively. We assume that the electricity price is pt.
The charging/discharging losses then represented as

Cchaloss = pt · Pcharge(1− ηcharge) ·∆T (6)

Cdisloss = pt · Pdischa(
1

ηdischa
− 1) ·∆T (7)

where ∆T is the control period of regulation service and
it is set as 4 seconds.

Ageing Cost of BESS Ageing cost is an important
expenditure when the BESSs provide the power system
service, and the BESS may not meet the requirements of
the system after excessive ageing. Therefore, the ageing
cost model needs to be considered when calculating the
revenue of the BESS. Based on Zhou et al. (2017), the
maximum energy capacity of the BESS will be reduced by
the increase of charging/discharging cycles.

For different type of battery, Nfail
d is a function of

DOD(%), which can be calculated as

Nfail
d = Nfail

100 · d(−kP ) (8)

where Nfail
d is the maximum number of charging/dischar-

ging cycles at d DOD, d is the depth of discharge (DoD),
and kP is a constant parameter for different type of
batteries ranging from 1.1 to 2.2 (Ying et al. (2016)).
To calculate precisely, the equivalent 100%-DOD cycle
number neq100 of nd cycles at d DoD is described as

neq100 = nd · dkP (9)

In practice, the battery cannot predict the positive and
negative power command signals to be given by the system
operator, so that the BESS will provide one bid for

charging and one bid for discharging at each time slot.
Thus, the ageing cost of the BESS can be formulated as

Cag,t =
neq100,t+1 − n

eq
100,t

2 ·Nfail
100

· Cinv (10)

Combining (9) and (10), we can obtain the equivalent
ageing cost as

Cag =

24∗3600/∆T∑
j=0

nd
(dj + P ·∆T

E )kP − (dj)
kP

2 ·Nfail
100

· Cinv (11)

where Cinv is the average daily investment cost of the
battery energy storage system, which can be calculated
by

Cinv = (1 + µ) · (CP · Pmax + CE · Emax + CF ) (12)

where µ is the component replacement cost; CP , CE and
CF are the unit costs of power capacity, energy capacity
and fixed cost, respectively.

3. MODEL FORMULATION

The proposed model of the BESS bidding in the pool
based electricity market is described in detail. The decision
variables are the capacity bids in energy market be,t, the
capacity bids in AGC market bupc,t and bdownc,t and the price
bids in AGC market bp,t of the BESS for each hour in the
next day.

3.1 Objective Function

The bidding model is to maximise the total profit of a
BESS owner, which is described as follow

max Profit =
∑
t∈T

(we ∗ Profitet + wreg ∗ Profit
reg
t − Costtotal

t ) (13)

where we and wreg are the weight of the balance between
energy market and the regulation market. The weights can
be predefined by the market environment and the owner
of the BESS.

In the electricity market, there is a system operator
between the supply companies and the retailers. The
suppliers are bidding in the power pools, and the system
operator makes the decision of market price and power
generation offers. Since the BESSs are the price-taker in
the energy market, the total revenue of a BESS in energy
market Profite

t can be calculated by (Li et al. (2011, 2017))

Profitbid
t = pt · be,t · ηdischa (14)

where be,t is the winning power offer of the BESS at
time slot t, termed as the capacity bidding quantity. A
power supplier can only generate power if its offers are
accepted. Otherwise, the extra penalties should be paid.
The subscript ”t” is the index of the hours in each day,
since the bidding strategy is day-ahead with hourly bids
in the wholesale electricity market.

In (13), Profitreg
t is the revenue of the regulation markets,

which can be described as

Profitreg
t = Profitcapt + Profitperft (15)

where Profitcapt is the revenue of the regulation capability,
which can be described as

Profitcapt = (bupc,t + bdownc,t ) ∗ bp,t (16)

where bupc,t and bdownc,t are the capacity bids; bp,t is the
bidding price, which could influence the regulation market.
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Different energy storage systems provide different regula-
tion capacity bid. Then the system operator will make the
decision and send the regulation signal to the frequency
modulation unit. If the regulation bid of the BESS is
accepted by the system operator, the regulation capability
compensation and the regulation performance based profit
can be formulated as

Profitperft =

3600/∆T∑
τ=0

(pt · Pupτ + pt · P downτ ) (17)

where τ is the smaller time slot than t, and ∆T is the
regulation period, typically from 2s - 4s. According to
PJM (2011), the performance revenue is not related to the
bidding capacity of the BESS, but the real-time regulation
signal and the electricity price. Since each time slot, the
regulation signal will only have one sign, we separate the
regulation signal into regulation up signal Pupτ and the
regulation down signal P downτ .

The total cost is calculated in (18).

Costtotal
t = Closs,t + Cag,t (18)

where Closs,t and Cag,t are the charging/discharging cost
and the ageing cost, respectively. Here, we doesn’t consid-
ered the operation and maintenance cost since it is usually
fixed.

The charging/discharging cost is the sum of the charging
part and the discharging part. In this model, the charging
power Pcharge is equal to the regulation down signal P downτ
and Pdischa = Pupτ . Therefore, the charging/discharging
loss is

Closs,t =

3600/∆T∑
τ=0

pt ·(P downτ (1−ηcharge)+Pupτ (
1

ηdischa
−1)) (19)

The last part of total cost is the ageing cost, which can be
calculated by (11).

3.2 Constraints

Power Constraints In this part, the capacity limits of the
BESS are considered and formulated in (20)-(22) regarding
market requirements, physical constraints and regulation
constraints. The sum of the capacity bids must keep within
the maximum power of the BESS.

be,t + bupc,t ≤ Pmax (20)

be,t − bdownc,t ≥ −Pmax (21)
where Pmax is the maximum output power of the BESS.
It is related to the different type of the BESS.

Furthermore, the maximum regulation capacity has to be
limited in a reasonable range, described in (22).

0 ≤ bupc,t, bdownc,t ≤ µreg · Pmax (22)

where µreg is the maximum ratio of regulation capacity to
the high sustained limit.

Charging/Discharging Constraints This part models the
energy balance model of the BESS based on the physical
constraints and the market requirement.

We assume that there is no energy loss during the charg-
ing/discharging process. The SOC of the BESS can be
calculated as:

SOCt = SOCt−1 + ∆SOC (23)

where ∆SOC is the changed SOC of the BESS between
time t − 1 and t. For the different type of the BESS,
the charging efficiency are different. Therefore, the charg-
ing/discharging rate of the BESS (∆SOC) is expressed
as

∆SOC = SOC − ηcharge · P · h, if charging (24)

∆SOC = SOC − 1

ηdischa
· P · h, if discharging (25)

where ηcharge and ηdischa are the charging/discharging
efficiency of the BESS, h is the time period between t and
t− 1.

The BESS must keep its SOC within its energy capacity
limits. According to Liu et al. (2018a), the BESS performs
its best working characteristics between 20% - 80%. To
get the best performance of the BESS, in this paper, the
capacity limits is set as

ρmin ∗ Em ≤ SOCt ≤ ρmax ∗ Em∀t ∈ T (26)

where ρmin and ρmin are the minimum and maximum
efficiency operation rate. Em is the rated energy capacity
of the battery storage.

SoC Constraints The initial and final SOC usually are
set to be same during the optimization period, as described
below. t0 and t24 represent the begin and end of the day.

SOCt0 = SOCt24 (27)

4. ALGORITHM DESIGN

In this section, the proposed model of a BESS is reformu-
lated for the reinforcement learning algorithm in detail. In

the bidding market, the BESS owner needs to make the
decision of bidding quantity qt, bidding price pt and the
capacity bids for the BESS regulation service. Hence, we
set the action as

at = (bp,t, bq,t, b
up
c,t, b

down
c,t )T ∈ A(st) = A (28)

where A(st) is the discrete action set, which is supposed
to be A for ∀st. In the wholesale electricity market,
each BESS owner only knows its own bidding quantity
and price. The bidding data of the other bidders must
be estimated by the previous bidding history. In this
paper, the bidding quantities and prices of other rivals are
presumed to be influenced by the market clearance price
and the sold offer at time slot t − 1. Some similar state-
choosing methods are studied for electricity market in Li
et al. (2017). Therefore, the state of the BESS owner is
considered as

st = (vt−1, a
T
t−1, SOCt, t)

T ∈ S (29)

where vt−1 is the market settlement price at time slot t−1.
In this paper, we tend to maximise the BESS owner’s
profit within its bidding period, which is 24 hours of a
day; therefore, time slot t is set as a part of state so that
the decision maker can take different actions in different
hours of the day-ahead bidding strategy.

Suppose that each BESS owner has its own bidding price
set and quantity set, which are defined as Pn and Qn.
Therefore, the next hour state st+1 = (vt, a

T
t , SOCt+1, t+

1)T can be easily obtained after taking an action at =
a ∈ A. Then a reward rt+1 is generated by state transition
from st to st+1, which can be considered as

rt+1 = Profitt − CWt (30)
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where rt+1 is defined under the framework of the rein-
forcement learning. Generally, the reward at t + 1 time
slot is the BESS owner profit in terms of the state st
and the action at at t time slot. CWt is set as a penalty
term, which is related to the local constraints, includ-
ing battery and generator constraints. For example, the
SOC of a BESS should be kept between 20% to 80%
to obtain the efficiency operation (Rashid and Gupta
(2014)). If the action leads to these inefficiency areas,
the reward of this state action pair should be negative
and get corresponding penalty. In this paper, the BESS
owner can get the finite-time horizon reward sequence
as st, at, st+1, rt+1, at+1, · · · , st+N−1, at+N−1, st+N , rt+N ,
which is an episode of bidding and operation. The param-
eter N is the trading period, which is set as 24 in this
paper.

The objective of the reinforcement learning for the BESS
owner i is to obtain the best 24-hour reward given by

E(

24∑
k=0

γtrt0+k+1|s(t0) = s0) (31)

where t0 is the initial time slot, s0 is the initial state, k is
the time slot index, ri(t0 + k + 1) is the reward based on
state-action pair at time slot t0+k; γ is the discount factor
which is applied to reduce the effect of future reward.

For each state-action pair, a Q function can be defined as
follows:

Qt+k+1(s, a) = Qt+k(s, a) +α[r+ γQt+k(s′, a′)−Qt+k(s, a)] (32)

where a should be an random action under current policy
π, α is the learning rate and Qt+k(s′, a′) is the estimate of
maximum Q value related to the state-action pair (s′, a′)
at time slot t + k. In order to get quicker training result,
the E-greedy policy has been applied in this paper (Li
et al. (2017)). To ensure the proposed algorithm can find
the optimal policy which can cover maximum state values,
all exploratory actions should have the probability to be
chosen during the training period.

Since the states setting in the model is continuous and
the dimension of the states is large, this paper applies
the function approximation to solve the reinforcement
learning problem. An off-policy model-free algorithm is
implemented so as to find the optimal bidding strategy,
which helps the BESS to get a higher profit during the
trading period.

5. IMPLEMENTATION AND CASE STUDY

In this section, consider an electricity market with 4
BESSs, and these four BESSs bid in the AGC market to
get their rewards. The planning horizon is next day 24-
hour bids.

5.1 Datasets

In our simulation study, the real world datasets are applied
to illustrate the effectiveness of our model. A 4-s based
RegD & RegA signal is generated based on real RegD
signal data by PJM’s data set.

5.2 Case Implementation

In the case studies, it is supposed that all of 4 BESSs can
participate in the AGC market. In this market, the BESS1
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Fig. 3. The BESS optimal bidding prices.

is assumed as our own BESS, which tends to maximise the
profit of next 24-hour. The decision maker of the BESS1
will implement the function approximation based rein-
forcement learning algorithm, seeking the proper bidding
price and bidding capacities. The bidding strategies of all
the other BESS are unknown and supposed to be predicted
by a modelled environment of the decision maker. For the
objective function shown in Eq. (22), the initial time slot
is set as t = 1 and the end time slot is set as t = 24.

The relevant information and cost parameters of the
BESSs are shown in Tabs. 1 - 2.

5.3 Results and Comparison

Figs. 2 - 3 show the optimal bidding strategies and bidding
prices of the BESS in different time slots. In this case,
regulation capacity dominates most of the day, since the
compensation of the regulation services are high. Further-
more, we test bidding strategy of the BESS1 in regula-
tion market and energy market with its rivals. To win
the regulation services offer and earn high compensation
profits, the bidding regulation price is trained to be less
than the history clearance prices and the rivals’ bids. When
the regulation prices are very cheap, the BESS owner will
purchase or sell the energy in the energy market to balance
the energy loss and earn some revenue. During that period,
the regulation bids are reduced because of the physical
constraints of the charging/discharging rate.

The simulation results above show that the proposed
model considering the ageing and transmission losses
presents a more effective bidding strategy for the BESS
owners in a bidding environment of multiple rivals, pro-
vides a more realistic and accurate cost-benefit result for
investors as well.
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Table 1. Cost coefficients for simulation studies.

µ CP CE CF a b c
(£/kW ) (£/kWh) (£) (£/MW 2) (£/MW ) (£)

BESS1 15% 2300 300 2.58e5 1.25e-4 0.48 14.6
BESS2 15% 2250 450 2.52e5 1.32e-4 0.51 15.8
BESS3 15% 2470 360 2.49e5 1.28e-4 0.55 16.2
BESS4 15% 2320 280 2.63e5 1.30e-4 0.45 15.4

Table 2. Parameters of the BESSs for simula-
tion studies.

Pmax Emax ηcharge ηdischa Nfail
100 kp

BESS1 406 900 0.868 0.92 10,000 0.85
BESS2 207 1000 0.88 0.95 10,000 0.85
BESS3 250 625 0.86 0.88 10,000 0.85
BESS4 362 830 0.82 0.86 10,000 0.85

6. CONCLUSION

This paper studied the optimal bidding strategy of the
BESS to maximise the profits under a multi-rival environ-
ment. We firstly proposed a bidding model for the BESS
in the AGC and energy market, then solved the bidding
problem with a reinforcement learning method, which uses
the function approximation to avoid aggregated states
and dimension curse. Simulation results verified that the
proposed method can not only get a higher revenue from
the AGC market, but also extend the life of the BESS and
reduce the losses.
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